首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxygen free radicals have been hypothesized to play an important role in the aging process. To investigate the correlation between the oxidative stress and aging, we have determined the levels of oxidative protein damage and lipid peroxidation in the brain and liver, and activities of antioxidant enzymes in the brain, liver, heart, kidney, and serum from the Fisher 344 rats at ages of 1, 6, 12, 18, and 24 months. The results showed that the level of oxidative protein damage (measured as carbonyl content) in the brain and liver was significantly higher in older animals than in young animals. No statistical difference was observed in the lipid peroxidation of the liver and brain between young and old animals. The activities of antioxidant enzymes in most tissues displayed an age-dependent decline. Superoxide dismutases in the heart, kidney, and serum, glutathione peroxidase activities in the serum and kidney, and catalase activities in the brain, liver, and kidney, significantly decreased during aging. Cytochrome c oxidase, an enzyme involved in electron transport in mitochondria, initially increased, but subsequently decreased in the aged brain, whereas no significant alteration was observed in the liver mitochondrial antioxidant enzymes. The present studies suggest that the accumulation of oxidized proteins during aging is most likely to be linked with an age-related decline of antioxidant enzyme activities, whereas lipid peroxidation is less sensitive to predict the aging process.  相似文献   

2.
An imbalance between production of reactive oxygen species (ROS) and its elimination by antioxidant defense system in the body has been implicated for causes of aging and neurodegenerative diseases. This study was design to assess the changes in activities of antioxidant enzymes (superoxide dismutase (SOD), glutathione-S-transferase (GST), catalase), lipid peroxidation and reduced glutathione (GSH) levels in the brain of 2, 10 and 20 month old rats, and to determine the effect of safranal on the status of selected oxidative stress indices in the 10 and 20 month old rats. The aged rats (10 and 20 months) were given intraperitoneal injections of safranal (0.5 mg/kg day) daily for one month. The results of this study demonstrated that aging caused significant increase in the level of lipid peroxidation as well decrease in the GSH level and activities of SOD and GST in the brain of aging rats. The results of this study showed that safranal ameliorated the increased lipid peroxidation level as well as decreased GSH content of the brain of 10 and 20 month old rats. In addition, safranal treatment to the 20 month old rats, which restored the SOD and GST activities. In conclusion, safranal can be effective to protect susceptible aged brain from oxidative damage by increasing antioxidant defenses.  相似文献   

3.
Mitochondria are an important intracellular source and target of reactive oxygen species. The life span of a species is thought to be determined, in part, by the rate of mitochondrial damage inflicted by oxygen free radicals during the course of normal cellular metabolism. In the present study, we have investigated the protective effect of squalene supplementation for 15 days and 30 days on energy status and antioxidant defense system in liver mitochondria of 18 young and 18 aged rats. The dietary supplementation of 2% squalene significantly minimized aging associated alterations in mitochondrial energy status by maintaining the activities of TCA cycle enzymes (isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase) and respiratory marker enzymes (NADH dehydrogenase and cytochrome-c-oxidase) at higher level in the liver mitochondria of aged rats compared with unsupplemented controls. It exerted an antioxidant effect by inhibiting mitochondrial lipid peroxidation (malondialdehyde) in liver of young and aged rats. Supplementation with squalene also maintained the mitochondrial antioxidant defense system at higher rate by increasing the level of reduced glutathione and the activities of glutathione-dependent antioxidant enzymes (glutathione peroxidase and glutathione-S-transferase) and antiperoxidative enzymes (superoxide dismutase and catalase) in the liver of young and aged rats. The results of this study provide evidence that dietary supplementation with squalene can improve liver mitochondrial function during aging and minimize the age-associated disorders in which reactive oxygen species are a major cause.  相似文献   

4.
Declines in oxidative and thermal stress tolerance are well documented in aging systems. It is thought that these alterations are due in part to reductions in antioxidant defenses. Although intracellular thiols are major redox buffers, their role in maintaining redox homeostasis is not completely understood, particularly during aging, where the reliance on antioxidant enzymes and proteins may be altered. To determine whether thiol supplementation improved the antioxidant enzyme profile of aged animals after heat stress, young and old Fischer 344 rats were treated with N-acetylcysteine (NAC; 4 mmol/kg ip) 2 h before heat stress. Liver tissue was collected before and 0, 30, and 60 min after heat stress. Aging was associated with a significant decline in tissue cysteine and glutathione (GSH) levels. There was also an age-related decrease in copper-zinc superoxide dismutase activity. Heat stress did not alter liver GSH, glutathione disulfide, or antioxidant enzyme activity. With NAC treatment, old animals took up more cysteine than young animals as reflected in an increase in liver GSH and a corresponding decrease in glutamate cysteine ligase activity. Catalase activity increased after NAC treatment in both age groups. Copper-zinc superoxide dismutase activity did not change with heat stress or drug treatment, whereas manganese superoxide dismutase activity was increased in old animals only. These data indicate that GSH synthesis is substrate limited in old animals. Furthermore, aged animals were characterized by large fluctuations in antioxidant enzyme balance after NAC treatment, suggesting a lack of fine control over these enzymes that may leave aged animals susceptible to subsequent stress.  相似文献   

5.
Hyperglycemia induced oxidative stress has been proposed as a cause of many complications of diabetes including cardiac dysfunction. The present study depicts the therapeutic effect of green tea extract on oxidative stress in aorta as well as heart of streptozotocin diabetic rats. Six weeks after diabetes induction, green tea was administered orally for 4 weeks [300 mg (kg body weight)(-1) day (-1)]. In aorta and heart of diabetic rats there was a significant increase in the activity of superoxide dismutase, catalase and glutathione peroxidase with an increase in lipid peroxides. Diabetic rats showed a significant decrease in the levels of serum and cardiac glutathione. Green tea administration to diabetic rats reduced lipid peroxides and activity of antioxidant enzymes whereas increased glutathione content. The results demonstrate that the induction of antioxidant enzymes in diabetic rats is not efficient and sufficient to reduce the oxidative stress. But green tea by providing a competent antioxidative mechanism ameliorates the oxidative stress in the aorta and heart of diabetic rats. The study suggests that green tea may provide a useful therapeutic option in the reversal of oxidative stress induced cardiac dysfunction in diabetes mellitus.  相似文献   

6.
Free radicals are involved in aging and cyclosporin A-induced toxicity. The age-related changes in the liver oxidative status of glutathione, lipid peroxidation, and the activity of the enzymatic antioxidant defense system, as well as the influence of aging on the susceptibility to the hepatotoxic effects of cyclosporin (CyA) were investigated in rats of different ages (1, 2, 4, and 24 months). The hepatic content of reduced glutathione (GSH) increased with aging, peaked at 4 months, and decreased in senescent rats. By contrast, glutathione disulfide (GSSG) and thiobarbituric acid-reactive substances (TBARS) concentrations and superoxide dismutase, catalase, and glutathione peroxidase activities were higher in the oldest than in the youngest rats. CyA treatment, besides inducing the well-known cholestatic syndrome, increased liver GSSG and TBARS contents and the GSSG/GSH molar ratio, and altered the nonenzymatic and enzymatic antioxidant defense systems. The CyA-induced cholestasis and hepatic depletion of GSH, and the increases in the GSSG/GSH ratio, and in GSSG and TBARS concentrations were higher in the older than the mature rats. Moreover, superoxide dismutase and catalase activities were found to be significantly decreased only in treated senescent rats. The higher CyA-induced oxidative stress, lipoperoxidation, and decreases in the antioxidant defense systems in the aged animals render them more susceptible to the hepatotoxic effects of cyclosporin.  相似文献   

7.
Because some complications of diabetes mellitus may result from oxidative damage, we investigated the effects of subacute treatment (10mg/kg/day, intraperitoneal [ip], for 14 days) with the antioxidant isoeugenol on the oxidant defense system in normal and 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free radical-detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with isoeugenol reversed diabetic effects on hepatic glutathione peroxidase activity and on oxidized glutathione concentration in brain. Treatment with the lipophilic compound isoeugenol also decreased lipid peroxidation in both liver and heart of normal animals and decreased hepatic oxidized glutathione content in both normal and diabetic rats. Some effects of isoeugenol treatment, such as decreased activity of hepatic superoxide dismutase and glutathione reductase in diabetic rats, were unrelated to the oxidative effects of diabetes. In heart of diabetic animals, isoeugenol treatment resulted in an exacerbation of already elevated activities of catalase. These results indicate that isoeugenol therapy may not reverse diabetic oxidative stress in an overall sense.  相似文献   

8.
This study was undertaken to investigate the effect of exercise training on aging in the hepatic oxidative status and antioxidant defense of female albino rat. Two age groups of 3 months and 12 months old Wistar strain female albino rats were given chronic exercise training for a period of 12 weeks. The antioxidant enzyme assays were carried out by the standard methods. Lower (P<0.01) activities of the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) by 21%, 44% and 63% respectively was observed in the older rats when compared to younger rats. Also, glutathione (GSH) levels were 42% lower (P<0.01) in older than younger animals. Exercise training to the 12 months aged rats significantly (P<0.01) elevated these antioxidant enzyme activities and GSH content, when compared to older control rats. These levels are almost equal to the values observed in the younger control rats. The levels of lipid peroxidation end product, malondialdehyde (MDA) the major indicator of oxidative stress, was found to increase with age (11%) and exercise training caused further elevation (28% of control). The present findings imply that the reactive oxygen species that are generated due to aging process were detoxified by the exercise induced antioxidant system in the liver tissue. These findings are also in agreement with similar changes in male animals, which clearly envisage no gender difference in the amelioration of the antioxidant enzyme system in older age due to exercise. In conclusion, it can be stated that twelve weeks treadmill exercise training has beneficial effect in improving antioxidant defense capacity by augmenting SOD, CAT and GR activities and GSH levels of older rats, thereby preventing oxidative damage to the liver tissue.  相似文献   

9.
Accumulation of oxidative damage has been implicated to be a major causative factor in the decline in physiological functions that occur during the aging process. The mitochondrial respiratory chain is a powerful source of reactive oxygen species (ROS), considered as the pathogenic agent of many diseases and aging. L-malate, a tricarboxylic acid cycle intermediate, plays an important role in transporting NADH from cytosol to mitochondria for energy production. Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. In the present study we focused on the effect of L-malate on the activities of electron transport chain in young and aged rats. We found that mitochondrial membrane potential (MMP) and the activities of succinate dehydrogenase, NADH-cytochrome c oxidoreductase and cytochrome c oxidase in liver of aged rats were significantly decreased when compared to young control rats. Supplementation of L-malate to aged rats for 30 days slightly increased MMP and improved the activities of NADH-dehydrogenase, NADH-cytochrome c oxidoreductase and cytochrome c oxidase in liver of aged rats when compared with aged control rats. In young rats, L-malate administration increased only the activity of NADH-dehydrogenase. Our result suggested that L-malate could improve the activities of electron transport chain enzymes in aged rats.  相似文献   

10.
Age-related changes in the balance between endogenous pro-oxidative and antioxidative processes in the freshwater cladoceran Daphnia magna (Crustacea) were assessed. The activities of key antioxidant enzymes including catalase, superoxide dismutase and glutathione peroxidase and levels of lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARS) were determined in eight age classes, covering juvenile, young and senescent adults. Age-related changes in fatty acid composition were also measured to examine the contribution of polyunsaturated fatty acids (PUFA) in the peroxidation status of animals. Biochemical responses depicted in this study demonstrated that age-related decline in survival was accompanied by increasing oxidative stress and oxidative damage. Enhanced oxidative stress in aging D. magna was suggested by the significant increase in the formation of lipid peroxides, and a concomitant reduction of unsaturated fatty acids of 20 or more carbon atoms. Because aging was accompanied by selective loss of key antioxidant enzymes and small changes in the amount of PUFA, the breakdown of antioxidant defences might have directly contributed to oxidative stress, membrane lipid peroxide and a decline of survival. Indeed, the results reported here, indicate that age-related increases of lipid peroxides were at least partially due to the functional imbalance of enzymatic antioxidant defences.  相似文献   

11.
We evaluated the preventive effects of Terminalia chebula (T. chebula) aqueous extract on oxidative and antioxidative status in liver and kidney of aged rats compared to young albino rats. The concentrations of malondialdehyde (MDA), lipofuscin (LF), protein carbonyls (PCO), activities of xantione oxidase (XO), manganese‐superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione‐S‐transferase (GST), and glucose‐6‐phosphate dehydrogenase (G6PDH), levels of glutathione (GSH), vitamin C and vitamin E were used as biomarkers. In the liver and kidney of aged animals, enhanced oxidative stress was accompanied by compromised antioxidant defences. Administration of aqueous extract of T. cheubla effectively modulated oxidative stress and enhanced antioxidant status in the liver and kidney of aged rats. The results of the present study demonstrate that aqueous extract of T. cheubla inhibits the development of age‐induced damages by protecting against oxidative stress. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Aging has been defined as the changes that occur in living organisms with the passage of time that lead to functional impairment and ultimately to death. Free radical-induced oxidative damage has long been thought to be the most important consequence of the aging process. In the present study, an attempt has been made to study the salubrious effects of dietary supplementation of chitosan on glutathione-dependent antioxidant defense system in young and aged rats. The dietary supplementation of chitosan significantly reduced the age-associated dyslipidemic abnormalities noted in the levels of total cholesterol, HDL-cholesterol, and LDL-cholesterol in plasma and heart tissue. Its administration significantly (P < 0.05) attenuated the oxidative stress in the heart tissue of aged rats through the counteraction of free radical formation by maintaining the enzymatic [glutathione peroxidase (GPx) and glutathione reductase (GR)] and non-enzymatic [reduced glutathione (GSH)] status at levels comparable to that of normal young rats. Our results conclude that dietary intake of chitosan restores the depleted myocardial antioxidant status and suggest that it could be an effective therapeutic agent in treatment of age-associated disorders where hypercholesterolemia and oxidative stress are the major causative factors.  相似文献   

13.
The effect of exercise on oxidant stress and on alterations in antioxidant defense in elderly has been investigated extensively. However, the impact of regularly performed long-term physical activity starting from adulthood and prolonged up to the old age is not yet clear. We have investigated the changes in the activities of antioxidant enzymes - superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) - and lipid peroxidation in various tissues of rats which had performed (old-trained) or had not performed (old-control) regular swimming exercise for one year. These animals were compared with young-sedentary rats. Increased lipid peroxidation was observed with ageing in all tissues (heart, liver, kidney, striated muscle) and swimming had no additional effect on this elevation of lipid peroxidation. Heart and striated muscle SOD activites, and striated muscle CAT activity increased as a consequence of ageing, whereas kidney and liver CAT activities, as well as GPx activities in kidney, liver, lung and heart were significantly decreased compared to young controls. Lung and heart SOD, liver CAT activities as well as GPx activities in liver, lung and heart were increased significantly in rats which performed exercise during ageing, compared to the old-control group. These findings suggest that lifelong exercise can improve the antioxidant defense in many tissues without constituting any additional oxidant stress.  相似文献   

14.
Coenzyme Q10 is an endogenous lipid soluble antioxidant. Because oxidant stress may exacerbate some complications of diabetes mellitus, this study investigated the effects of subacute treatment with exogenous coenzyme Q10 (10 mg/kg/day, i.p. for 14 days) on tissue antioxidant defenses in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione contents, and activities of catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. All tissues from diabetic animals exhibited increased oxidative stress and disturbances in antioxidant defense when compared with normal controls. Treatment with the lipophilic compound coenzyme Q10 reversed diabetic effects on hepatic glutathione peroxidase activity, on renal superoxide dismutase activity, on cardiac lipid peroxidation, and on oxidized glutathione concentration in brain. However, treatment with coenzyme Q10 also exacerbated the increase in cardiac catalase activity, which was already elevated by diabetes, further decreased hepatic glutathione reductase activity, augmented the increase in hepatic lipid peroxidation, and further increased glutathione peroxidase activity in the heart and brain of diabetic animals. Subacute dosing with coenzyme Q10 ameliorated some of the diabetes-induced changes in oxidative stress. However, exacerbation of several diabetes-related effects was also observed.  相似文献   

15.
In order to elucidate the oxidative damage in rat brain caused by oxidative stress, regional changes in the levels of lipid peroxidation products and antioxidative defense systems in cerebral cortex and hippocampus, and in their synapses, which modulate learning and memory functions in the brain, were studied. When rats were subjected to hyperoxia as an oxidative stress, thiobarbituric acid reactive substance (TBARS) in the regions studied increased more than in normal rats by approximately 35%. The values in oxygen-unexposed vitamin E-deficient rats were also higher than in normal rats. It was found that the TBARS contents in synaptosomes isolated from both regions were remarkably higher than in the organs. These results imply that synapses are more susceptible to oxidative stress than the organ itself. This tendency was also observed in the content of conjugated diene. In response to oxidative stress, the status of the antioxidant defense system in each region, i.e. the concentration of vitamin E, and the activities of superoxide dismutase, catalase and glutathione peroxidase, decreased remarkably. On the other hand, in oxygen-unexposed vitamin E-deficient rats, the activities of these enzymes in each region tended to increase, except for catalase activity. These results suggest that in response to the oxidative stress, the antioxidant defense systems may be consumed to prevent oxidative damage, and then, may be supplied through the antioxidant network.  相似文献   

16.
Effects of pre-treatment with the alcoholic extract of I. tinctoria (500 mg/kg body wt/day, p.o. for 21 days) on liver antioxidant defense system during acute hepatitis induced by D-galactosamine (D-GalN)/endotoxin (LPS extracted by phenol water method from E. coli serotype 0111.B4; 300 mg and 30 micrograms/kg body wt/day, i.p., 18 hr before the assay) were investigated on the activities of enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase and glutathione-s-transferase, and levels of total reduced glutathione in the liver of normal and experimental groups of male albino rats. Since lipid peroxidation and associated membrane damage is a key feature of D-galN/LPS-induced liver injury, the levels of lipid peroxides, was estimated and used as an index of oxidative stress. D-GalN/endotoxin-induced hepatic damage was manifested by a significant decrease in the activities of antioxidant enzymes, decreased glutathione levels and increased levels of lipid peroxides. I. tinctoria pre-treated rats showed considerable protection against D-galN/endotoxin, induced oxidative stress as evidenced by a significant increase in the activities of all the antioxidant enzymes studied and significant decrease in the levels of lipid peroxides. Results indicate that pretreatment with I. tinctoria extract in rats is very effective in reducing D-GalN/endotoxin-induced oxidative stress suggesting an antioxidant effect.  相似文献   

17.
The aim of this work was to evaluate the effects of prolonged starvation and refeeding on antioxidant status and some metabolic-related parameters in common dentex (Dentex dentex) liver. Fish deprived of food for 5 weeks showed a significant increase in lipid peroxidation, measured as malondialdehyde (MDA) levels. The activity of the antioxidative enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) in starved fish significantly increased (by 42%, 22%, and 52%, respectively), whereas glutathione reductase (GR) activity was significantly depressed by 53% compared to controls. No qualitative changes in the SOD isoenzymatic pattern were detected by nondenaturing PAGE analysis, but the isoforms corresponding to CuZn-SOD I and II were enhanced in starved fish. The activity of the enzymes indicative of oxidative metabolism, beta-hydroxyacyl CoA dehydrogenase (HOAD) and citrate synthase (CS), significantly increased (by 123% and 28%, respectively), and that of glucose-6-phosphate dehydrogenase (G6PDH) was inhibited by 56%. Oxidative damage under these circumstances is reversible since all biomarkers assayed returned to control values after refeeding. Our results show that prolonged starvation leads to a pro-oxidant situation and oxidative stress despite activation of antioxidant defense mechanisms, and that inhibition of G6PDH activity might be responsible for this failure in cellular antioxidant defenses.  相似文献   

18.
The effects of DOCA-salt hypertensive treatment on hepatic glutathione-dependent defense system, antioxidant enzymes, lipid peroxidation, mixed function oxidase and UDP-glucuronyl transferase activities were investigated in male Sprague Dawley rats.Compared with controls, DOCA-salt hypertensive rats had lower body weights (linked to liver hypertrophy). Mixed function oxidase and p-nitrophenol-UGT activities were not affected by the treatment but a significant lower rate of the glucuronoconjugation rate of bilirubin (p < 0.001) was observed in DOCA-salt hypertensive rats. While cytosolic glutathione contents and glutathione reductase activity were not affected, glutathione peroxidase (p < 0.001), glutathione transferase (p < 0.001) and catalase (p < 0.01) activities were decreased and associated with higher malondialdehyde contents (p < 0.001) in treated rats. The imbalance in liver antioxidant status (increasing generation of cellular radical species), associated with increases in lipid peroxidation, suggests that oxidative stress might be directly related to arterial hypertension in DOCA-salt treated male Sprague Dawley rats.  相似文献   

19.
Our knowledge about a link between buprenorphine and hepatotoxicity is controversial. This study evaluated the effects of buprenorphine on the liver of young, adult, and aged rats. For this reason, young, adult, and aged rats received intraperitoneally 0.25, 0.5, and 1 mg/kg buprenorphine for 30 days. The present results revealed that the normal aging was associated with a significant decrease in the activities of antioxidant enzymes, and an increase in the liver lipid peroxidation, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) activities in the aged rats. This study also demonstrated that buprenorphine led to a significant increase in the serum activities of ALT, AST, and LDH as well as liver lipid peroxidation content with a decrease in the antioxidant enzymes in the liver of buprenorphine‐treated aged rat versus the aged matched control animals. In conclusion, the present results demonstrate that buprenorphine deteriorated oxidative damage in the aged livers.  相似文献   

20.
Antioxidant defenses within the lung are pivotal in preventing damage from oxidative toxicants. There have also been several reports with conflicting results on the antioxidant system during aging. In this study, we attempted to investigate age-related alterations in both antioxidant enzyme activities and thiobarbituric acid-reactive substances (TBARS), a product of lipid peroxidation, in the whole lung of control and sulfur dioxide (SO2) exposed rats of different age groups (3-, 12-, and 24-months-old). Swiss-Albino Male rats were exposed to 10 ppm SO2 1 hr/day, 7 days/week for 6 weeks. The antioxidant enzymes examined include Cu,Zn-superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST). A mixed pattern of age-associated alterations in antioxidant activities was observed. SOD, GSH-Px and GST activities were increased with age, but CAT activity was decreased. Lung SOD, GSH-Px and GST activities were also increased in response to SO2. The level of TBARS was increased with age. SO2 exposure stimulated lipid peroxide formation in the lung as indicated by an increase in the level of TBARS. These findings suggest that both aging and SO2 exposure may impose an oxidative stress to the body. We conclude that the increase in the activities of the antioxidant enzymes of the lung during aging, could be interpreted as a positive feedback mechanism in response to rising lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号