首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lu QR  Sun T  Zhu Z  Ma N  Garcia M  Stiles CD  Rowitch DH 《Cell》2002,109(1):75-86
The oligodendrocyte lineage genes Olig1 and Olig2 encode related bHLH proteins that are coexpressed in neural progenitors. Targeted disruption of these two genes sheds light on the ontogeny of oligodendroglia and genetic requirements for their development from multipotent CNS progenitors. Olig2 is required for oligodendrocyte and motor neuron specification in the spinal cord. Olig1 has roles in development and maturation of oligodendrocytes, evident especially within the brain. Both Olig genes contribute to neural pattern formation. Neither Olig gene is required for astrocytes. These findings, together with fate mapping analysis of Olig-expressing cells, indicate that oligodendrocytes are derived from Olig-specified progenitors that give rise also to neurons.  相似文献   

3.
Prominin-1 (CD133) is a commonly used cancer stem cell marker in central nervous system (CNS) tumors including glioblastoma (GBM). Expression of Prom1 in cancer is thought to parallel expression and function in normal stem cells. Using RNA in situ hybridization and antibody tools capable of detecting multiple isoforms of Prom1, we find evidence for two distinct Prom1 cell populations in mouse brain. Prom1 RNA is first expressed in stem/progenitor cells of the ventricular zone in embryonic brain. Conversely, in adult mouse brain Prom1 RNA is low in SVZ/SGZ stem cell zones but high in a rare but widely distributed cell population (Prom1hi). Lineage marker analysis reveals Prom1hi cells are Olig2+Sox2+ glia but Olig1/2 knockout mice lacking oligodendroglia retain Prom1hi cells. Bromodeoxyuridine labeling identifies Prom1hi as slow-dividing distributed progenitors distinct from NG2+Olig2+ oligodendrocyte progenitors. In adult human brain, PROM1 cells are rarely positive for OLIG2, but express astroglial markers GFAP and SOX2. Variability of PROM1 expression levels in human GBM and patient-derived xenografts (PDX) – from no expression to strong, uniform expression – highlights that PROM1 may not always be associated with or restricted to cancer stem cells. TCGA and PDX data show that high expression of PROM1 correlates with poor overall survival. Within proneural subclass tumors, high PROM1 expression correlates inversely with IDH1 (R132H) mutation. These findings support PROM1 as a tumor cell-intrinsic marker related to GBM survival, independent of its stem cell properties, and highlight potentially divergent roles for this protein in normal mouse and human glia.  相似文献   

4.
5.
6.
Gabay L  Lowell S  Rubin LL  Anderson DJ 《Neuron》2003,40(3):485-499
The CNS is thought to develop from self-renewing stem cells that generate neurons, astrocytes, and oligodendrocytes. Other data, however, have suggested that astrocytes and oligodendrocytes are generated from separate progenitor populations. To reconcile these observations, we have prospectively isolated progenitors that do or do not express Olig2, an oligodendrocyte bHLH determination factor. Both Olig2(-) and Olig2(+) progenitors can behave as tripotential CNS stem cells (CNS-SCs) in vitro. Growth in FGF-2 causes induction of Olig2 in the former population, permitting oligodendrocyte differentiation; extinction of Olig2 in the latter cells permits astrocyte differentiation. The induction of Olig2 by FGF-2 is mediated, in part, via endogenous Sonic Hedgehog. These data indicate that clonogenic competence to generate neurons, astrocytes, and oligodendrocytes reflects a deregulation of dorsoventral patterning during expansion in vitro, raising the question of whether such trifatent cells actually exist in vivo.  相似文献   

7.
8.
9.
10.
11.

Background

Deregulation of platelet-derived growth factor (PDGF) signaling is a hallmark of malignant glioma. Two alternatively spliced PDGF-A mRNAs have been described, corresponding to a long (L) and a short (S) isoform of PDGF-A. In contrast to PDGF-A(S), the PDGF-A(L) isoform has a lysine and arginine rich carboxy-terminal extension that acts as an extracellular matrix retention motif. However, the exact role of PDGF-A(L) and how it functionally differs from the shorter isoform is not well understood.

Methodology/Principal Findings

We overexpressed PDGF-A(L) as a transgene under control of the glial fibrillary acidic protein (GFAP) promoter in the mouse brain. This directs expression of the transgene to astrocytic cells and GFAP expressing neural stem cells throughout the developing and adult central nervous system. Transgenic mice exhibited a phenotype with enlarged skull at approximately 6-16 weeks of age and they died between 1.5 months and 2 years of age. We detected an increased number of undifferentiated cells in all areas of transgene expression, such as in the subependymal zone around the lateral ventricle and in the cerebellar medulla. The cells stained positive for Pdgfr-α, Olig2 and NG2 but this population did only partially overlap with cells positive for Gfap and the transgene reporter. Interestingly, a few mice presented with overt neoplastic glioma-like lesions composed of both Olig2 and Gfap positive cell populations and with microvascular proliferation, in a wild-type p53 background.

Conclusions

Our findings show that PDGF-A(L) can induce accumulation of immature cells in the mouse brain. The strong expression of NG2, Pdgfr-α and Olig2 in PDGF-A(L) brains suggests that a fraction of these cells are oligodendrocyte progenitors. In addition, accumulation of fluid in the subarachnoid space and skull enlargement indicate that an increased intracranial pressure contributed to the observed lethality.  相似文献   

12.
The presence of neural stem cells in the adult brain is currently widely accepted and efforts are made to harness the regenerative potential of these cells. The dentate gyrus of the hippocampal formation, and the subventricular zone (SVZ) of the anterior lateral ventricles, are considered the main loci of adult neurogenesis. The rostral migratory stream (RMS) is the structure funneling SVZ progenitor cells through the forebrain to their final destination in the olfactory bulb. Moreover, extensive proliferation occurs in the RMS. Some evidence suggest the presence of stem cells in the RMS, but these cells are few and possibly of limited differentiation potential. We have recently demonstrated the specific expression of the cytoskeleton linker protein radixin in neuroblasts in the RMS and in oligodendrocyte progenitors throughout the brain. These cell populations are greatly altered after intracerebroventricular infusion of epidermal growth factor (EGF). In the current study we investigate the effect of EGF infusion on the rat RMS. We describe a specific increase of radixin+/Olig2+ cells in the RMS. Negative for NG2 and CNPase, these radixin+/Olig2+ cells are distinct from typical oligodendrocyte progenitors. The expanded Olig2+ population responds rapidly to EGF and proliferates after only 24 hours along the entire RMS, suggesting local activation by EGF throughout the RMS rather than migration from the SVZ. In addition, the radixin+/Olig2+ progenitors assemble in chains in vivo and migrate in chains in explant cultures, suggesting that they possess migratory properties within the RMS. In summary, these results provide insight into the adaptive capacity of the RMS and point to an additional stem cell source for future brain repair strategies.  相似文献   

13.
Olig gene expression is proposed to mark the common progenitors of motoneurons and oligodendrocytes. In an attempt to further dissect the in vivo lineage relationships between motoneurons and oligodendrocytes, we used a conditional cell-ablation approach to kill Olig-expressing cells. Although differentiated motoneurons and oligodendrocytes were eliminated, our ablation study revealed a continuous generation and subsequent death of their precursors. Most remarkably, a normal number of oligodendrocyte precursors are formed at day 12 of mouse development, after all motoneuron precursors have been killed. The data presented herein supports a sequential model in which motoneuron and oligodendrocyte precursors are sequentially generated in vivo from neuroepithelial stem cells, but do not share a common lineage-restricted progenitor.  相似文献   

14.
15.
16.
During the last decade, the role of radial glia has been radically revisited. Rather than being considered a mere structural component serving to guide newborn neurons towards their final destinations, radial glia is now known to be the main source of neurons in several regions of the central nervous system, notably in the cerebral cortex. Radial glial cells differentiate from neuroepithelial progenitors at the beginning of neurogenesis and share with their ancestors the bipolar shape and the expression of some molecular markers. Radial glia, however, can be distinguished from neuroepithelial progenitors by the expression of astroglial markers. Clonal analyses showed that radial glia is a heterogeneous population, comprising both pluripotent and different lineage-restricted neural progenitors. At late-embryonic and postnatal stages, radial glial cells give rise to the neural stem cells responsible for adult neurogenesis. Embryonic pluripotent radial glia and adult neural stem cells may be clonally linked, thus representing a lineage displaying stem cell features in both the developing and mature central nervous system. This work was supported by AIRC (Associazione Italiana per la Ricerca sul Cancro) NUSUG grant (In vivo screening for genes implicated in glioma formation and development of new animal models of glial tumors) and by Fondazione CARIGE grant (Basi molecolari e cellulari dei gliomi: individuazione di marcatori diagnostici e di nuovi bersagli terapeutici).  相似文献   

17.
Primary malignant brain cancer, one of the most deadly diseases, has a high rate of recurrence after treatment. Studies in the past several years have led to the hypothesis that the root of the recurrence may be brain tumor stem cells (BTSCs), stem-like subpopulation of cells that are responsible for propagating the tumor. Current treatments combining surgery and chemoradiotherapy could not eliminate BTSCs because these cells are highly infiltrative and possess several properties that can reduce the damages caused by radiation or anti-cancer drugs. BTSCs are similar to NSCs in molecular marker expression and multi-lineage differentiation potential. Genetic analyses of Drosophila CNS neoplasia, mouse glioma models, and human glioma tissues have revealed a link between increased NSC self-renewal and brain tumorigenesis. Furthermore, data from various rodent models of malignant brain tumors have provided compelling evidence that multipotent NSCs and lineage-restricted neural progenitor cells (NPCs) could be the cell origin of brain tumors. Thus, the first event of brain tumorigenesis might be the occurrence of oncogenic mutations in the stem cell self-renewal pathway in an NSC or NPC. These mutations convert the NSC or NPC to a BTSC, which then initiates and sustains the growth of the tumor. The self-renewal of BTSCs is controlled by several evolutionarily conserved signaling pathways and requires an intact vascular niche. Targeting these pathways and the vascular niche could be a principle in novel brain tumor therapies aimed to eliminate BTSCs.  相似文献   

18.
Malignant gliomas are aggressive brain tumors with limited therapeutic options, and improvements in treatment require a deeper molecular understanding of this disease. As in other cancers, recent studies have identified highly tumorigenic subpopulations within malignant gliomas, known generally as cancer stem cells. Here, we demonstrate that glioma stem cells (GSCs) produce nitric oxide via elevated nitric oxide synthase-2 (NOS2) expression. GSCs depend on NOS2 activity for growth and tumorigenicity, distinguishing them from non-GSCs and normal neural progenitors. Gene expression profiling identified many NOS2-regulated genes, including the cell-cycle inhibitor cell division autoantigen-1 (CDA1). Further, high NOS2 expression correlates with decreased survival in human glioma patients, and NOS2 inhibition slows glioma growth in a murine intracranial model. These data provide insight into how GSCs are mechanistically distinct from their less tumorigenic counterparts and suggest that NOS2 inhibition may be an efficacious approach to treating this devastating disease.  相似文献   

19.
Sharma P  Cline HT 《Neuron》2010,68(3):442-455
Regulation of progenitor cell fate determines the numbers of neurons in the developing brain. While proliferation of neural progenitors predominates during early central nervous system (CNS) development, progenitor cell fate shifts toward differentiation as CNS circuits develop, suggesting that signals from developing circuits may regulate proliferation and differentiation. We tested whether activity regulates neurogenesis in?vivo in the developing visual system of Xenopus tadpoles. Both cell proliferation and the number of musashi1-immunoreactive progenitors in the optic tectum decrease as visual system connections become stronger. Visual deprivation for 2?days increased proliferation of musashi1-immunoreactive radial glial progenitors, while visual experience increased neuronal differentiation. Morpholino-mediated knockdown and overexpression of musashi1 indicate that musashi1 is necessary and sufficient for neural progenitor proliferation in the CNS. These data demonstrate a mechanism by which increased brain activity in developing circuits decreases cell proliferation and increases neuronal differentiation through the downregulation of musashi1 in response to circuit activity.  相似文献   

20.
Understanding stem cell-differentiation at the molecular level is important for clinical applications of stem cells and for finding new therapeutic approaches in the context of cancer stem cells. To investigate genome-wide changes involved in differentiation, we have used immortalized neural stem cell (NSC) line (HB1.F3) and Olig2-induced NSC differentiation model (F3.Olig2). Using microarray analysis, we revealed that Olig2-induced NSC differentiation involves downregulation of Wnt pathway, which was further confirmed by TOPflash/FOPflash reporter assay, RT-PCR analysis, immunoblots, and immunocytochemistry. Furthermore, we found that Olig2-induced differentiation induces the expression of Dickkopf-1(Dkk1), a potent antagonist of Wnt signaling. Dkk1 treatment blocked Wnt signaling in HB1.F3 in a dosage-dependent manner, and induced differentiation into astrocytes, oligodendrocytes, and neurons. Our results support cancer stem cell hypothesis which implies that signaling pathway for self-renewal and proliferation of stem cells is maintained till the late stage of differentiation. In our proposed model, Dkk1 may play an important role in downregulating self-renewal and proliferation pathway of stem cells at the late stage of differentiation, and its failure may lead to carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号