共查询到20条相似文献,搜索用时 0 毫秒
1.
Structure of ricin A-chain at 2.5 A 总被引:13,自引:0,他引:13
Ricin has been refined in a crystallographic sense to 2.5 A resolution and the model for the A-chain (RTA) is described in detail. Because RTA is the first member of the class of plant toxins to be analyzed, this model probably defines the major structural characteristics of the entire family of these medically important proteins. Explanations are provided to rationalize amino acids that are conserved between RTA and a number of homologous plant and bacterial toxins. Eight invariant residues appear to be involved in creating or stabilizing the active site. In the active site Arg180 and Glu177 are hydrogen bonded to each other and also coordinate a water molecule; each of these groups may be important in the N-glycosidation reaction. Several other polar residues may play lesser roles in the mechanism, including tyrosines 80 and 123 and asparagines 78 and 209. A number of conserved hydrophobic residues are seen to cluster within several patches and probably drive the overall folding of the toxin molecule. 相似文献
2.
H R Herschman 《Biochemical and biophysical research communications》1984,124(2):551-557
To analyze the influence of ricin B-chain on the toxicity of hybrid-protein conjugates, the rate of cellular uptake of conjugates, and the rate at which ricin A-chain (RTA) is delivered to the cytoplasm, we have constructed toxic hybrid proteins consisting of epidermal growth factor (EGF) coupled in disulfide linkage either to ricin or to RTA. EGF-ricin is no more toxic on A431 cells than EGF-RTA. The two conjugates demonstrate similar kinetics of cellular uptake (defined as antibody irreversible toxicity). EGF-RTA and EGF-ricin, like ricin, required a 2-2 1/2 hour period at 37 degrees before the onset of protein synthesis inhibition occurred. Our results suggest that RTA determines the processes which carry it, either in conjugate or toxin, from the plasma membrane binding site to the cytoplasm following endocytosis, and the ricin B chain is not required for these processes. 相似文献
3.
S. Ramakrishnan Merryn R. Eagle L.L. Houston 《Biochimica et Biophysica Acta (BBA)/General Subjects》1982,719(2):341-348
A radioimmunoassay for ricin and ricin A- and B-chains was developed. Amounts as low as 100 pg of A-chain and 500 pg of B-chain could easily be quantitated. We showed, however, that the free chains were more reactive in the radioimmunoassay than the equivalent quantity of the individual chains when combined in intact ricin. The usefulness of the assay was demonstrated by determining the concentration of contaminating A- or B-chains in preparations of the separate polypeptides purified by DEAE Bio-Gel A chromatography and by chromatofocusing. 相似文献
4.
Andrzej Gardas Ian Macpherson 《Biochimica et Biophysica Acta (BBA)/General Subjects》1979,584(3):538-541
Fluorescein-labelled Ricin was entrapped in unilamellar liposomes; 14 μg of protein was entrapped by 1 mg of lipids. Liposomes added to cells in culture in low serum medium can deliver entrapped Ricin to a Ricin-resistant mutant of baby hamster kidney(BHK)cells. Ricin entrapped in unilamellar liposomes inhibits protein biosynthesis at a concentration of 1.75 μg/ml in Ricin-resistant cells. Ricin dissolved in medium at 50 μg/ml does not affect protein synthesis in these cells. 相似文献
5.
Ricin is known as a potent toxin against animals. It consists of two chains, Ricin Toxin A (RTA) and Ricin Toxin B (RTB). The toxic effect is known to be caused by RTA. Inhibitors for RTA with less efficiency have been reported. Hence, it is of interest to identify new inhibitors. Virtual screening methods (computer aided drug designing) to find similar molecules in drug database were used for screening new inhibitors against RTA. We used the structure of RTA in complex with Pteroic acid (PDB code: 1BR6) as target molecule. Ligand based virtual screening approach was used in which the known inhibitory molecule Pteroic acid (PTA) served as a template to identify similar ligands from the ZINC database. These ligands were docked inside the binding pocket of RTA by using the MVD (Molegro Virtual Docker). This approach successfully identified six novel compounds. These docked ligands interacted with Asn78, Ala79, Val81, Gly121 and Ser176 amino acids, which are key residues of the RTA active site. Three compounds in particular, ZINC05156321 (6, 7 diphenylpteridin-4-ol), ZINC05156324 (6, 7-bis (3-fluorophenyl) pteridin-4-ol) and ZINC08555900 (6, 7-bis (4-fluorophenyl)-1H-pteridin-4-one), showed higher binding affinity in comparison to PTA, with high interaction energy, better space fitting and electrostatic interactions. These molecules should be tested for in vitro and in vivo activities in future for consideration as effective inhibitors. 相似文献
6.
Transport of protein toxins into cells: pathways used by ricin,cholera toxin and Shiga toxin 总被引:10,自引:0,他引:10
Ricin, cholera, and Shiga toxin belong to a family of protein toxins that enter the cytosol to exert their action. Since all three toxins are routed from the cell surface through the Golgi apparatus and to the endoplasmic reticulum (ER) before translocation to the cytosol, the toxins are used to study different endocytic pathways as well as the retrograde transport to the Golgi and the ER. The toxins can also be used as vectors to carry other proteins into the cells. Studies with protein toxins reveal that there are more pathways along the plasma membrane to ER route than originally believed. 相似文献
7.
Formation of a hybrid toxin from ricin agglutinin and a non-toxic mutant protein of diphtheria toxin
Tsuyoshi Uchida Masaru Yamaizumi Yoshio Okada 《Biochemical and biophysical research communications》1978,81(2):268-273
CRM45, a non-toxic mutant protein of diphtheria toxin, is treated with glutaraldehyde and conjugated to ricin agglutinin. The hybrid protein thus obtained is purified by gel filtration and affinity chromatography. The toxicity of the purified hybrid toxin is about 8–10 times grater than that of ricin agglutinin when tested in mice and cultured L cells. 相似文献
8.
Sjur Olsnes Kirsten Sandvig Kristin Eiklid Alexander Pihl 《Journal of cellular biochemistry》1978,9(1):15-25
The toxic lectin modeccin, which inhibits protein synthesis in eukaryotic cells, is cleaved upon treatment with 2-mercaptoethanol into two peptide chains which move in polyacrylamide gels at rates corresponding to molecular weights 28,000 and 38,000. After reduction, the toxin loses its effect on cells, while its ability to inhibit cell-free protein synthesis increases. Like abrin and ricin it inhibits protein synthesis by inactivating the 60S ribosomal subunits. Modeccin binds to surface receptors containing terminal galactose residues. Competition experiments with various glycoproteins indicate that the modeccin receptors are different from the abrin receptors. In addition, they were present on HeLa cells in much smaller numbers. Moreover, mutant lines resistant to abrin and ricin were not resistant to modeccin and vice-versa. The toxin resistance of various mutant cell lines could not be accounted for by a reduced number of binding sites on cells. The data are consistent with the view that the cells possesss different populations of binding sites with differences in ability to facilitate the uptake of the toxins and that in the resistant lines the most active receptors have been reduced or eliminated. 相似文献
9.
10.
11.
Li XP Grela P Krokowski D Tchórzewski M Tumer NE 《The Journal of biological chemistry》2010,285(53):41463-41471
Ribosome inactivating proteins (RIPs) depurinate a universally conserved adenine in the α-sarcin/ricin loop (SRL) and inhibit protein synthesis at the translation elongation step. We previously showed that ribosomal stalk is required for depurination of the SRL by ricin toxin A chain (RTA). The interaction between RTA and ribosomes was characterized by a two-step binding model, where the stalk structure could be considered as an important interacting element. Here, using purified yeast ribosomal stalk complexes assembled in vivo, we show a direct interaction between RTA and the isolated stalk complex. Detailed kinetic analysis of these interactions in real time using surface plasmon resonance (SPR) indicated that there is only one type of interaction between RTA and the ribosomal stalk, which represents one of the two binding steps of the interaction with ribosomes. Interactions of RTA with the isolated stalk were relatively insensitive to salt, indicating that nonelectrostatic interactions were dominant. We compared the interaction of RTA with the full pentameric stalk complex containing two pairs of P1/P2 proteins with its interaction with the trimeric stalk complexes containing only one pair of P1/P2 and found that the rate of association of RTA with the pentamer was higher than with either trimer. These results demonstrate that the stalk is the main landing platform for RTA on the ribosome and that pentameric organization of the stalk accelerates recruitment of RTA to the ribosome for depurination. Our results suggest that multiple copies of the stalk proteins might also increase the scavenging ability of the ribosome for the translational GTPases. 相似文献
12.
Elaine J. Derbyshire Rolf A. Stahel Edward J. Wawrzynczak 《Cancer immunology, immunotherapy : CII》1992,35(6):417-420
Summary The cytotoxic properties of a ricin A chain immunotoxin made with the mouse monoclonal antibody SWA20, recognising a family of sialoglycoprotein antigens selectively expressed by human small-cell lung cancer (SCLC), were examined using a panel of tumour cell lines in tissue culture. SWA20—ricin-A-chain was selectively toxic to the SW2, NCI-H69 and GLC-8 SCLC cell lines, inhibiting the incorporation of [3H]leucine by 50% at a concentration of 0.2–2 nM, but had no selective activity against the NCI-H23 and NCI-H125 lung adenocarcinoma or the control CEM T-lymphoblastoid cell lines. The SWA20 immunotoxin intoxicated the SW2 cell line rapidly, inhibiting [3H]leucine incorporation by 50% within 2 h compared with 0.5 h for ricin. Analysis of the effects of SWA20—ricin-A-chain on the growth of SW2 cells using a limiting-dilution clonogenic assay revealed that the immunotoxin could eliminate 95% of clonogenic malignant cells. Although SWA20—ricin-A-chain was found to be rapidly active against the majority of tumour cells, its action was limited by the presence of insensitive cells expressing low levels of the target antigen. 相似文献
13.
David W. Michaels 《生物化学与生物物理学报:生物膜》1979,555(1):67-78
The addition of nanomolar amounts of a toxin preparation derived from the sea anemone Stoichactis helianthus to black lipid membranes increases their electrical conductance by one million-fold. In addition, the membranes become permeable predominantly to monovalent cations. The elevated bilayer conductance is voltage-dependent, and the current-voltage curves of these bilayers display rectification as well as a region of negative resistance. The membrane activity of the toxin is proportional to the third power of its concentration, and at very low concentrations the membrane conductance increases in discrete uniform steps. These observations indicate that the mechanism of toxin action involves the formation of transmembrane channels constructed by the aggregation of protein molecules which are inserted in the bilayer. The voltage-dependent membrane conductance arises from two distinct channel characteristics: (1) the unit conductance of individual channels is dependent on the polarity of applied voltage; (2) the number of ion-conducting channels is influenced by the polarity as well as the magnitude of applied potential. It is believed that these effects are due to the influence of an electric field on the insertion of toxin molecules into the bilayer or on their subsequent association with each other to produce channels. Partial chemical characterization of the toxin material has shown that the membrane active factor is a basic protein with a molecular weight of 17 500. 相似文献
14.
15.
As an insect pathogen, Photorhabdus luminescens possesses an arsenal of toxins. Here we cloned and expressed a probable toxin from P. luminescens subsp. akhurstii YNd185, designated as Photorhabdus insecticidal toxin (Pit). The pit gene shares 94% nucleotide and 98% predicted amino acid sequence identity with plu1537, a predicted ORF from P. luminescens subsp. laumondii TT01 and 30% predicted amino acid sequence similarity to a fragment of a 13.6 kDa insecticidal crystal protein gene of Bacillus thuringiensis (Bt). The pit was expressed as a GST-Pit fusion protein in E. coli, most of which was insoluble and sequestered into inclusion bodies. The inclusion bodies were harvested and dissolved. The
resultant protein was purified and the Pit was cleaved from the fusion protein by thrombin and purified from GST then used
for bioassay. Pit killed Galleria mellonella (LD50, 30 ng/larva) and Spodoptera litura (LD50, 191 ng/larva) via hemocoel injection. Relative to a control that lacked toxin, Pit did not significantly increase mortality
of S. litura and Helicoverpa armigera when introduced orally, but the treatment did inhibit growth of the insects. The present study demonstrated that Pit possessed
insecticidal activity. 相似文献
16.
J.G. Coote 《FEMS microbiology letters》1992,88(2):137-162
Abstract The RTX (repeats in toxin) cytolytic toxins r represent a family of important virulence factors that have disseminated widely among Gram-negative bacteria. They are characterised by a series of glycine-rich repeat units at the C-terminal end of each protein. They also have other features in common. Secretion from the cell occurs without a periplasmic intermediate by a novel mechanism which involves recognition of a signal sequence at the C-terminus of the toxin by membrane-associated proteins that export the toxin directly to the outside of the cell. The structural gene for each protein encodes an inactive toxin which is modified post-translationally to an active cytotoxic form by another gene product before secretion. The genes for toxin synthesis, activation and secretion are for the most part grouped together on the chromosome and form an operon. The toxins all create pores in the cell membrane of target cells leading to eventual cell lysis and they appear to require Ca2+ for cytotoxic activity. Although the toxins have a similar mode of action, they vary in target cell specificity. Some are cytotoxic for a wide variety of eukaryotic cell types while others exhibit precise target cell specificity and are only active against leukocytes from certain host species. The characteristic glycine-rich repeat units have been identified in other exoproteins besides those with cytotoxic activity and it is likely that the novel secretory mechanism has been harnessed by a variety of pathogens to release important virulence-associated factors from the cell or to locate them on the cell surface. 相似文献
17.
18.
Rat intestinal epithelial cells were isolated and the activity of the enzyme diacylglycerol lipase (DG lipase, EC 3.1.1.3) was investigated. When cells were treated with Escherichia coli heat-stable toxin (ST) liberation of endogenous glycerol and fatty acids was observed. The enzyme responsible for this effect could be demonstrated to be a DG lipase by using specific substrates. It was found that the activity of DG lipase was increased 5–6-fold with the substrates diolein and 1,2-dioleyl-rac-glycerol and triolein being neutral lipid insensitive to DG lipase. ST had no direct effect on the DG lipase. The enzyme DG lipase was activated via a chain reaction due to the hydrolysis of phosphatidylinositol (PI) by the enzyme PI-specific phospholipase C stimulated by ST. 相似文献
19.
Alterations in plasma membrane permeability induced by Clostridium perfringens enterotoxin were studied using Vero (African green monkey kidney) cells which were radioactively labeled with four markers of different molecular size. The markers were α-amino[14C]isobutyric acid (Mr 103), 3H-labeled nucleotide (Mr approx. 300), 51Cr label (Mr approx. 3000) and [3H]RNA (Mr > 25 000). Over a 2 h period, enterotoxin caused significant release of aminoisobutyric acid, nucleotides and 51Cr label but not RNA. The effects of enterotoxin on label release were dose- and time-dependent. The rate of release of markers was dependent upon their size. Permeability alterations could be detected within 15 min with a high dose of enterotoxin. Gel chromatography of released material was used to determine that markers of Mr 3000 but not 25 000 leaked from permeabilized cells. It was concluded that enterotoxin is producing functional ‘holes’ of limited size in the membrane. Permeability changes due to enterotoxin treatment differed between confluent and non-confluent (growing) cells. We propose that the primary action of the enterotoxin is to interact with the plasma membrane and produce functional ‘holes’ of defined size. The resultant alterations in membrane permeability cause the loss of essential cellular substances which inhibits processes such as macromolecular synthesis and eventually leads to cell deterioration and death. 相似文献
20.
SV40灭活疫苗的制备及其对小鼠免疫的研究 总被引:1,自引:0,他引:1
猿猴空泡病毒40(Simian vacuolating virus 40,SV40) 属于乳多空病毒科,是一种DNA肿瘤病毒.亚洲猿类特别是恒河猴是SV40的天然宿主.感染SV40病毒可导致猴体急性病变或呈长期带毒状态,此外能诱使幼鼠产生肿瘤,并能使多种培养细胞发生转化.本研究初步建立了SV40病毒在Vero细胞中的增殖培养方法,并且初步建立了β-丙内脂灭活病毒的方法和纯化工艺.使用SV40病毒灭活疫苗对Balb/c小鼠进行了免疫,结果表明该疫苗具有较好的免疫原性.随后对SV40病毒DNA在免疫小鼠的重要脏器中的整合情况进行了调查,结果表明SV40病毒DNA未在小鼠重要脏器中整合.本研究为SV40病毒灭活疫苗的研制和进一步开展猴体抗SV40感染实验奠定了良好的基础. 相似文献