首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expiration reflex is a distinct airway defensive response characterized by a brief, intense expiratory effort and coordinated adduction and abduction of the laryngeal folds. This study addressed the hypothesis that the ventrolateral medullary respiratory network participates in the reflex. Extracellular neuron activity was recorded with microelectrode arrays in decerebrated, neuromuscular-blocked, ventilated cats. In 32 recordings (17 cats), 232 neurons were monitored in the rostral (including B?tzinger and pre-B?tzinger complexes) and caudal ventral respiratory group. Neurons were classified by firing pattern, evaluated for spinal projections, functional associations with recurrent laryngeal and lumbar nerves, and firing rate changes during brief, large increases in lumbar motor nerve discharge (fictive expiration reflex, FER) elicited during mechanical stimulation of the vocal folds. Two hundred eight neurons were respiratory modulated, and 24 were nonrespiratory; 104 of the respiratory and 6 of the nonrespiratory-modulated neurons had altered peak firing rates during the FER. Increased firing rates of bulbospinal neurons and expiratory laryngeal premotor and motoneurons during the expiratory burst of FER were accompanied by changes in the firing patterns of putative propriobulbar neurons proposed to participate in the eupneic respiratory network. The results support the hypothesis that elements of the rostral and caudal ventral respiratory groups participate in generating and shaping the motor output of the FER. A model is proposed for the participation of the respiratory network in the expiration reflex.  相似文献   

2.
Respiratory network plasticity is a modification in respiratory control that persists longer than the stimuli that evoke it or that changes the behavior produced by the network. Different durations and patterns of hypoxia can induce different types of respiratory memories. Lateral pontine neurons are required for decreases in respiratory frequency that follow brief hypoxia. Changes in synchrony and firing rates of ventrolateral and midline medullary neurons may contribute to the long-term facilitation of breathing after brief intermittent hypoxia. Long-term changes in central respiratory motor control may occur after spinal cord injury, and the brain stem network implicated in the production of the respiratory rhythm could be reconfigured to produce the cough motor pattern. Preliminary analysis suggests that elements of brain stem respiratory neural networks respond differently to hypoxia and hypercapnia and interact with areas involved in cardiovascular control. Plasticity or alterations in these networks may contribute to the chronic upregulation of sympathetic nerve activity and hypertension in sleep apnea syndrome and may also be involved in sudden infant death syndrome.  相似文献   

3.
The purpose of this study is to analyze the reflex effects of laryngeal afferent activation on respiratory patterns in anesthetized, vagotomized, paralyzed, ventilated cats. We recorded simultaneously from the phrenic nerve, T10 internal intercostal nerve, and single bulbospinal expiratory neurons of the caudal ventral respiratory group (VRG). Laryngeal afferents were activated by electrical stimulation of the superior laryngeal nerve (SLN) or by cold-water infusion into the larynx. Both types of stimuli caused inhibition of phrenic activity and facilitation of internal intercostal nerve activity, indicating expiratory effort. The activity of 46 bulbospinal expiratory cells was depressed during SLN electrical stimulation, and 13 of them were completely inhibited. In 44 of 56 neurons tested, mean firing frequency (FFmean) was decreased in response to cold-water infusion and 8 others responded with increased FFmean; in the remaining 4 neurons, FFmean was unchanged. Possible reasons for different neuronal responses to SLN electrical stimulation and water infusion are discussed. We conclude that bulbospinal expiratory neurons of VRG were not the source of the reflex motoneuronal expiratory-like activity produced by SLN stimulation. Other, not yet identified inputs to spinal expiratory motoneurons are activated during this experimental condition.  相似文献   

4.
Repetitive electrical stimulation of afferent fibers in the superior laryngeal nerve (SLN) evoked depressant or excitatory effects on sympathetic preganglionic neurons of the cervical trunk in Nembutal-anesthetized, paralyzed, artifically ventilated cats. The depressant effect, which consisted of suppression of the inspiration-synchronous discharge of units with such firing pattern, was obtained at low strength and frequency of stimulation (e.g. 600 mV, 30 Hz) and was absent at end-tidal CO2 values below threshold for phrenic nerve activity. The excitatory effect required higher intensity and frequency of stimulation and was CO2 independent. The depressant effect on sympathetic preganglionic neurons with inspiratory firing pattern seemed a replica of the inspiration-inhibitory effect observed on phrenic motoneurons. Hence, it could be attributed to the known inhibition by the SLN of central inspiratory activity, if it is assumed that this is a common driver for phrenic motoneurons and some sympathetic preganglionic neurons. The excitatory effect, on the other hand, appears to be due to connections of SLN afferents with sympathetic preganglionic neurons, independent of the respiratory center.  相似文献   

5.
The motor, sensory, and postganglionic sympathetic neurons forming the left ulnar and right radial nerves of long-tailed macaques (Macaca fascicularis) and pigtailed macaques (Macaca nemestrina) were localized by the horseradish peroxidase method of tracing neuronal connections. The ulnar and radial motoneurons formed a longitudinal column of variable extent in the lateral part of the ventral horn. In most animals, the ulnar motoneurons extended between the caudal ends of the C7 and T1 segments; the radial motoneurons extended between the rostral level of the C4 and the middle part of T1 segments. Although there were areas of overlap in the spinal distribution of ulnar and radial motoneurons, the ulnar motoneurons were located more dorsally and dorsolaterally than were the radial motoneurons. In most animals, labelled sensory neurons whose axons run with the ulnar nerve occurred in the C8–T4 dorsal root ganglia, and those whose axons run with the radial nerve occurred in the C5–T3 ganglia. The radial sympathetic neurons were distributed in stellate through T7 paravertebral sympathetic ganglia, and the ulnar sympathetic neurons were distributed in stellate through T4 paravertebral sympathetic ganglia. Though the motor, sensory, and sympathetic neurons forming the ulnar and radial nerves had wide segmental distributions, all showed peak frequencies in two segments. The cross-sectional areas of the motor, sensory, and postganglionic sympathetic neurons forming the radial and ulnar nerves were measured in the animal that showed the greatest amount of labelling for each nerve. The ulnar and radial motoneurons had a similar range of sizes, with cross-sectional areas between 120 and 2,160 μm2. Most were smaller than 900 μm2. The sensory neurons forming the ulnar and radial nerves also displayed a similar range of sizes, measuring between 120 and 3,360 μm2 in cross-sectional area. Most neurons measured between 201 and 800 μm2. The ulnar sympathetic neurons measured between 120 and 840 μm2, and the radial neurons between 120 and 2,120 μm2. In both cases, most neurons measured between 120 and 600 μm2. The mean cross-sectional area for the radial sympathetic neurons was, however, larger than that for the ulnar sympathetic neurons.  相似文献   

6.
M L Fung  X Dong 《Life sciences》2001,69(19):2319-2326
N-methyl-D-aspartate (NMDA) receptors play important roles in the neural control of respiration. We hypothesized that the brainstem circuit for respiratory control is modulated in response to chronic hypoxia during postnatal maturation, and the modulation may involve changes in the neurotransmission mediated by the NMDA receptors for inspiratory termination. Electrophysiological studies were performed on anesthetized, vagotomized, paralyzed and ventilated rats. Phrenic nerve activity was recorded in normoxic control and chronically hypoxic (CH) rats maintained in normobaric hypoxia (10% O2) for 4-5 weeks from birth. In normoxic rats, the NMDA receptor antagonist, dizocilpine (MK801, i.p.) irreversibly increased inspiratory time (Ti) by 53% and decreased expiratory time (Te) by 29%. However, MK801 did not change the Ti, Te, respiratory rate and peak phrenic nerve activity in CH rats. Results suggest that brainstem mechanisms underlying inspiratory termination mediated by NMDA receptors are modulated by early chronic hypoxia.  相似文献   

7.
Wang JL  Wu ZH  Wang NQ 《生理学报》2005,57(1):91-96
实验旨在探讨腺苷A1受体在对基本呼吸节律调制中的可能作用。制作新生大鼠离体延髓脑片标本,主要包含面神经后核内侧区(themedial region of the nucleus retrofacialis,mNRF),并保留完整的舌下神经根。以改良Kreb‘s液灌流脑片,记录mNRF吸气神经元的电活动,并同步记录舌下神经根呼吸节律性放电(respiratory rhythmical discharge activity,RRDA)。在灌流液中先分别单独给予腺苷A1受体的特异性拮抗剂8-环戊-1,3-二丙基黄嘌呤(8-cyclopenty 1-1,3-dipropylxanthine,DPCPX)和特异性激动剂R-苯异丙基-腺苷(R-phenylisopropyl-adenosine,R-PIA);再分别先后给予R-PIA和R-PIA DPCPX,观察RRDA和吸气神经元电活动的变化。结果显示,给予腺苷A1受体拮抗剂DPCPX后,呼气时程和呼吸周期明显缩短,吸气神经元中期放电的频率和峰频率显著增大;给予腺苷Al受体激动剂R-PIA后,吸气时程、积分幅度和吸气神经元中期放电的频率和峰频率均显著降低,呼吸周期明显延长,且R-PIA的呼吸抑制作用可部分地被DPCPX逆转。实验结果提示,腺苷A1受体可能通过介导吸气神经元的抑制性突触输入参与节律性呼吸的调制。  相似文献   

8.
In anuran amphibians, respiratory rhythm is generated within the central nervous system (CNS) and is modulated by chemo- and mechanoreceptors located in the vascular system and within the CNS. The site for central respiratory rhythmogenesis and the role of various neurotransmitters and neuromodulators is described. Ventilatory air flow is generated by a positive pressure, buccal force pump driven by efferent motor output from cranial nerves. The vagus (cranial nerve X) also controls heart rate and pulmocutaneous arterial resistance that, in turn, affect cardiac shunts within the undivided anuran ventricle; however, little is known about the control of central vagal motor outflow to the heart and pulmocutaneous artery. Anatomical evidence indicates a close proximity of the centers responsible for respiratory rhythmogenesis and the vagal motoneurons involved in cardiovascular regulation. Furthermore, anurans in which phasic feedback from chemo- and mechanoreceptors is prevented by artificial ventilation exhibit cardiorespiratory interactions that appear similar to those of conscious animals. These observations indicate interactions between respiratory and cardiovascular centers within the CNS. Thus, like mammals and other air-breathing vertebrates, the cardio-respiratory interactions in anurans result from both feedback and feed-forward mechanisms.  相似文献   

9.
Sympathetic and respiratory motor activities are entrained centrally. We hypothesize that this coupling may partially underlie changes in sympathetic activity evoked by hypoxia due to activity-dependent changes in the respiratory pattern. Specifically, we tested the hypothesis that sympathetic nerve activity (SNA) expresses a short-term potentiation in activity after hypoxia similar to that expressed in phrenic nerve activity (PNA). Adult male, Sprague-Dawley (Zivic Miller) rats (n = 19) were anesthetized (Equithesin), vagotomized, paralyzed, ventilated, and pneumothoracotomized. We recorded PNA and splanchnic SNA (sSNA) and generated cycle-triggered averages (CTAs) of rectified and integrated sSNA before, during, and after exposures to hypoxia (8% O(2) and 92% N(2) for 45 s). Inspiration (I) and expiration (E) were divided in half, and the average and area of integrated sSNA were calculated and compared at the following time points: before hypoxia, at the peak breathing frequency during hypoxia, immediately before the end of hypoxia, immediately after hypoxia, and 60 s after hypoxia. In our animal model, sSNA bursts consistently followed the I-E phase transition. With hypoxia, sSNA increased in both halves of E, but preferentially in the second rather than the first half of E, and decreased in I. After hypoxia, sSNA decreased abruptly, but the coefficient of variation in respiratory modulation of sSNA was significantly less than that at baseline. The hypoxic-evoked changes in sympathetic activity and respiratory pattern resulted in sSNA in the first half of E being correlated negatively to that in the second half of E (r = -0.65, P < 0.05) and positively to Te (r = 0.40, P < 0.05). Short-term potentiation in sSNA appeared not as an increase in the magnitude of activity but as an increased consistency of its respiratory modulation. By 60 s after hypoxia, the variability in the entrainment pattern had returned to baseline. The preferential recruitment of late expiratory sSNA during hypoxia results from either activation by expiratory-modulated neurons or by non-modulated neurons whose excitatory drive is not gated during late E.  相似文献   

10.
The present study was undertaken to determine what roles the various cerebellar deep nuclei (CDN) play in modulation of respiration, especially during chemical challenges. Experiments were carried out in 12 anesthetized, tracheotomized, paralyzed, and ventilated rats. The integrated phrenic nerve activity (integralPN) was recorded as an index of respiratory motor output. A stimulating electrode was sequentially placed into the fastigial nucleus (FN), the interposed nucleus, and the lateral nucleus. Only stimulation of the FN significantly altered respiration, primarily via increasing respiratory frequency associated with a pressor response. The evoked respiratory responses persisted after blocking the pressor response via pretreatment with phenoxybenzamine or use of transient stimulation (<2 s) but were abolished by microinjection of kainic acid into the FN. To test the involvement of FN neurons in respiratory chemoreflexes, ventilation with hypercapnic gases mixture and intravenous injection of sodium cyanide were applied before and after CDN lesions induced by kainic acid. CDN lesions did not significantly alter eupneic breathing, but FN lesions attenuated the respiratory response to hypercapnia and sodium cyanide. We conclude that, with respect to the CDN in the rat, FN neurons uniquely modulate respiration independent of cardiovascular effects and facilitate respiratory responses mediated by activation of CO(2) and O(2) receptors.  相似文献   

11.
Distortion of the upper airway by negative transmural pressure (UANP) causes reflex vagal bradycardia. This requires activation of cardiac vagal preganglionic neurons, which exhibit postinspiratory (PI) discharge. We hypothesized that UANP would also stimulate cranial respiratory motoneurons with PI activity. We recorded 32 respiratory modulated motor units from the recurrent laryngeal nerve of seven decerebrate paralyzed rabbits and recorded their responses to UANP and to withholding lung inflation using a phrenic-triggered ventilator. The phasic inspiratory (n = 17) and PI (n = 5) neurons detected were stimulated by -10 cmH(2)O UANP and by withdrawal of lung inflation (P < 0.05, Friedman's ANOVA). Expiratory-inspiratory units (n = 10) were tonically active but transiently inhibited in postinspiration; this inhibition was more pronounced and prolonged during UANP stimuli and during no-inflation tests (P < 0.05). We conclude that, in addition to increasing inspiratory activity in the recurrent laryngeal nerve, UANP also stimulates units with PI activity.  相似文献   

12.
Hypertension is a major cause of morbidity. The neuropeptide catestatin [human chromogranin A-(352-372)] is a peptide product of the vesicular protein chromogranin A. Studies in the periphery and in vitro studies show that catestatin blocks nicotine-stimulated catecholamine release and interacts with β-adrenoceptors and histamine receptors. Catestatin immunoreactivity is present in the rostral ventrolateral medulla (RVLM), a key site for blood pressure control in the brain stem. Recently, we reported that microinjection of catestatin into the RVLM is sympathoexcitatory and increases barosensitivity. Here, we report the effects of microinjection of catestatin (1 mM, 50 nl) into the caudal ventrolateral medulla (CVLM) in urethane-anesthetized, bilaterally vagotomized, artificially ventilated Sprague-Dawley rats (n = 8). We recorded resting arterial pressure, splanchnic sympathetic nerve activity, phrenic nerve activity, heart rate, and measured cardiovascular homeostatic reflexes. Homeostatic reflexes were evaluated by measuring cardiovascular responses to carotid baroreceptor and peripheral chemoreceptor activation. Catestatin decreased basal levels of arterial pressure (-23 ± 4 mmHg), sympathetic nerve activity (-26.6 ± 5.7%), heart rate (-19 ± 5 bpm), and phrenic nerve amplitude (-16.8 ± 3.3%). Catestatin caused a 15% decrease in phrenic inspiratory period (T(i)) and a 16% increase in phrenic expiratory period (T(e)) but had no net effect on the phrenic interburst interval (T(tot)). Catestatin decreased sympathetic barosensitivity by 63.6% and attenuated the peripheral chemoreflex (sympathetic nerve response to brief hypoxia; range decreased 39.9%; slope decreased 30.1%). The results suggest that catestatin plays an important role in central cardiorespiratory control.  相似文献   

13.
We examined whether neurons in the midbrain ventral tegmental area (VTA) play a role in generating central command responsible for autonomic control of the cardiovascular system in anesthetized rats and unanesthetized, decerebrated rats with muscle paralysis. Small volumes (60 nl) of an N-methyl-D-aspartate receptor agonist (L-homocysteic acid) and a GABAergic receptor antagonist (bicuculline) were injected into the VTA and substantia nigra (SN). In anesthetized rats, L-homocysteic acid into the VTA induced short-lasting increases in renal sympathetic nerve activity (RSNA; 66 ± 21%), mean arterial pressure (MAP; 5 ± 2 mmHg), and heart rate (HR; 7 ± 2 beats/min), whereas bicuculline into the VTA produced long-lasting increases in RSNA (130 ± 45%), MAP (26 ± 2 mmHg), and HR (66 ± 6 beats/min). Bicuculline into the VTA increased blood flow and vascular conductance of the hindlimb triceps surae muscle, suggesting skeletal muscle vasodilatation. However, neither drug injected into the SN affected all variables. Renal sympathetic nerve and cardiovascular responses to chemical stimulation of the VTA were not essentially affected by decerebration at the premammillary-precollicular level, indicating that the ascending projection to the forebrain from the VTA was not responsible for evoking the sympathetic and cardiovascular responses. Furthermore, bicuculline into the VTA in decerebrate rats produced long-lasting rhythmic bursts of RSNA and tibial motor nerve discharge, which occurred in good synchrony. It is likely that the activation of neurons in the VTA is capable of eliciting synchronized stimulation of the renal sympathetic and tibial motor nerves without any muscular feedback signal.  相似文献   

14.
Medullary electrosensory processing in the little skate   总被引:1,自引:0,他引:1  
1. Previous studies have demonstrated that the resting activity of electrosensory ALLN fibers is modulated by the animal's own respiratory activity and that all fibers innervating a single ampullary cluster are modulated with the same amplitude and phase relationship to ventilation. We demonstrate that ALLN fibers in the skate are modulated in this common-mode manner bilaterally, regardless of receptor group, orientation, or position of the receptor pore on the body surface (Fig. 2). 2. Ascending efferent neurons (AENs), which project to the electrosensory midbrain from the DON, are modulated through a much smaller portion of their dynamic range. AENs give larger responses to an extrinsic local electric field than to the respiratory driving, indicating that a mechanism exists for suppressing ventilatory electrosensory reafference. 3. In paralyzed animals no modulation of resting activity or of responses of extrinsic electric fields could be observed with respect to the animal's respiratory motor commands in the absence of electrosensory reafference. 4. Cells of the dorsal granular ridge (DGR) project to medullary AENs via the DON molecular layer. A majority of proprioceptive DGR neurons are modulated by ventilatory activity, however, in a given fish the modulation is not in the same phase relationship to ventilation among DGR units. 5. The modulation of AENs during respiration was increased following transection of the contralateral ALLN (Fig. 9). Resting activity and responses to excitatory stimuli were inhibited by simultaneous stimulation of the transected contralateral ALLN indicating that a common-mode rejection mechanism is mediated via the commissural interconnections of the DONs.  相似文献   

15.
The changes in thoracic and abdominal pressure that generate vomiting are produced by coordinated action of the major respiratory muscles. During vomiting, the diaphragm and external intercostal (inspiratory) muscles co-contract with abdominal (expiratory) muscles in a series of bursts of activity that culminates in expulsion. Internal intercostal (expiratory) muscles contract out of phase with these muscles during retching and are inactive during expulsion. The periesophageal portion of the diaphragm relaxes during expulsion, presumably facilitating rostral movement of gastric contents. Recent studies have begun to examine to what extent medullary respiratory neurons are involved in the control of these muscles during vomiting. Bulbospinal expiratory neurons in the ventral respiratory group caudal to the obex discharge at the appropriate time during (fictive) vomiting to activate either abdominal or internal intercostal motoneurons. The pathways that drive phrenic and external intercostal motoneurons during vomiting have yet to be identified. Most bulbospinal inspiratory neurons in the dorsal and ventral respiratory groups do not have the appropriate response pattern to initiate activation of these motoneurons during (fictive) vomiting. Relaxation of the periesophageal diaphragm during vomiting could be brought about, at least in part, by reduced firing of bulbospinal inspiratory neurons.  相似文献   

16.
Voltage-sensitive ion channels in rhythmic motor systems   总被引:3,自引:0,他引:3  
Voltage-sensitive ionic currents shape both the firing properties of neurons and their synaptic integration within neural networks that drive rhythmic motor patterns. Persistent sodium currents underlie rhythmic bursting in respiratory neurons. H-type pacemaker currents can act as leak conductances in spinal motoneurons, and also control long-term modulation of synaptic release at the crayfish neuromuscular junction. Calcium currents travel in rostro-caudal waves with motoneuron activity in the spinal cord. Potassium currents control spike width and burst duration in many rhythmic motor systems. We are beginning to identify the genes that underlie these currents.  相似文献   

17.
We determined the effects of bilateral microinjection of muscimol and excitatory amino acid receptor antagonists into the medullary lateral tegmental field (LTF) on changes in sympathetic nerve discharge (SND), mean arterial pressure (MAP), and phrenic nerve activity (PNA; artificially ventilated cats) or intratracheal pressure (spontaneously breathing cats) elicited by right atrial administration of phenylbiguanide (PBG; i.e., the Bezold-Jarisch reflex) in dial-urethane anesthetized cats. The PBG-induced depressor response (-66 +/- 8 mmHg; mean +/- SE) was converted to a pressor response after muscimol microinjection in two of three spontaneously breathing cats and was markedly reduced in the other cat; however, the duration of apnea (20 +/- 3 vs. 17 +/- 7 s) was essentially unchanged. In seven paralyzed, artificially ventilated cats, muscimol microinjection significantly (P < 0.05) attenuated the PBG-induced fall in MAP (-39 +/- 7 vs. -4 +/- 4 mmHg) and the magnitude (-98 +/- 1 vs. -35 +/- 13%) and duration (15 +/- 2 vs. 3 +/- 2 s) of the sympathoinhibitory response. In contrast, the PBG-induced inhibition of PNA was unaffected (3 cats). Similar results were obtained by microinjection of an N-methyl-D-aspartate (NMDA) receptor antagonist, D(-)-2-amino-5-phosphonopentanoic acid, into the LTF. In contrast, neither the cardiovascular nor respiratory responses to PBG were altered by blockade of non-NMDA receptors with 1,2,3,4-tetrahydro-6-nitro-2,3-dioxobenzo[f]quinoxaline-7-sulfonamide. We conclude that the LTF subserves a critical role in mediating the sympathetic and cardiovascular components of the Bezold-Jarisch reflex. Moreover, these data show separation of the pathways mediating the respiratory and cardiovascular responses of this reflex at a level central to bulbospinal outflows to phrenic motoneurons and preganglionic sympathetic neurons.  相似文献   

18.
The activity of inspiratory and expiratory motor units (MU) has been studied. The statistical data indicate that the recruitment of expiratory motoneurons is slower and more uniform than the recruitment of the inspiratory motoneurons. Most of the expiratory motoneurons showed inhibition shortly before the start of the inspiratory phase. Data are given on other characteristics of the activity and segmental location of both groups of motoneurons. It is postulated that the changes in the MU activity at the beginning and the end of the respiratory period and the coincidence in the extremal activity values of the antagonistic groups are attributable to supraspinal influences.Information Transmission Problems Institute, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 3, pp. 289–295, May–June, 1970.  相似文献   

19.
Mu-opioid receptor agonists depress tidal volume, decrease chest wall compliance, and increase upper airway resistance. In this study, potential neuronal sites and mechanisms responsible for the disturbances were investigated, dose-response relationships were established, and it was determined whether general anesthesia plays a role. Effects of micro-opioid agonists on membrane properties and discharges of respiratory bulbospinal, vagal, and propriobulbar neurons and phrenic nerve activity were measured in pentobarbital-anesthetized and unanesthetized decerebrate cats. In all types of respiratory neurons tested, threshold intravenous doses of the micro-opioid agonist fentanyl slowed discharge frequency and prolonged duration without altering peak discharge intensity. Larger doses postsynaptically depressed discharges of inspiratory bulbospinal and inspiratory propriobulbar neurons that might account for depression of tidal volume. Iontophoresis of the micro-opioid agonist DAMGO also depressed the intensity of inspiratory bulbospinal neuron discharges. Fentanyl given intravenously prolonged discharges leading to tonic firing of bulbospinal expiratory neurons in association with reduced hyperpolarizing synaptic drive potentials, perhaps explaining decreased inspiratory phase chest wall compliance. Lowest effective doses of fentanyl had similar effects on vagal postinspiratory (laryngeal adductor) motoneurons, whereas in vagal laryngeal abductor and pharyngeal constrictor motoneurons, depression of depolarizing synaptic drive potentials led to sparse, very-low-frequency discharges. Such effects on three types of vagal motoneurons might explain tonic vocal fold closure and pharyngeal obstruction of airflow. Measurements of membrane potential and input resistance suggest the effects on bulbospinal Aug-E neurons and vagal motoneurons are mediated presynaptically. Opioid effects on the respiratory neurons were similar in anesthetized and decerebrate preparations.  相似文献   

20.
We tested the hypothesis, motivated in part by a coordinated computational cough network model, that alterations of mean systemic arterial blood pressure (BP) influence the excitability and motor pattern of cough. Model simulations predicted suppression of coughing by stimulation of arterial baroreceptors. In vivo experiments were conducted on anesthetized spontaneously breathing cats. Cough was elicited by mechanical stimulation of the intrathoracic airways. Electromyograms (EMG) of inspiratory parasternal, expiratory abdominal, laryngeal posterior cricoarytenoid (PCA), and thyroarytenoid muscles along with esophageal pressure (EP) and BP were recorded. Transiently elevated BP significantly reduced cough number, cough-related inspiratory, and expiratory amplitudes of EP, peak parasternal and abdominal EMG, and maximum of PCA EMG during the expulsive phase of cough, and prolonged the cough inspiratory and expiratory phases as well as cough cycle duration compared with control coughs. Latencies from the beginning of stimulation to the onset of cough-related diaphragm and abdominal activities were increased. Increases in BP also elicited bradycardia and isocapnic bradypnea. Reductions in BP increased cough number; elevated inspiratory EP amplitude and parasternal, abdominal, and inspiratory PCA EMG amplitudes; decreased total cough cycle duration; shortened the durations of the cough expiratory phase and cough-related abdominal discharge; and shortened cough latency compared with control coughs. Reduced BP also produced tachycardia, tachypnea, and hypocapnic hyperventilation. These effects of BP on coughing likely originate from interactions between barosensitive and respiratory brainstem neuronal networks, particularly by modulation of respiratory neurons within multiple respiration/cough-related brainstem areas by baroreceptor input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号