首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gene regulation by steroid hormones   总被引:4,自引:0,他引:4  
  相似文献   

3.
Gene regulation by steroid hormones   总被引:329,自引:0,他引:329  
M Beato 《Cell》1989,56(3):335-344
  相似文献   

4.
In this issue of Developmental Cell, McCrea and colleagues report that p120-catenin regulates the same Wnt target genes as beta-catenin in the Xenopus embryo (). These findings raise the exciting possibility that these two related proteins function in parallel to mediate cadherin-associated regulation of gene expression.  相似文献   

5.
Signal output from receptor-G-protein-effector modules is a dynamic function of the nucleotide exchange activity of the receptor, the GTPase-accelerating activity of GTPase-activating proteins (GAPs), and their interactions. GAPs may inhibit steady-state signaling but may also accelerate deactivation upon removal of stimulus without significantly inhibiting output when the receptor is active. Further, some effectors (e.g., phospholipase C-beta) are themselves GAPs, and it is unclear how such effectors can be stimulated by G proteins at the same time as they accelerate G protein deactivation. The multiple combinations of protein-protein associations and interacting regulatory effects that allow such complex behaviors in this system do not permit the usual simplifying assumptions of traditional enzyme kinetics and are uniquely subject to systems-level analysis. We developed a kinetic model for G protein signaling that permits analysis of both interactive and independent G protein binding and regulation by receptor and GAP. We evaluated parameters of the model (all forward and reverse rate constants) by global least-squares fitting to a diverse set of steady-state GTPase measurements in an m1 muscarinic receptor-G(q)-phospholipase C-beta1 module in which GTPase activities were varied by approximately 10(4)-fold. We provide multiple tests to validate the fitted parameter set, which is consistent with results from the few previous pre-steady-state kinetic measurements. Results indicate that (1) GAP potentiates the GDP/GTP exchange activity of the receptor, an activity never before reported; (2) exchange activity of the receptor is biased toward replacement of GDP by GTP; (3) receptor and GAP bind G protein with negative cooperativity when G protein is bound to either GTP or GDP, promoting rapid GAP binding and dissociation; (4) GAP indirectly stabilizes the continuous binding of receptor to G protein during steady-state GTPase hydrolysis, thus further enhancing receptor activity; and (5) receptor accelerates GDP/GTP exchange primarily by opening an otherwise closed nucleotide binding site on the G protein but has minimal effect on affinity (K(assoc) = k(assoc)/k(dissoc)) of G protein for nucleotide. Model-based simulation explains how GAP activity can accelerate deactivation >10-fold upon removal of agonist but still allow high signal output while the receptor is active. Analysis of GTPase flux through distinct reaction pathways and consequent accumulation of specific GTPase cycle intermediates indicate that, in the presence of a GAP, the receptor remains bound to G protein throughout the GTPase cycle and that GAP binds primarily during the GTP-bound phase. The analysis explains these behaviors and relates them to the specific regulatory phenomena described above. The work also demonstrates the applicability of appropriately data-constrained system-level analysis to signaling networks of this scale.  相似文献   

6.
7.
8.
9.
A wealth of evidence has accumulated that illustrates the ability of sex-associated hormones to influence directly a variety of diverse immunological functions. Thus, it is not surprising that differences have also been noted between the sexes in their relative susceptibility to parasitic infections. Furthermore, during pregnancy, much of the observed maternal immunomodulation, essential for fetal survival, has been attributed to changes in the levels of steroid hormones. These pregnancy-induced alterations in immune function can also have profound effects on the course of parasitic infection. In this article, Craig Roberts, Abhay Satoskar and James Alexander review the immunological basis for differences in the relative susceptibilities of males, non-pregnant females and pregnant females to parasitic infection, particularly leislumaniasis and toxoplasmosis. They also discuss the role of the major sex- and pregnancy-associated hormones in mediating these effects.  相似文献   

10.
M A Schembri  P Klemm 《The EMBO journal》2001,20(12):3074-3081
Fimbriae are thread-like polymers displayed in large amounts on the bacterial surface and used by many pathogens to attach to receptors on host tissue surfaces. Fimbriae contain disulfide bridges, contrary to many Escherichia coli surface proteins produced in bulk amounts. Here we investigate whether fimbriae expression can affect expression of other genes. Analysis of gene expression in two E.coli strains, differing in the fim locus, indicated the flu gene to be affected. The flu gene encodes the antigen 43 (Ag43) surface protein, specifically involved in bacterial aggregation, and microcolony and biofilm formation. Ag43 production is repressed by the global regulator OxyR, which monitors the cell's thiol-disulfide status. Only the thiol form of OxyR represses Ag43 production. We demonstrate that production of several different disulfide-containing fimbriae results in the abolition of Ag43 production. No effect was observed in an oxyR mutant. We conclude that fimbriae expression per se constitutes a signal transduction mechanism that affects a number of unrelated genes via the thiol-disulfide status of OxyR. Thus, phase variation in fimbrial expression is coordinated with the expression of other disease- and colonization-related genes.  相似文献   

11.
Since vascular endothelium is now recognized as an immunologically active tissue, a better understanding of the relationship between endothelial cells and T lymphocytes is critical to the field of solid organ transplantation. Investigations of endothelial cell-T cell interactions have been limited by methodology. We developed a flow cytometric method allowing for concurrent investigation of multiple cell populations within the same culture that can be applied to these complex interactions. Allogeneic CD8+ or CD4+ T cells labeled with 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) were added to a murine endothelial cell monolayer, in which endothelial proliferation was not inhibited by irradiation or addition of a cell cycle-blocking agent. At specific time points, the coculture was analyzed by flow cytometry. T-cell proliferation could be detected by gating on the T-cell subset and evaluating the CFSE fluorescence peaks. By directly analyzing cellular division, we minimized erroneous interpretation of the data encountered by previous studies, which utilized (3)H-thymidine incorporation as sole measure of proliferation. Further subgating on cells that divided facilitated the study of CD8+ lymphocyte activation, differentiation, and acquisition of effector function. By gating on the endothelial cell population, phenotypic changes such as upregulation of surface MHC molecules or immune-mediated apoptosis could be detected. In conclusion, we present a flow cytometric approach that could have important applications for clinical immunological monitoring in allogeneic or xenogeneic transplantation, and might provide the requisite information to better tailor immunotherapy to prevent chronic rejection.  相似文献   

12.
The impact of hypoxic exposure on the activities of all 11 glycolytic enzymes was studied in cell culture into mammalian cells—mouse lung macrophages and L8 rat skeletal muscle cells. During hypoxic exposure, the measured activity of all glycolytic enzymes increased, establishing coordinate regulation. Three nonglycolytic cytoplasmic enzymes showed no change in activity under the same conditions, suggesting a specific mechanism. Hypoxia appears to increase the activities of all glycolytic enzymes whether rate-limiting or not, presumably increasing adenosine triphosphate availability despite decreased O2 supply.  相似文献   

13.
14.
15.
16.
Coordinate regulation of myelomonocytic phenotype by v-myb and v-myc.   总被引:4,自引:1,他引:3  
Both avian myeloblastosis virus (by the action of v-myb) and avian myelocytomatosis virus MC29 (by the action of v-myc) transform cells of the myelomonocytic lineage. Whereas avian myeloblastosis virus elicits a relatively immature phenotype, cells transformed by MC29 resemble mature macrophages. When cells previously transformed by v-myb were superinfected with MC29, their phenotype was rapidly altered to that of a more mature cell. These superinfected cells expressed both v-myb (at a level similar to that found before superinfection) and v-myc. It therefore appears that the expression of v-myc can elicit certain properties of a more differentiated phenotype. In addition, unlike cells transformed by v-myb alone, the cells expressing both v-myb and v-myc could not be induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate to differentiate to fully mature macrophages. Cells with a morphology similar to that of the superinfected cells were elicited by simultaneously infecting yolk sac macrophages with avian myeloblastosis virus and MC29. Such cells expressed both v-myb and v-myc. These results indicate that expression of v-myb and v-myc in infected cells coordinately regulates myelomonocytic phenotype and that the two viral oncogenes vary in their ability to interfere with tumor promoter-induced differentiation. Our findings also sustain previous suggestions that the oncogenes v-myb and v-myc may not transform target cells by simply blocking differentiation.  相似文献   

17.
Rutter J  Probst BL  McKnight SL 《Cell》2002,111(1):17-28
PAS kinase is a serine/threonine kinase regulated in cis by a PAS domain. A genetic study of the two PAS kinase genes in budding yeast gave evidence of the involvement of these enzymes in the control of sugar metabolism and translation. Using a biochemical screen for PAS kinase substrates, three translation factors were identified as direct phosphorylation targets. PAS kinase was also found to phosphorylate UDP-glucose pyrophosphorylase and glycogen synthase, the enzymes catalyzing the two final steps in the glycogen biosynthetic pathway. Genetic, biochemical, and physiological data provide evidence that both of these enzymes are inhibited by PAS kinase-dependent phosphorylation, thereby downregulating carbohydrate storage. These studies provide evidence of a cell-autonomous signaling system that both controls and connects the balance of fuel consumption/storage to protein synthesis.  相似文献   

18.
Mammalian nuclear receptors broadly influence metabolic fitness and serve as popular targets for developing drugs to treat cardiovascular disease, obesity, and diabetes. However, the molecular mechanisms and regulatory pathways that govern lipid metabolism remain poorly understood. We previously found that the Caenorhabditis elegans nuclear hormone receptor NHR-49 regulates multiple genes in the fatty acid beta-oxidation and desaturation pathways. Here, we identify additional NHR-49 targets that include sphingolipid processing and lipid remodeling genes. We show that NHR-49 regulates distinct subsets of its target genes by partnering with at least two other distinct nuclear receptors. Gene expression profiles suggest that NHR-49 partners with NHR-66 to regulate sphingolipid and lipid remodeling genes and with NHR-80 to regulate genes involved in fatty acid desaturation. In addition, although we did not detect a direct physical interaction between NHR-49 and NHR-13, we demonstrate that NHR-13 also regulates genes involved in the desaturase pathway. Consistent with this, gene knockouts of these receptors display a host of phenotypes that reflect their gene expression profile. Our data suggest that NHR-80 and NHR-13's modulation of NHR-49 regulated fatty acid desaturase genes contribute to the shortened lifespan phenotype of nhr-49 deletion mutant animals. In addition, we observed that nhr-49 animals had significantly altered mitochondrial morphology and function, and that distinct aspects of this phenotype can be ascribed to defects in NHR-66- and NHR-80-mediated activities. Identification of NHR-49's binding partners facilitates a fine-scale dissection of its myriad regulatory roles in C. elegans. Our findings also provide further insights into the functions of the mammalian lipid-sensing nuclear receptors HNF4α and PPARα.  相似文献   

19.
Coordinate regulation of metabotropic glutamate receptors   总被引:8,自引:0,他引:8  
Recent studies aimed at identifying the mechanisms that regulate the signaling of metabotropic glutamate receptors (mGluRs) have revealed that both protein kinase and protein phosphatase activity are important in directly modulating mGluR function. The inter-relationship between phosphorylation and dephosphorylation of mGluRs seems to be an important determinant in regulating mGluR function and the subsequent neuromodulatory events elicited by activation of mGluRs.  相似文献   

20.
The influence of the glucocorticoid hormones (cortisone, cortisol, corticosterone) on the biosynthesis of purine nucleotides (inosinic acid, guanylic acid and adenylic acid) in different organs was investigated in vivo, by following the incorporation of formate-14C into the acid-soluble nucleotides, after administration of the hormones to adrenalectomized rats. Cortisone and corticosterone show a remarkable and comparable increase of the incorporation of formate-14C only in the purine bases of the liver: cortisol is much more effective, increasing the incorporation of formate-14C into the purine bases even ten times over the basal values. No specific effect is evident either in the kidney or in the heart after glucocorticoid administration. Results are interpreted considering that the action of an individual hormone is specifically restricted to the purine nucleotide synthesis in the liver, and that cortisol seems to be the most efficient from this point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号