首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute intermittent porphyria (AIP) is the major autosomal dominant form of acute hepatic porphyrias. The disease is due to mutations in the gene encoding for porphobilinogen (PBG) deaminase and is characterized by life-threatening neurovisceral attacks, often precipitated by drugs, fasting, cyclical hormonal changes, or infectious diseases. This report describes a prospective study on the molecular epidemiology of PBG deaminase gene defects in AIP. It uses a sensitive, reliable, and easy-to-handle method for routine AIP molecular diagnosis and family study based on an exon-by-exon denaturing gradient gel electrophoresis (DGGE) strategy followed by direct sequencing. Fifteen genomic DNA fragments, including all the coding sequence and covering 3.35 kb of the PBG deaminase gene, were investigated in 405 subjects from 121 unrelated French Caucasian AIP families who had not been screened previously at the DNA level. PBG deaminase gene mutations were identified in 109 families, but only 78 were of different type, and each of them had a prevalence rate < 5%. Among these mutations, 33 had not been published previously. Sixty percent of these 78 mutations were located in only three exons (exons 10, 12, and 14), 44% were missense, 18% were splice defect, 19% were frameshift, and 16% were nonsense. In addition, two de novo mutational events were characterized. The evaluation of the efficiency of the standard PBG deaminase enzymatic screening method for gene-carrier detection indicated 95% of concordancy with the molecular-based diagnosis.  相似文献   

2.
3.
Acute intermittent porphyria (AIP) is a genetic disorder caused by a deficiency of porphobilinogen deaminase (PBGD), the 3rd enzyme in heme synthesis. It is clinically characterized by acute attacks of neuropsychiatric symptoms and biochemically by increased urinary excretion of the porphyrin precursors porphobilinogen (PBG) and 5-aminolevulinic acid (ALA). A mouse model that is partially deficient in PBGD and biochemically mimics AIP after induction of the hepatic ALA synthase by phenobarbital was used in this study to identify the site of formation of the presumably toxic porphyrin precursors and study the effect of enzyme-replacement therapy by using recombinant human PBGD (rhPBGD). After 4 d of phenobarbital administration, high levels of PBG and ALA were found in liver, kidney, plasma, and urine of the PBGD-deficient mice. The administration of rhPBGD intravenously or subcutaneously after a 4-d phenobarbital induction was shown to lower the PBG level in plasma in a dose-dependent manner with maximal effect seen after 30 min and 2 h, respectively. Injection of rhPBGD subcutaneously twice daily during a 4-d phenobarbital induction reduced urinary PBG excretion to 25% of the levels found in PBGD-deficient mice administered with only phenobarbital. This study points to the liver as the main producer of PBG and ALA in the phenobarbital-induced PBGD-deficient mice and demonstrates efficient removal of accumulated PBG in plasma and urine by enzyme-replacement therapy.  相似文献   

4.
Porphobilinogen deaminase (PBGD), the third enzyme in the biosynthesis of heme, is deficient in acute intermittent porphyria (AIP). AIP is a genetic disease characterized by neurovisceral and psychiatric disturbances. Despite a palliative treatment, it may still be lethal. An initial step towards gene therapy was recently taken by showing that PBGD could be expressed to correct the enzyme deficiency in AIP fibroblasts. The aim of the present study was to investigate whether the biochemical defect can be corrected by using non-viral gene delivery. The biochemical defect in human and mouse PBGD deficient fibroblasts was demonstrated by analyzing synthesis of the heme precursor, protoporphyrin (PP), after addition of 5-aminolevulinic acid (ALA). Human AIP fibroblasts synthesized 21% and mouse PBGD deficient fibroblasts only 11% of the PP amount synthesized in respective control cells. Gene delivery increased the PBGD activity 88–200 fold in human AIP fibroblasts and synthesis of PP was increased from 21–152% of normal after ALA incubation. Similar results were obtained in mouse PBGD deficient cells, although the PP levels were several-fold lower as compared to human cells. HPLC analysis confirmed that PP was the main porphyrin intermediate that was formed. Addition of porphobilinogen (PBG) resulted in 3–7 fold lower synthesis of PP as compared to ALA addition. These results show that non-viral gene delivery of plasmids encoding PBGD results in a high expression of functional PBGD shown by induced synthesis of PP in PBGD deficient cells after supplementation of ALA and PBG.  相似文献   

5.
Accurate determinations of 5-aminolevulinic acid (ALA) and porphobilinogen (PBG) in physiologic fluids are required for the diagnosis and therapeutic monitoring of acute porphyrias. Current colorimetric methods are insensitive and over-estimate ALA and PBG due to poor specificity, while LC-MS/MS methods increase sensitivity, but have limited matrices. An LC-MS/MS method was developed to simultaneously determine ALA and PBG concentrations in fluids or tissues which were solid phase extracted, butanol derivatized, and quantitated by selective reaction monitoring using (13)C(5), (15)N-ALA and 2,4-(13)C(2)-PBG internal standards. ALA was separated from interfering compounds on a reverse phase C8-column. For ALA and PBG, the matrix effects (87.3-105%) and process efficiencies (77.6-97.8% and 37.2-41.6%, respectively) were acceptable in plasma and urine matrices. The assay was highly sensitive for ALA and PBG (LLOQ=0.05 μM with 25 μL urine or 100 μL plasma), and required ~4 h from extraction to results. ALA and PBG accuracy ranged from 88.2 to 110% (n=10); intra- and inter-assay coefficients of variations were <10% for urine and plasma. In clinical applications, patients with mutation-confirmed acute porphyrias had normal to slightly increased urinary ALA and PBG levels when asymptomatic, and high levels during acute attacks, which decreased with hemin therapy. In AIP mice, baseline ALA and PBG levels in urine, plasma, and liver were increased after phenobarbital induction 28-/63-, 42-/266-, and 13-/316-fold, respectively. This LC-MS/MS method is rapid, specific, highly sensitive, accurate, and simultaneously measures ALA and PBG in urine, plasma, and tissues permitting porphyria clinical diagnoses, therapeutic monitoring, and research.  相似文献   

6.
BACKGROUND: Acute intermittent porphyria (AIP) is an inherited disorder in the heme biosynthetic pathway caused by a partial deficiency of porphobilinogen (PBG) deaminase. Clinically, AIP is characterized as acute neurovisceral attacks that are often precipitated by exogenous factors such as drugs, hormones, and alcohol. An early detection of mutation carriers is essential for prevention of acute attacks by avoiding precipitating factors. This study was aimed at analyzing genetic defects causing AIP among Swiss families to further investigate aspects concerning the clinical expression of the disease. MATERIALS AND METHODS: The PBGD gene of index patients from 21 Swiss AIP families was systematically analyzed by denaturing gradient gel electrophoresis of polymerase chain reaction (PCR) amplified DNA fragments and direct sequencing. RESULTS: Five new mutations insA503, del L170, T190I, P241S, and R321H, as well as three known mutations (R26H, R173Q and W283X) were detected. Twelve of the 21 index patients (57%) carried the prevalent mutation W283X previously found among the Swiss AIP population. Family-specific mutations were then screened among relatives of the index patients. Among the 107 studied individuals, 58 carried a PBGD gene mutation--30 were overt AIP patients and 28 were asymptomatic carriers. The apparent rate of overt disease in the study cohort was 52%, which is significantly higher than the previously reported penetrance of 10-20%. To further examine the clinical expression of AIP, the cumulative life-time risk was calculated among 58 mutation-positive individuals after stratifying for age. The result shows a linear increase of the percentage of the symptomatic patients with age, reaching up to 75% among carriers aged over 60. Moreover, statistical analysis of the gender distribution among patients and asymptomatic carriers indicated that the disease was more frequently expressed among females than males (Fisher's exact test two sided, p= (0.001). CONCLUSIONS: This comprehensive search for genetic defects in the PBGD gene confirmed the existence of a prevalent mutation W283X among Swiss AIP patients, as well as a number of family-private mutations. Genetic analysis laid a groundwork for further studies such as the effects of gender and age on the clinical expression of AIP.  相似文献   

7.
The porphyrias are disorders associated with inherited or acquired enzyme deficiencies in the heme biosynthetic pathway. The differential diagnosis is often difficult since the phenotype is very similar in some forms and the biochemical tests are not commonly available. Here we provide an update on the molecular diagnosis of porphyrias in Italy and a flow-chart to facilitate the identification of mutations in heme biosynthetic genes. The molecular analysis has allowed us to identify the molecular defect underlying the disease in 66 probands with different porphyrias [acute intermittent porphyria (AIP), variegate porphyria (VP), porphyria cutanea tarda (PCT), erythropoietic protoporphyria (EPP)]. No Italian patients with defects in coproporphyrinogen oxidise (CPOX) gene, responsible for hereditary coproporphyria (HCP), have been detected. The molecular characterization has been extended to 115 relatives with the identification of 55 asymptomatic mutation carriers and 60 normal subjects. We have so far identified 50 different mutations among 4 genes associated with the most common porphyrias showing a high molecular heterogeneity: 22 in the hydroxymethylbilane synthase (HMBS) gene (AIP), 7 in the protoporphyrinogen oxidase (PPOX) gene (VP), 16 in the uroporphyrinogen decarboxylase (UROD) gene (PCT) and 5 in the ferrochelatase (FECH) gene (EPP). Among the 50 molecular defects, 29 seem to be restricted to the Italian population.  相似文献   

8.
Four mutations of the porphobilinogen (PBG) deaminase gene that result in cross-reacting immunological material (CRIM)-negative forms of acute intermittent porphyria (AIP) have been identified by in vitro amplification of cDNA from patients and by cloning of the amplified products in a bacterial expression vector. One mutation is a single base deletion which causes a frameshift and which is expected to result in the synthesis of a truncated protein. Two other mutations consist of single base substitutions and lead to amino acid changes. The fourth mutation is a single base substitution producing an aberrant splicing and resulting in an mRNA which would encode a protein missing three amino acids. DNAs from 16 unrelated CRIM-negative AIP patients were screened for the presence of these four mutations, by hybridization with oligonucleotides specific for each of the mutations, but none of the four mutations was identified in additional patients. The results indicate that mutations responsible for CRIM-negative AIP are highly heterogenous.  相似文献   

9.
Heme content of normal and porphyric cultured skin fibroblasts   总被引:1,自引:0,他引:1  
Partial deficiencies in enzyme activities of the heme biosynthetic pathway have been demonstrated in cultured skin fibroblasts and other tissues from patients with protoporphyria (PP) and acute intermittent porphyria (AIP). We have quantitatively and qualitatively assessed the heme and free porphyrin content in cultured PP, AIP, VP (variegate porphyria, in which an enzymatic deficiency has not been identified), and normal skin fibroblasts during routine culture conditions in order to assess the overall metabolism of heme in these cells. The total heme concentration was not significantly different between control and porphyric lines; 189 +/- 15 pmoles/mg protein (mean +/- SEM) in controls, 154 +/- 17 in PP, 175 +/- 20 in AIP, and 181 +/- 81 in VP. The hemoprotein difference spectra were similar in all lines. Free porphyrins were not detected in any of the disorders. Despite partial deficiencies in enzyme activities of the heme pathway, porphyric fibroblasts thus maintain normal heme content during routine culture conditions without detectable porphyrin accumulation.  相似文献   

10.
The primary genetic defect in acute intermittent porphyria is a decreased uroporphyrinogen I-synthetase [EC.4.3.1.8] activity. As a beginning of a genealogical study of the known families with members suffering from this disease in the People's Republic of Bulgaria, the red cell uroporphyrinogen I-synthetase was determined in 3 families by the method of Mandel et al [8]. Except for the three propositi, an enzyme deficiency was established in 3 latent carriers of the pathological gene, two of whom had normal values of the urinary epsilon-aminolevulinic acid and porphobilinogen. The determination of red cell uroporphyrinogen I-synthetase proved to be a valuable parameter for revealing the latent AIP.  相似文献   

11.
Summary Acute intermittent porphyria (AIP) is an autosomal dominant metabolic disorder affecting the enzyme porphobilinogen (PBG) deaminase in the heme biosynthetic pathway. The highest prevalence of the disorder has been observed in Scandinavia, especially in northern Sweden (Lappland) where it occurs with a prevalence of 1 in 1500. Biochemical assays of the activity and concentration of PBG deaminase in red blood cells, haplotyping with 4 intragenic restriction fragment length polymorphisms (RFLPs) (MspI, PstI, BstNI, ApaLI) using the polymerase chain reaction (PCR) and screening for known base substitutions by oligonucleotide probes was performed in 28 Swedish AIP families. There was no close relationship between haplotype, biochemical findings (PBG deaminase activity, enzyme-linked immuno-sorbent assay [ELISA], and excess urinary excretion of delta-aminolevulinic acid or PBG), and a specific mutation. Three different haplotypes were identified. The haplotype 2/1/1/2 (MspI/PstI/BstNI/ApaLI; +/-/-/+) was found to be the most frequent among gene carriers (P < 0.001). The disease segregated with the haplotype 2/1/1/2 in the 10 families originating from northern Sweden. All 28 families were screened for three known point mutations. Only one was found to carry one of these mutations. Thus, the genetic background of AIP is heterogeneous in Sweden.  相似文献   

12.
Autoimmune pancreatitis (AIP) is defined by characteristic lymphoplasmacytic infiltrate, ductal strictures and a pancreatic enlargement or mass that can mimic pancreatic cancer (PaCa). The distinction between this benign disease and pancreatic cancer can be challenging. However, an accurate diagnosis may pre-empt the misdiagnosis of cancer, allowing the appropriate medical treatment of AIP and, consequently, decreasing the number of unnecessary pancreatic resections.Mass spectrometry (MS) and two-dimensional differential gel electrophoresis (2D-DIGE) have been applied to analyse serum protein alterations associated with AIP and PaCa, and to identify protein signatures indicative of the diseases. Patients'' sera were immunodepleted from the 20 most prominent serum proteins prior to further 2D-DIGE and image analysis. The identity of the most-discriminatory proteins detected, was performed by MS and ELISAs were applied to confirm their expression. Serum profiling data analysis with 2D-DIGE revealed 39 protein peaks able to discriminate between AIP and PaCa. Proteins were purified and further analysed by MALDI-TOF-MS. Peptide mass fingerprinting led to identification of eleven proteins. Among them apolipoprotein A-I, apolipoprotein A-II, transthyretin, and tetranectin were identified and found as 3.0-, 3.5-, 2-, and 1.6-fold decreased in PaCa sera, respectively, whereas haptoglobin and apolipoprotein E were found to be 3.8- and 1.6-fold elevated in PaCa sera. With the exception of haptoglobin the ELISA results of the identified proteins confirmed the 2D-DIGE image analysis characteristics. Integration of the identified serum proteins as AIP markers may have considerable potential to provide additional information for the diagnosis of AIP to choose the appropriate treatment.  相似文献   

13.
The porphyrias are a group of inherited metabolic disorders of heme biosynthesis which result from a partial deficiency in one of its seven specific enzymes, after its first and rate limiting enzyme, delta-aminolevulinic acid synthetase. They can be classified on the basis of their clinical manifestations into cutaneous, acute and mixed disorders. Acute intermittent porphyria (AIP) is the most common type of hepatic acute porphyrias, inherited as an autosomal dominant trait, caused by a defect in the gene which codifies for the heme enzyme porphobilinogen deaminase. Its prevalence in the Argentinean population is about 1:125,000. A partial deficiency in another enzyme, protoporphyrinogen oxidase, produces variegate porphyria (VP), the second acute porphyria most frequent in the Argentinean population (1:600,000). Here, we review all the mutations we have found in 46 AIP and 9 VP unrelated Argentinean patients. To screen for mutations in symptomatic patients, we have proposed a geneticresearch strategy.  相似文献   

14.
The autosomal dominantly inherited disease AIP (acute intermittent porphyria) is caused by mutations in HMBS [hydroxymethylbilane synthase; also known as PBG (porphobilinogen) deaminase], the third enzyme in the haem biosynthesis pathway. Enzyme-intermediates with increasing number of PBG molecules are formed during the catalysis of HMBS. In this work, we studied the two uncharacterized mutants K132N and V215E comparative with wt (wild-type) HMBS and to the previously reported AIP-associated mutants R116W, R167W and R173W. These mainly present defects in conformational stability (R116W), enzyme kinetics (R167W) or both (R173W). A combination of native PAGE, CD, DSF (differential scanning fluorimetry) and ion-exchange chromatography was used to study conformational stability and activity of the recombinant enzymes. We also investigated the distribution of intermediates corresponding to specific elongation stages. It is well known that the thermostability of HMBS increases when the DPM (dipyrromethane) cofactor binds to the apoenzyme and the holoenzyme is formed. Interestingly, a decrease in thermal stability was measured concomitant to elongation of the pyrrole chain, indicating a loosening of the structure prior to product release. No conformational or kinetic defect was observed for the K132N mutant, whereas V215E presented lower conformational stability and probably a perturbed elongation process. This is in accordance with the high association of V215E with AIP. Our results contribute to interpret the molecular mechanisms for dysfunction of HMBS mutants and to establish genotype–phenotype relations for AIP.  相似文献   

15.
Acute intermittent porphyria (AIP) is an autosomal dominant disease characterized by a partial deficiency of porphobilinogen (PBG) deaminase. Different subtypes of the disease have been defined, and more than 10 different mutations have been described. We focused our study on exon 10, since we previously found that three different mutations were located in this exon and that two of them seemed to be relatively common. We used denaturing gradient gel electrophoresis (DGGE) after in vitro amplification to detect all possible mutations in exon 10 in 41 unrelated AIP patients. In about one-fourth of these patients we could distinguish three abnormal migration patterns, indicating the presence of various mutations. Additional sequencing demonstrated the presence of three different single-base substitutions. Two of these mutations had already been described. A third one consisted of a C-to-T transition located at position 499 of the PBG deaminase mRNA and resulted in an Arg-to-Trp substitution. All three mutations were found in patients with cross-reacting immunological material (CRIM)-positive forms of AIP. The high frequency of these mutations make DGGE analysis of exon 10 a useful approach allowing the direct direction of the DNA abnormality in most of the families with the CRIM-positive subtype of AIP.  相似文献   

16.
Acute intermittent porphyria (AIP) or precursor syndrome is a well described neuropathic clinical entity with incompletely known etiology. The most prominent biological abnormalities associated with this syndrome are elevations in serum and hepatic -aminolevulinic acid (ALA) and porphobilinogen (PBG). We determined the impact of ALA and PBG on human neuroblastoma and glioblastoma tumor cell survival as measured by the MTT assay. ALA proved to be cytotoxic in neuroblastoma cells, while PBG lacked cytotoxic effects. This cytotoxic effect of ALA could be enhanced by deferoxamine and diminished by heme, presumably through modulation of ALA synthesis. In conclusion, ALA excess may prove to be associated with the development of neuropathy in AIP.  相似文献   

17.
Summary Restriction fragment length polymorphism (RFLP) analysis was performed in three Finnish families with different subtypes of acute intermittent porphyria (AIP): 1) cross-reacting immunological material (CRIM)-negative with low erythrocyte porphobilinogen (PBG)-deaminase activity, 2) CRIM-positive with low PBG-deaminase activity and 3) CRIM-negative with normal PBG-deaminase activity. The disease-associated RFLP haplotype (A2B1C2) of the PBG-deaminase gene was the same in each family. In all three families, RFLP linkage analysis resulted in highly positive lod scores. The maximal lod score (4.3) was obtained at the recombinant fraction of zero, thus confirming a tight linkage of AIP to the PBG-deaminase locus. Of the 62 family members tested, 30 had the disease-associated haplotype; in 5 of them, conventional tests for AIP were normal and in one, uncertain. RFLP analysis can thus reveal new gene carriers and help in the diagnosis of individuals with uncertain results in other laboratory tests.  相似文献   

18.
The life long relationship between herpes simplex virus and its host hinges on the ability of the virus to aggressively replicate in epithelial cells at the site of infection and transport into the nervous system through axons innervating the infection site. Interaction between the virus and the sensory neuron represents a pivot point where largely unknown mechanisms lead to a latent or a lytic infection in the neuron. Regulation at this pivot point is critical for balancing two objectives, efficient widespread seeding of the nervous system and host survival. By combining genetic and in vivo in approaches, our studies reveal that the balance between latent and lytic programs is a process occurring early in the trigeminal ganglion. Unexpectedly, activation of the latent program precedes entry into the lytic program by 12 -14hrs. Importantly, at the individual neuronal level, the lytic program begins as a transition out of this acute stage latent program and this escape from the default latent program is regulated by de novo VP16 expression. Our findings support a model in which regulated de novo VP16 expression in the neuron mediates entry into the lytic cycle during the earliest stages of virus infection in vivo. These findings support the hypothesis that the loose association of VP16 with the viral tegument combined with sensory axon length and transport mechanisms serve to limit arrival of virion associated VP16 into neuronal nuclei favoring latency. Further, our findings point to specialized features of the VP16 promoter that control the de novo expression of VP16 in neurons and this regulation is a key component in setting the balance between lytic and latent infections in the nervous system.  相似文献   

19.
The optimum conditions for measuring rhodanese activity in human erythrocytes were established. The mean control values for males (112 nmol SCN/30 min/mg protein) and females (127 nmol SCN/30 min/mg protein) were determined. Rhodanese activity was measured in different porphyric patients. The activity was diminished in porphyria cutanea tarda (PCT), acute intermittent porphyria (AIP), variegate porphyria (VP) and lead intoxication (Pb), remaining normal in erythropoietic protoporphyria (EPP). delta-Aminolaevulinate synthetase (ALA-S) activity was increased in PCT, AIP, VP and Pb showing no changes in EPP. It is suggested that a similar scheme, to that proposed for the control of ALA-S in Rhodopseudomonas spheroides and soybean callus, is also operating in animals.  相似文献   

20.
A 38-year-old female with acute intermittent porphyria (AIP) was having regular recurrent premenstrual severe attacks of abdominal and chest pain due to the disease. Low-frequency transcutaneous nerve stimulation (TNS) premenstrually prevented or markedly reduced the severity of clinical attacks, associated with a reduced urinary porphyrin excretion. The possible mechanisms of the TNS-induced effects are discussed. This experience suggests that TNS may be an effective and simple prophylactic method in the management of the attacks in AIP. The method can be administered easily by the patient himself as home-treatment and is free of side-effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号