首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated cell survival and gene expression under various compressive stress conditions mimicking orthodontic force by using a newly developed in vitro model of human periodontal ligament-like tissue (HPdLLT). The HPdLLT was developed by three-dimensional culturing of human periodontal ligament fibroblasts in a porous poly-l-lactide matrix with threefold increased culture media permeability due to hydrophilic modification. In vitro HPdLLTs in experimental groups were subjected to 5, 15, 25 and 35 g/cm2 compressive stress for 1, 3, 7 or 14 days; controls were cultured over the same periods without compressive stress. Cell morphology and cell apoptosis in the experimental and control groups were investigated using scanning electron microscopy and caspase-3/7 detection. Real-time polymerase chain reaction was performed for seven osteogenic and osteoclastic genes. Similar extracellular matrix and spindle-shaped cells were observed inside or on the surface of in vitro HPdLLTs, with no relation to compressive stress duration or intensity. Similar caspase-3/7 activity indicating comparable apoptosis levels was observed in all samples. Receptor activator of nuclear factor kappa-B ligand and bone morphogenetic protein 2 genes showed characteristic “double-peak” expression at 15 and 35 g/cm2 on day 14, and alkaline phosphatase and periodontal ligament-associated protein 1 expression peaked at 5 g/cm2 on day 14; other genes also showed time-dependent and load-dependent expression patterns. The in vitro HPdLLT model system effectively mimicked the reaction and gene expression of the human periodontal ligament in response to orthodontic force. This work provides new information on the effects of compressive stress on human periodontal ligament tissue.  相似文献   

2.
A method for the feeder-independent culture of PICM-19 pig liver stem cell line was recently devised, but the cell line’s growth was finite and the cells essentially ceased dividing after approximately 20 passages over a 1 year culture period. Here we report the isolation, continuous culture, and initial characterization of a spontaneously arising feeder-independent PICM-19 subpopulation, PICM-19FF, that maintained replication rate and hepatocyte functions over an extended culture period. PICM-19FF cells grew to 90–98 % confluency after each passage at 2 week intervals, and the cells maintained a high cell density after 2 years and 48 passages in culture (average of 2.6 × 106 cells/T25 flask or 1 × 105 cells/cm2). Morphologically, the PICM-FF cells closely resembled the finite feeder-independent PICM-19 cultures previously reported, and, as before, no spontaneous formation of 3D multicellular ductules occurred in the cells’ monolayer. Their bipotent stem cell nature was therefore not evident. Over extensive passage, cytochrome P450 (EROD) activity was maintained, although urea production was reduced on a per mg protein basis at later passages. Two other attributes of fetal hepatocytes, γ-glutamyl transpeptidase activity and serum-protein secretion, were also shown to be maintained by the PICM-19FF cells. The PICM-19FF cells therefore appear to have indefinite growth potential as a feeder-independent cell line and this should enhance the experimental usefulness of the cell line, in general, and may also improve its application to toxicological/pharmacological assays and artificial liver devices.  相似文献   

3.
Post-vaccinal encephalitis, although relatively uncommon, is a known adverse event associated with many live, attenuated smallpox vaccines. Although smallpox vaccination ceased globally in 1980, vaccine manufacture has resumed in response to concerns over the possible use of smallpox virus as an agent of bioterrorism. To better support the production of safer smallpox vaccines, we previously reported the development of a mouse model in which a relatively attenuated vaccine strain (Dryvax®) could be discerned from a more virulent laboratory strain (WR). Here we have further tested the performance of this assay by evaluating the neurovirulence of several vaccinia virus-based smallpox vaccines spanning a known range in neurovirulence for humans. Our data indicate that testing of 10–100 pfu of virus in mice following intracranial inoculation reliably assesses the virus's neurovirulence potential for humans.  相似文献   

4.
This research was conducted to examine the growth profile, growth kinetics, and insulin-secretory responsiveness of BRIN-BD11 cells grown in optimized medium on different types of microcarriers (MCs). Comparisons were made on modified polystyrene (Hillex® II) and crosslinked polystyrene Plastic Plus (PP) from Solohill Engineering. The cell line producing insulin was cultured in a 25 cm2 T-flask as control while MCs based culture was implemented in a stirred tank bioreactor with 1 L working volume. For each culture type, the viable cell number, glucose, lactate, glutamate, and insulin concentrations were measured and compared. Maximum viable cell number was obtained at 1.47 × 105 cell/mL for PP microcarrier (PPMCs) culture, 1.35 × 105 cell/mL Hillex® II (HIIMCs) culture and 0.95 × 105 cell/mL for T-flask culture, respectively. The highest insulin concentration has been produced in PPMCs culture (5.31 mg/L) compared to HIIMCs culture (2.01 mg/L) and T-flask culture (1.99 mg/L). Therefore overall observation suggested that PPMCs was likely preferred to be used for BRIN-BD11 cell culture as compared with Hillex® II MCs.  相似文献   

5.
Measles vaccination remains the most efficient way to control the spread of the virus. This work focuses on the production of a measles vaccine using stirred conditions as an advanced option for process scale up. Non-porous Cytodex 1 microcarriers were used to support MRC-5 cell growth in suspension cultures. Virus replication was first optimized in spinner flasks, and the effects of various operational parameters were investigated. Cell infection with AIK-C measles strain at an MOI (multiplicity of infection) of 0.005, without glucose regulation and in M199 medium, resulted in a virus titer of 106.25 TCID50 (median tissue culture infective dose)/ml. To optimize the production process in a 7-l bioreactor, we carried out various perfused cultures using minimum essential medium (MEM) + 5% FCS diluted with phosphate-buffered saline (PBS). We achieved a high cell density level (4.1 × 106 cells/ml) with an efficient use of the medium when MEM + 5% FCS diluted with PBS at 25% was used during the cell amplification step. Optimization of measles production in MRC-5 cells grown on Cytodex 1 beads in a 7-l bioreactor showed that perfusion was the most efficient when compared to repeated-batch culture. Perfusion at a rate of 0.25 V (reactor volume)/day showed the highest specific productivity (1.6 IVP [infectious virus particle] cell−1 day−1). Testing of several stabilizers containing pharmaceutically improved components such as sugars, amino acids, and charged ions showed that the formulation composed of sucrose and MgCl2, led to the maintenance of the infectivity of the AIK-C measles virus strain to a significant level, when stored at +28 °C, +4 °C and −60 °C.  相似文献   

6.
Microcarrier culture was investigated for the propagation of attenuated hepatitis A vaccine in the anchorage-dependent human fibroblast cell line, MRC-5. Cells were cultivated at 37°C for one to two weeks, while virus accumulation was performed at 32°C over 21 to 28 days. The major development focus for the microcarrier process was the difference between the cell and virus growth phases. Virus antigen yields, growth kinetics, and cell layer/bead morphology were each examined and compared for both the microcarrier and stationary T-flask cultures. Overall, cell densities of 4–5×106 cells/ml at 5–10 g/l beads were readily attained and could be maintained in the absence of infection at either 37°C or 32°C. Upon virus inoculation, however, substantial cell density decreases were observed as well as 2.5 to 10-fold lower per cell and per unit surface area antigen yields as compared to stationary cultures. The advantages as well as the problems presented by the microcarrier approach will be discussed.  相似文献   

7.

Background

The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.

Methods

We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.

Results

The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.

Conclusion

These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.  相似文献   

8.
In this paper, we describe a method for primary culture of a well differentiated electrically tight rabbit vocal fold epithelial cell multilayer and the measurement of transepithelial electrical resistance (TEER) for the evaluation of epithelial barrier function in vitro. Rabbit larynges were harvested and enzymatically treated to isolate vocal fold epithelial cells and to establish primary culture. Vocal fold epithelial cells were co-cultured with mitomycin C-treated feeder cells on collagen-coated plates. After 10–14 days in primary culture, cells were passaged and cultured until they achieved 70–90% confluence on collagen-coated plates. Epithelial cells were then passaged onto collagen-coated cell culture inserts using 4.5 cm2 membrane filters (1.0 μm pore size) with 10% fetal bovine serum or 30 μg/mL bovine pituitary extract to investigate the effects of growth-promoting additives on TEER. Additional experiments were performed to investigate optimal seeding density (1.1, 2.2, 4.4, or 8.9 × 105 cells/cm2), the effect of co-culture with feeder cells, and the effect of passage number on epithelial barrier function. Characterization of in vitro cultures was performed using hematoxylin and eosin staining and immunostaining for vocal fold epithelial cell markers and tight junctions. Results revealed higher TEER in cells supplemented with fetal bovine serum compared to bovine pituitary extract. TEER was highest in cells passaged at a seeding density of 2.2 × 104 cells/cm2, and TEER was higher in cells at passage two than passage three. Ultrastructural experiments revealed a well-differentiated epithelial cell multilayer, expressing the epithelial cell markers CK13, CK14 and the tight junction proteins occludin and ZO-1.  相似文献   

9.
Polygonum minus has been reported to contain valuable metabolites and to date, there is no report on using cell culture technique for metabolite production in P. minus. Naphthalene acetic acid (NAA) concentrations in the range of 2–6 mg L?1 were used in a matrix of combinations with dichlorophenoxyacetic acid (2,4-D) concentrations in the range of 2–10 mg L?1 as plant growth regulators (PGRs) to induce callus cultures. Media that were supplemented with 2 mg L?1 2,4-D + 4 mg L?1 NAA, 2 mg L?1 2,4-D + 6 mg L?1 NAA and 6 mg L?1 2,4-D + 8 mg L?1 NAA were effective for callus induction (93.3 % of the explants produced callus). To establish cell culture, the best growth was obtained from medium that was supplemented with 1 mg L?1 2,4-D + 2 mg L?1 NAA. From a 1-g inoculum size, the fresh weight increases exponentially after 5–10 days of culture, and a 26.71 g maximum fresh weight was obtained after 25 days of culture. The cell culture medium was then analyzed using gas chromatography–mass spectrometry (GC–MS). Jasmonic acid (100, 50, 25 and 5 μM), salicylic acid (100, 50, 25 and 5 μM), yeast extract (500, 250 and 100 mg L?1) and glass beads were used in this research as elicitors. The cell cultures were then incubated with the different elicitors for 1, 2, 3 and 4 days. Several compounds with high peak area percentages were detected, including 2-furancarboxaldehyde, 5-hydroxymethyl, furfural, and 2-cyclopenten-1-one, 2-hydroxy. These results show the diversity of metabolites released by P. minus cell into the culture medium under control conditions.  相似文献   

10.
We previously reported HLA allelic associations with vaccinia virus (VACV)-induced adaptive immune responses in a cohort of healthy individuals (n = 1,071 subjects) after a single dose of the licensed smallpox (Dryvax) vaccine. This study demonstrated that specific HLA alleles were significantly associated with VACV-induced neutralizing antibody (NA) titers (HLA-B*13:02, *38:02, *44:03, *48:01, and HLA-DQB1*03:02, *06:04) and cytokine (HLA-DRB1*01:03, *03:01, *10:01, *13:01, *15:01) immune responses. We undertook an independent study of 1,053 healthy individuals and examined associations between HLA alleles and measures of adaptive immunity after a single dose of Dryvax-derived ACAM2000 vaccine to evaluate previously discovered HLA allelic associations from the Dryvax study and determine if these associations are replicated with ACAM2000. Females had significantly higher NA titers than male subjects in both study cohorts [median ID50 discovery cohort 159 (93, 256) vs. 125 (75, 186), p < 0.001; replication cohort 144 (82, 204) vs. 110 (61, 189), p = 0.024]. The association between the DQB1*03:02 allele (median ID50 discovery cohort 152, p = 0.015; replication cohort 134, p = 0.010) and higher NA titers was replicated. Two HLA associations of comparable magnitudes were consistently found between DRB1*04:03 and DRB1*08:01 alleles and IFN-γ ELISPOT responses. The association between the DRB1*15:01 allele with IFN-γ secretion was also replicated (median pg/mL discovery cohort 182, p = 0.052; replication cohort 203, p = 0.014). Our results suggest that smallpox vaccine-induced adaptive immune responses are significantly influenced by HLA gene polymorphisms. These data provide information for functional studies and design of novel candidate smallpox vaccines.  相似文献   

11.
Antibodies to both infectious forms of vaccinia virus, the mature virion (MV) and the enveloped virion (EV), as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model.  相似文献   

12.
Orally disintegrating tablets (ODTs) are challenged by the need for simple technology to ensure good mechanical strength coupled with rapid disintegration. The objective of this work was to evaluate microwave-assisted development of ODTs based on simple direct compression tableting technology. Placebo ODTs comprising directly compressible mannitol and lactose as diluents, super disintegrants, and lubricants were prepared by direct compression followed by exposure to >97% relative humidity and then microwave irradiation for 5 min at 490 W. Placebo ODTs with hardness (>5 kg/cm2) and disintegration time (<60 s) were optimized. Palatable ODTs of Lamotrigine (LMG), which exhibited rapid dissolution of LMG, were then developed. The stability of LMG to microwave irradiation (MWI) was confirmed. Solubilization was achieved by complexation with beta-cyclodextrin (β-CD). LMG ODTs with optimal hardness and disintegration time (DT) were optimized by a 23 factorial design using Design Expert software. Taste masking using sweeteners and flavors was confirmed using a potentiometric multisensor-based electronic tongue, coupled with principal component analysis. Placebo ODTs with crospovidone as a superdisintegrant revealed a significant increase in hardness from ~3 to ~5 kg/cm2 and a decrease in disintegration time (<60 s) following microwave irradiation. LMG ODTs had hardness >5 kg/cm2, DT?<?30s, and rapid dissolution of LMG, and good stability was optimized by DOE and the design space derived. While β-CD complexation enabled rapid dissolution and moderate taste masking, palatability, which was achieved including flavors, was confirmed using an electronic tongue. A simple step of humidification enabled MWI-facilitated development of ODTs by direct compression presenting a practical and scalable advancement in ODT technology.  相似文献   

13.
A process for human influenza H1N1 virus vaccine production from Madin–Darby canine kidney (MDCK) cells using a novel packed-bed bioreactor is described in this report. The mini-bioreactor was used to study the relationship between cell density and glucose consumption rate and to optimize the infection parameters of the influenza H1N1 virus (A/New Caledonia/20/99). The MDCK cell culture and virus infection were then monitored in a disposable perfusion bioreactor (AmProtein Current Perfusion Bioreactor) with proportional–integral–derivative control of pH, dissolved O2 (DO), agitation, and temperature. During 6 days of culture, the total cell number increased from 2.0?×?109 to 3.2?×?1010 cells. The maximum virus titers of 768 hemagglutinin units/100 μL and 7.8?×?107 50 % tissue culture infectious doses/mL were obtained 3 days after infection. These results demonstrate that using a disposable perfusion bioreactor for large-scale cultivation of MDCK cells, which allows for the control of DO, pH, and other conditions, is a convenient and stable platform for industrial-scale production of influenza vaccines.  相似文献   

14.
Ion beam acceleration is simulated using a one-dimensional 1D2P PIC code. The dependences of the maximum energy and width of the energy spectrum of the generated ion beams on the duration and intensity of laser radiation, as well as on the target parameters (thickness and number of layers, types and densities of atoms), are investigated. The optimal target configuration at which the energy of the accelerated ions is maximum (5–160 MeV for intensities of 5 × 1018 −5 × 1020 W/cm2) is found. The optimal target configuration is shown to depend on the intensity and be independent of the laser pulse duration.  相似文献   

15.
Immunization with a combination melanoma helper peptide (6MHP) vaccine has been shown to induce CD4+ T cell responses, which are associated with patient survival. In the present study, we define the relative immunogenicity and HLA allele promiscuity of individual helper peptides and identify helper peptide-mediated augmentation of specific CD8+ T cell responses. Thirty-seven participants with stage IIIB-IV melanoma were vaccinated with 6MHP in incomplete Freund’s adjuvant. The 6MHP vaccine is comprised of 6 peptides representing melanocytic differentiation proteins gp100, tyrosinase, Melan-A/MART-1, and cancer testis antigens from the MAGE family. CD4+ and CD8+ T cell responses were assessed in peripheral blood and in sentinel immunized nodes (SIN) by thymidine uptake after exposure to helper peptides and by direct interferon-γ ELIspot assay against 14 MHC class I-restricted peptides. Vaccine-induced CD4+ T cell responses to individual epitopes were detected in the SIN of 63 % (22/35) and in the peripheral blood of 38 % (14/37) of participants for an overall response rate of 65 % (24/37). The most frequently immunogenic peptides were MAGE-A3281–295 (49 %) and tyrosinase386–406 (32 %). Responses were not limited to HLA restrictions originally described. Vaccine-associated CD8+ T cell responses against class I-restricted peptides were observed in 45 % (5/11) of evaluable participants. The 6MHP vaccine induces both CD4+ and CD8+ T cell responses against melanoma antigens. CD4+ T cell responses were detected beyond reported HLA-DR restrictions. Induction of CD8+ T cell responses suggests epitope spreading and systemic activity mediated at the tumor site.  相似文献   

16.
Soy hydrolysates are widely used as the major nutrient sources for cell culture processes for industrial manufacturing of therapeutic recombinant proteins. The primary goal of this study was to develop a spectroscopy based chemometric method, a partial least squares (PLS), to screen soy hydrolysates for better yield of protein production (titers) in cell culture medium. Harvest titer values of 29 soy hydrolysate lots with production yield between 490 and 1,350 mg/L were obtained from shake flask models or from manufacture engineering runs. The soy hydrolysate samples were measured by near-infrared (NIR) in reflectance mode using an infrared fiber optic probe. The fiber optic probe could easily enable in situ measurement of the soy hydrolysates for convenient raw material screening. The best PLS calibration has a determination coefficient of R 2?=?0.887 utilizing no spectral preprocessing, the two spectral ranges of 10,000–5,376 cm?1 and 4,980–4,484 cm?1, and a rank of 6 factors. The cross-validation of the model resulted in a determination coefficient of R 2?=?0.741 between the predicted and actual titer values with an average standard deviation of 72 mg/L. Compared with the resource demanding shake flask model, the combination of NIR and chemometric modeling provides a convenient method for soy hydrolysate screening with the advantage of fast speed, low cost and non-destructive.  相似文献   

17.
The DSIR-HA-1179 coleopteran cell line has been identified as a susceptible and permissive host for the in vitro replication of the Oryctes nudivirus, which can be used as a biopesticide against the coconut rhinoceros beetle, pest of palms. The major challenge to in vitro large-scale Oryctes nudivirus production is ensuring process economy. This rests, among other requisites, on the use of low-cost culture media tailored to the nutritional and metabolic needs of the cell line, both in uninfected and infected cultures. The aim of the present study was to characterize the nutritional demands and the metabolic characteristics of the DSIR-HA-1179 cell line during growth and subsequent infection with Oryctes nudivirus in the TC-100 culture medium. Serum-supplementation of the culture medium was found to be critical for cell growth, and addition of 10% fetal bovine serum v/v led to a maximum viable cell density (16.8 × 105 cells ml?1) with a population doubling time of 4.2 d. Nutritional and metabolic characterization of the cell line revealed a trend of glucose and glutamine consumption but minimal uptake of other amino acids, negligible production of lactate and ammonia, and the accumulation of alanine, both before and after infection. The monitoring of virus production kinetics showed that the TC-100 culture medium was nutritionally sufficient to give a peak yield of 7.38 × 107 TCID50 ml?1 of OrNV at the 6th day post-infection in attached cultures of DSIR-HA-1179 cells in 25 cm2 T-flasks. Knowledge of the cell line’s nutritional demands and virus production kinetics will aid in the formulation of a low-cost culture medium and better process design for large-scale OrNV production in future.  相似文献   

18.
Clonal vaccinia virus grown in cell culture as a new smallpox vaccine   总被引:1,自引:0,他引:1  
Although the smallpox virus was eradicated over 20 years ago, its potential release through bioterrorism has generated renewed interest in vaccination. To develop a modern smallpox vaccine, we have adapted vaccinia virus that was derived from the existing Dryvax vaccine for growth in a human diploid cell line. We characterized six cloned and one uncloned vaccine candidates. One clone, designated ACAM1000, was chosen for development based on its comparability to Dryvax when tested in mice, rabbits and monkeys for virulence and immunogenicity. By most measures, ACAM1000 was less virulent than Dryvax. We compared ACAM1000 and Dryvax in a randomized, double-blind human clinical study. The vaccines were equivalent in their ability to produce major cutaneous reactions ('takes') and to induce neutralizing antibody and cell-mediated immunity against vaccinia virus.  相似文献   

19.
The smallpox vaccine is the prototypic vaccine, yet the viral targets critical for vaccine-mediated protection remain unclear in humans. We have produced protein microarrays of a near-complete vaccinia proteome and used them to determine the major antigen specificities of the human humoral immune response to the smallpox vaccine (Dryvax). H3L, an intracellular mature virion envelope protein, was consistently recognized by high-titer antibodies in the majority of human donors, particularly after secondary immunization. We then focused on examining H3L as a valuable human antibody target. Purified human anti-H3L antibodies exhibited substantial vaccinia virus-neutralizing activity in vitro (50% plaque reduction neutralization test [PRNT50] = 44 microg/ml). Mice also make an immunodominant antibody response to H3L after vaccination with vaccinia virus, as determined by vaccinia virus protein microarray. Mice were immunized with recombinant H3L protein to examine H3L-specific antibody responses in greater detail. H3L-immunized mice developed high-titer vaccinia virus-neutralizing antibodies (mean PRNT50 = 1:3,760). Importantly, H3L-immunized mice were subsequently protected against lethal intranasal challenges with 1 or 5 50% lethal doses (LD50) of pathogenic vaccinia virus strain WR, demonstrating the in vivo value of an anti-H3L response. To formally demonstrate that neutralizing anti-H3L antibodies are protective in vivo, we performed anti-H3L serum passive-transfer experiments. Mice receiving H3L-neutralizing antiserum were protected from a lethal challenge with 3 LD50 of vaccinia virus strain WR (5/10 versus 0/10; P < 0.02). Together, these data show that H3L is a major target of the human anti-poxvirus antibody response and is likely to be a key contributor to protection against poxvirus infection and disease.  相似文献   

20.
Mice intragastrically infected with Listeria monocytogenes EGDe and Staphylococcus aureus Xen 36 showed no visible signs of infection over 48 h. However, high numbers (6.2 × 105 cfu/mg feces) of S. aureus Xen 36 were detected 4 h, and 3.3 × 105 cfu/mg feces of L. monocytogenes EGDe 8 h, after administration. Mice intraperitoneally infected with S. aureus Xen 36 (1 × 107 cfu) developed infection immediately after administration and for at least the following 48 h. Injection with higher cell numbers of S. aureus Xen 36 (2 × 108 cfu) resulted in more intense bioluminescence (infection) of the peritoneal cavity. Injection of S. aureus Xen 36 in the tail and penile veins resulted in localized tissue infection for the first 120 h. Injection of S. aureus Xen 36 into the thigh produced a faint bioluminescent signal for 15 min. Nisin F injected into the peritoneal cavity at the same area of infection led to an immediate statistically significant decrease in infection (from 2 × 106 p/s/cm2/sr to 3 × 105 p/s/cm2/sr) within 2 h. Similar results were recorded when nisin F was injected subcutaneously. Intraperitoneal administration is an optimal administration route for bacterial infection and treatment with antimicrobial peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号