首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2.
The genome of influenza A virus consists of eight-segmented, single-stranded, negative-sense viral RNAs (vRNAs). Each vRNA contains a central coding region that is flanked by noncoding regions. It has been shown that upon virion formation, the eight vRNAs are selectively packaged into progeny virions through segment-specific packaging signals that are located in both the terminal coding regions and adjacent noncoding regions of each vRNA. Although recent studies using next-generation sequencing suggest that multiple intersegment interactions are involved in genome packaging, contributions of the packaging signals to the intersegment interactions are not fully understood. Herein, using synthesized full-length vRNAs of H1N1 WSN (A/WSN/33 [H1N1]) virus and short vRNAs containing the packaging signal sequences, we performed in vitro RNA binding assays and identified 15 intersegment interactions among eight vRNAs, most of which were mediated by the 3′- and 5′-terminal regions. Interestingly, all eight vRNAs interacted with multiple other vRNAs, in that some bound to different vRNAs through their respective 3′- and 5′-terminal regions. These in vitro findings would be of use in future studies of in vivo vRNA–vRNA interactions during selective genome packaging.  相似文献   

3.
The 2009 H1N1 influenza pandemic provided an opportunity to study human virus-specific T cell responses after infection with a novel influenza virus against which limited humoral immunity existed in the population. Here we describe the magnitude, kinetics, and nature of the virus-specific T cell response using intracellular gamma interferon (IFN-γ) staining and fluorochrome-labeled major histocompatibility complex (MHC) class I-peptide complexes. We demonstrate that influenza virus-infected patients develop recall T cell responses that peak within 1 week postinfection and that contract rapidly. In particular, effector cell frequencies declined rapidly postinfection in favor of relatively larger proportions of central memory cells.  相似文献   

4.
Wild waterfowl are the natural reservoir of all influenza A viruses, and these viruses are usually nonpathogenic in these birds. However, since late 2002, H5N1 outbreaks in Asia have resulted in mortality among waterfowl in recreational parks, domestic flocks, and wild migratory birds. The evolutionary stasis between influenza virus and its natural host may have been disrupted, prompting us to ask whether waterfowl are resistant to H5N1 influenza virus disease and whether they can still act as a reservoir for these viruses. To better understand the biology of H5N1 viruses in ducks and attempt to answer this question, we inoculated juvenile mallards with 23 different H5N1 influenza viruses isolated in Asia between 2003 and 2004. All virus isolates replicated efficiently in inoculated ducks, and 22 were transmitted to susceptible contacts. Viruses replicated to higher levels in the trachea than in the cloaca of both inoculated and contact birds, suggesting that the digestive tract is not the main site of H5N1 influenza virus replication in ducks and that the fecal-oral route may no longer be the main transmission path. The virus isolates' pathogenicities varied from completely nonpathogenic to highly lethal and were positively correlated with tracheal virus titers. Nevertheless, the eight virus isolates that were nonpathogenic in ducks replicated and transmitted efficiently to na?ve contacts, suggesting that highly pathogenic H5N1 viruses causing minimal signs of disease in ducks can propagate silently and efficiently among domestic and wild ducks in Asia and that they represent a serious threat to human and veterinary public health.  相似文献   

5.
6.
A novel Clade 2.3.2.1c H5N1 reassortant virus caused several outbreaks in wild birds in some regions of China from late 2014 to 2015.Based on the genetic and phylogenetic analyses,the viruses possess a stable gene constellation with a Clade 2.3.2.1c HA,a H9N2-derived PB2 gene and the other six genes of Asian H5N1-origin.The Clade 2.3.2.1c H5N1 reassortants displayed a high genetic relationship to a human H5N1 strain(A/Alberta/01/2014).Further analysis showed that similar viruses have been circulating in wild birds in China,Russia,Dubai(Western Asia),Bulgaria and Romania(Europe),as well as domestic poultry in some regions of Africa.The affected areas include the Central Asian,East Asian-Australasian,West Asian-East African,and Black Sea/Mediterranean flyways.These results show that the novel Clade 2.3.2.1c reassortant viruses are circulating worldwide and may have gained a selective advantage in migratory birds,thus posing a serious threat to wild birds and potentially humans.  相似文献   

7.
Transforming growth factor-beta (TGF-β), a multifunctional cytokine regulating several immunologic processes, is expressed by virtually all cells as a biologically inactive molecule termed latent TGF-β (LTGF-β). We have previously shown that TGF-β activity increases during influenza virus infection in mice and suggested that the neuraminidase (NA) protein mediates this activation. In the current study, we determined the mechanism of activation of LTGF-β by NA from the influenza virus A/Gray Teal/Australia/2/1979 by mobility shift and enzyme inhibition assays. We also investigated whether exogenous TGF-β administered via a replication-deficient adenovirus vector provides protection from H5N1 influenza pathogenesis and whether depletion of TGF-β during virus infection increases morbidity in mice. We found that both the influenza and bacterial NA activate LTGF-β by removing sialic acid motifs from LTGF-β, each NA being specific for the sialic acid linkages cleaved. Further, NA likely activates LTGF-β primarily via its enzymatic activity, but proteases might also play a role in this process. Several influenza A virus subtypes (H1N1, H1N2, H3N2, H5N9, H6N1, and H7N3) except the highly pathogenic H5N1 strains activated LTGF-β in vitro and in vivo. Addition of exogenous TGF-β to H5N1 influenza virus-infected mice delayed mortality and reduced viral titers whereas neutralization of TGF-β during H5N1 and pandemic 2009 H1N1 infection increased morbidity. Together, these data show that microbe-associated NAs can directly activate LTGF-β and that TGF-β plays a pivotal role protecting the host from influenza pathogenesis.  相似文献   

8.
A novel Clade 2.3.2.1c H5N1 reassortant virus caused several outbreaks in wild birds in some regions of China from late 2014 to 2015. Based on the genetic and phylogenetic analyses, the viruses possess a stable gene constellation with a Clade 2.3.2.1c HA, a H9N2-derived PB2 gene and the other six genes of Asian H5N1-origin. The Clade 2.3.2.1c H5N1 reassortants displayed a high genetic relationship to a human H5N1 strain (A/Alberta/01/2014). Further analysis showed that similar viruses have been circulating in wild birds in China, Russia, Dubai (Western Asia), Bulgaria and Romania (Europe), as well as domestic poultry in some regions of Africa. The affected areas include the Central Asian, East Asian-Australasian, West Asian-East African, and Black Sea/Mediterranean flyways. These results show that the novel Clade 2.3.2.1c reassortant viruses are circulating worldwide and may have gained a selective advantage in migratory birds, thus posing a serious threat to wild birds and potentially humans.
  相似文献   

9.
Influenza is a widespread respiratory infection. Every year it causes epidemics, quickly spreading from country to country, or even pandemics, involving a significant part of the human population of the earth. Being a highly variable infection, influenza easy accumulates the resistance mutations to many antivirals.Usnic acid, a dibenzofuran originally isolated from lichens belongs to the secondary metabolites and has a broad spectrum of biological activity. In humans, it can act as an anti-inflammatory, antimitotic, antineoplasic, antibacterial, and antimycotic agent. In this work we studied for the first time the antiviral activity of usnic acid and its derivatives against the pandemic influenza virus A(H1N1)pdm09. A total of 26 compounds representing (+) and (?) isomers of usnic acid and their derivates were tested for cytotoxicity and anti-viral activity in MDCK cells by microtetrazolium test and virus yield assay, respectively. Based on the results obtained, 50% cytotoxic dose (CTD50) and 50% effective dose (ED50) and selectivity index (SI) were calculated for each compound. Eleven of them were found to have SI higher than 10 (highest value 37.3). Absolute configuration was shown to have critical significance for the anti-viral activity. With minor exceptions, in the pair of enantiomers, (?)-usnic acid was more active comparing to (+)-isomer, but its biological activity was reversed after the usnic acid was chemically modified. Based on the obtained results, derivatives of usnic acid should be considered as prospective compounds for further optimization as anti-influenza substances.  相似文献   

10.
To reveal the source of oseltamivir-resistance in influenza (A/H5N1) mutants, the drug-target interactions at each functional group were investigated using MD/LIE simulations. Oseltamivir in the H274Y mutation primarily loses the electrostatic and the vdW interaction energies at the –NH3+ and –OCHEt2 moieties corresponding to the weakened hydrogen-bonds and changed distances to N1 residues. Differentially, the N294S mutation showed small changes of binding energies and intermolecular interactions. Interestingly, the presence of different conformations of E276 positioned between the –OCHEt2 group and the mutated residue is likely to play an important role in oseltamivir-resistant identification. In the H274Y mutant, it moves towards the –OCHEt2 group leading to a reduction in hydrophobicity and pocket size, whilst in the N294S mutant it acts as the hydrogen network center bridging with R224 and the mutated residue S294. The molecular details have answered a question of how the H274Y and N294S mutations confer the high- and medium-level of oseltamivir-resistance to H5N1.  相似文献   

11.
S-NeuAc-α(2-6)-di-LacNAc (5) was efficiently synthesized by a [2+2] followed by a [1+4] glycosylation, and later conjugated with 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE) to form both single-layer and multi-layer homogeneous liposomes in the presence of dipalmitoyl phosphatidylcholine (DPPC) and cholesterol. These liposomes were found to be weak inhibitors in both the influenza virus entry assay and the hemagglutination inhibition assay. The single layer liposome was found to more efficiently interfere with the entry of the H1N1 influenza virus into MDCK cells than the multilayer liposome containing 5.  相似文献   

12.
Avian influenza virus vaccines produced in oil-emulsified inactivated form with antigen content of at least 160 hemagglutinin units (HAU) induced immunity in birds. However, in addition to enhancing the effect of the adjuvant(s), other additional supplemented biological compounds included in inactivated vaccines could produce higher levels of antibody. We examined in chickens, Vietnamese ducks, and muscovy ducks the adjuvant effect of Sophy β-glucan (SBG), a β-1,3-1,6 glucan produced by the black yeast Aureobasidium pollulans strain AF0-202, when administered with an avian influenza H5 subtype vaccine. In Experiment 1, 40 chickens (ISA Brown hybrid), allocated to four groups of ten each, were immunized with Oil-H5N1(VN), Oil-H5N1(CN), Oil-H5N2(CN), and saline (control group), respectively. In Experiment 2, chickens (ISA Brown hybrid), muscovy ducks (French hybrid), and Vietnamese ducks (indigenous Vietnamese) were used to further assess the effect of SBG on immunogenicity of the Oil-H5N1(VN) Vietnamese vaccine. ELISA and hemagglutination inhibition (HI) assays were used to assess the antibody response. The H5 subtype vaccines initiated significantly higher immune responses in the animals dosed with SBG, with 1.0-1.5 log2 higher HI titers and 10-20% ELISA seroconversion, compared with those not dosed with β-glucan. Notably, some of the animals dosed with SBG induced HI titers higher than 9.0 log2 following boosting immunization. Taken together, our serial studies indicated that SBG is a potential effector, such as enhancing the immune response to the H5 vaccines tested.  相似文献   

13.
《生物磁学》2013,(25):I0002-I0002
中国科学家6月24日在线发表于《柳叶刀》上的研究论文称,H7N9禽流感患者死亡风险远低于人感染H5N1禽流感。但高于季节性流感和甲型H1N1流感。  相似文献   

14.
Vaccination is the most cost-effective way to reduce the considerable disease burden of seasonal influenza. Although seasonal influenza vaccines are effective, their performance in the elderly and immunocompromised individuals would benefit from improvement. Major problems related to the development and production of pandemic influenza vaccines are response time and production capacity as well as vaccine efficacy and safety. Several improvements can be envisaged. Vaccine production technologies based on embryonated chicken eggs may be replaced by cell culture techniques. Reverse genetics techniques can speed up the generation of seed viruses and new mathematical modelling methods improve vaccine strain selection. Better understanding of the correlates of immune-mediated protection may lead to new vaccine targets besides the viral haemagglutinin, like the neuraminidase and M2 proteins. In addition, the role of cell-mediated immunity could be better exploited. New adjuvants have recently been shown to increase the breadth and the duration of influenza vaccine-induced protection. Other studies have shown that influenza vaccines based on different viral vector systems may also induce broad protection. It is to be expected that these developments may lead to more universal influenza vaccines that elicit broader and longer protection, and can be produced more efficiently.  相似文献   

15.
OBJECTIVES--In an epidemic: to measure the incidence and risk of complications of influenza; to determine the effect of pre-existing disease on complications; to estimate vaccine uptake and efficacy. DESIGN--Case-control study. SETTING--Primary care: two group practices. SUBJECTS--342 of the 395 cases of clinically diagnosed influenza reported to the general practice surveillance of infectious diseases scheme of the Public Health Laboratory Service during the 1989 epidemic, and 342 age and sex matched controls. INTERVENTIONS--Examination of records. MAIN OUTCOME MEASURES--Documented recognised complications; hospital admission; previous vaccination. RESULTS--Of 15 recognised complications, bronchitis was the commonest (rate 190.1/1000 cases) and significantly commoner in cases (summary odds ratio 9.7) after adjusting for higher consultation rates (mean 6.1 per annum v 4.2 among controls; p < 0.0001). No deaths were recorded. The risk of bronchitis complicating influenza was higher in patients with pre-existing illnesses regarded as an indication for vaccination (odds ratio 3.3; p < 0.0001). Observed vaccination efficacy in those with pre-existing illnesses and in elderly subjects was high (63% and 77% respectively) but uptake was low (4.5% and 6.1% respectively). CONCLUSIONS--Bronchitis complicates about one fifth of all cases of influenza presenting to general practitioners. Patients with pre-existing illnesses regarded as an indication for vaccination are particularly at risk. Vaccine uptake is extremely low, precluding an unequivocal demonstration of a protective effect.  相似文献   

16.
2009甲型H1N1流感病毒研究进展   总被引:1,自引:0,他引:1  
2009年3月在美国和墨西哥爆发的新型甲型H1N1流感在很短的时间内便扩散到世界多个国家,形成了流感的大流行,引起世界卫生组织和各国的高度重视。综述新型甲型H1N1流感病毒的基因组来源、目前主要的检测手段,并对预防和治疗的方法进行简单介绍。  相似文献   

17.
Hepatitis B virus (HBV) infection is a major health concern with more than two billion individuals currently infected worldwide. Because of the limited effectiveness of existing vaccines and drugs, development of novel antiviral strategies is urgently needed. Heat stress cognate 70 (Hsc70) is an ATP-binding protein of the heat stress protein 70 family. Hsc70 has been found to be required for HBV DNA replication. Here we report, for the first time, that combined siRNAs targeting viral gene and siHsc70 are highly effective in suppressing ongoing HBV expression and replication. We constructed two plasmids (S1 and S2) expressing short hairpin RNAs (shRNAs) targeting surface open reading frame of HBV(HBVS) and one plasmid expressing shRNA targeting Hsc70 (siHsc70), and we used the EGFP-specific siRNA plasmid (siEGFP) as we had previously described. First, we evaluated the gene-silencing efficacy of both shRNAs using an enhanced green fluorescent protein (EGFP) reporter system and flow cytometry in HEK293 and T98G cells. Then, the antiviral potencies of HBV-specific siRNA (siHBV) in combination with siHsc70 in HepG2.2.15 cells were investigated. Moreover, type I IFN and TNF-α induction were measured by quantitative real-time PCR and ELISA. Cotransfection of either S1 or S2 with an EGFP plasmid produced an 80%–90% reduction in EGFP signal relative to the control. This combinational RNAi effectively and specifically inhibited HBV protein, mRNA and HBV DNA, resulting in up to a 3.36 log10 reduction in HBV load in the HepG2.2.15 cell culture supernatants. The combined siRNAs were more potent than siHBV or siHsc70 used separately, and this approach can enhance potency in suppressing ongoing viral gene expression and replication in HepG2.2.15 cells while forestalling escape by mutant HBV. The antiviral synergy of siHBV used in combination with siHsc70 produced no cytotoxicity and induced no production of IFN-α, IFN-β and TNF-α in transfected cells. Our combinational RNAi was sequence-specific, effective against wild-type and mutant drug-resistant HBV strains, without triggering interferon response or producing any side effects. These findings indicate that combinational RNAi has tremendous promise for developing innovative therapy against viral infection.  相似文献   

18.
Taurolidine (TRD), a derivative of taurine, has anti-bacterial and anti-tumor effects by chemically reacting with cell-walls, endotoxins and exotoxins to inhibit the adhesion of microorganisms. However, its application in antiviral therapy is seldom reported. Here, we reported that TRD significantly inhibited the replication of influenza virus H5N1 in MDCK cells with the half-maximal inhibitory concentration (EC50) of 34.45 ?μg/mL. Furthermore, the drug inhibited the amplification of the cytokine storm effect and improved the survival rate of mice lethal challenged with H5N1 (protection rate was 86%). Moreover, TRD attenuated virus-induced lung damage and reduced virus titers in mice lungs. Administration of TRD reduced the number of neutrophils and increased the number of lymphocytes in the blood of H5N1 virus-infected mice. Importantly, the drug regulated the NF-κB signaling pathway by inhibiting the separation of NF-κB and IκBa, thereby reducing the expression of inflammatory factors. In conclusion, our findings suggested that TRD could act as a potential anti-influenza drug candidate in further clinical studies.  相似文献   

19.
During the 2009–2011 influenza seasons, 10.26% of the specimens isolated from patients in South Korea were subtyped as H3N2 viruses. Some oseltamivir-sensitive H3N2 samples exhibited different plaque morphologies, and were found to have novel mutations in the neuraminidase gene. In a subsequent analysis using NA mutant viruses, viral compensation against oseltamivir treatment was observed only in the N2 mutant virus. All things considered, these novel mutations may account for the exclusive characteristics of selected H3N2 viruses observed in plaque reduction assays.  相似文献   

20.
B Liu  X Zhang  W Deng  J Liu  H Li  M Wen  L Bao  J Qu  Y Liu  F Li  Y An  C Qin  B Cao  C Wang 《Cell death & disease》2014,5(10):e1440
Thymic atrophy has been described as a consequence of infection by several pathogens including highly pathogenic avian influenza virus and is induced through diverse mechanisms. However, whether influenza A(H1N1)pdm09 infection induces thymic atrophy and the mechanisms underlying this process have not been completely elucidated. Our results show that severe infection of influenza A(H1N1)pdm09 led to progressive thymic atrophy and CD4+CD8+ double-positive (DP) T-cells depletion due to apoptosis. The viruses were present in thymus, where they activated thymic innate CD8+CD44hi single-positive (SP) thymocytes to secrete a large amount of IFN-γ. Milder thymic atrophy was observed in innate CD8+ T-cell-deficient mice (C57BL/6J). Neutralization of IFN-γ could significantly rescue the atrophy, but peramivir treatment did not significantly alleviate thymic atrophy. In this study, we demonstrated that thymic innate CD8+CD44hi SP T-cells have critical roles in influenza A(H1N1)pdm09 infection-induced thymic atrophy through secreting IFN-γ. This exceptional mechanism might serve as a target for the prevention and treatment of thymic atrophy induced by influenza A(H1N1)pdm09.Influenza A virus can cause recurrent epidemics and is the cause of one of the most important diseases, resulting in substantial human morbidity and mortality. The recent swine-origin 2009 pandemic influenza A H1N1 virus (influenza A(H1N1)pdm09) lead more than 60 million laboratory-confirmed cases in 214 countries and over 18 449 deaths until August 2010.1 However, the basis for the increased pathogenesis of the virus remains not fully clear.Although influenza A(H1N1)pdm09 did not cause high mortality, there was an unusually high frequency of fatal cases in healthy young and middle-aged patients.2, 3, 4 More than 60% of the confirmed cases occurred in individuals between 5 and 29 years of age.5 In addition to severe pathological pneumonia and hypercytokinemia in the lungs and serum,2, 6 we also previously found another hallmark of H5N1 or H1N1 virus infection in humans, which was strong reduction in T lymphocytes, also known as lymphopenia.7, 8, 9, 10 Peripheral lymphopenia occurs in parallel with thymic atrophy. Several microorganisms can infect the thymus and perturb the systemic T-cell pool.11 Lymphopenia in fatal influenza A(H1N1)pdm09 cases in the young population may also be related to thymic atrophy.12 Several mechanisms have been implicated in infection-induced thymic atrophy, and vary depending on the microorganism. Thymic atrophy in HPAIV infection has been reported to interfere with T-lymphocyte development through negative selection and glucocorticoids (GCs).13, 14 However, the mechanisms of influenza A(H1N1)pdm09-induced thymic atrophy have not been completely elucidated.Unlike conventional T cells, which acquire effector function in the periphery following interaction with Ag,15, 16 some innate CD8+ thymocytes in thymus display an effector-memory phenotype and effector function ‘from birth'' by rapidly producing cytokines upon stimulation.16, 17 A large proportion of innate CD8+ thymocyte were found and developed in the thymus of Itk−/−/RLK−/−, KLF2−/−or Id3−/− mice.17, 18 Subsequently, it was found that ∼10% of TCRαβ+ CD4CD8+ thymocytes were innate polyclonal T cells (CD8+CD44hi) in normal mice.19 Whether innate CD8+ thymocytes are involved in the pathogenesis of influenza A(H1N1)pdm09-induced thymic atrophy should be further evaluated.In this study, we demonstrated that severe influenza A(H1N1)pdm09 infection induced strong thymic atrophy. The viruses could infect the thymus, and further primed the innate CD8+CD44hi T cells. Innate CD8+ T cells induced apoptosis of thymocytes by upregulating IFN-γ. Our results indicated that the pathogenesis of influenza A(H1N1)pdm09 infection was not only due to severe lung damage but also due to innate CD8+ T-cell-induced thymic atrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号