首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel enzyme catalyzing the phosphorylation of D-tagatose to D-tagatose 6-phosphate with ATP has been identified in extracts of dulcitol-grown Mycobacterium butyricum. The enzyme was purified 100-fold with 29% recovery. It required Mg2+, Mn2+ or Fe2+ and showed maximum activity at pH 7.5. The molecular weight as determined by Sephadex G-100 filtration amounted to 63 000. The apparent Michaelis constants for D-tagatose and ATP were 0.8 and 1.0 mM, respectively. The enzyme preparations were not very sensitive to SH group inhibitors and heavy metals but rapidly lost activity on heating above 50 degrees C.  相似文献   

2.
5-Oxo-L-prolinase, an enzyme that catalyzes the conversion of 5-oxo-L-proline (L-pyroglutamate; L-2-pyrrolidone-5-carboxylate) to L-glutamate coupled with the cleavage of ATP to ADP and Pi, has been purified about 1600-fold from rat kidney. Purification was carried out in the presence of 5-oxo-L-proline which protects the enzyme under a variety of conditions. An estimate of the molecular weight (about 325,000) was made by gel filtration on Sephadex G-200. K+ (or NH4+) and Mg2+ were required for activity. GTP, ITP, CTP, and UTP were much less active than ATP; dATP was 43% as active as ATP. ADP inhibited and addition of pyruvate kinase and phosphoenolpyruvate activated the reaction. The enzyme, which is protected during storage by dithiothreitol, is inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide, and iodoacetamide. The apparent Km values for 5-oxo-L-proline and ATP are, respectively, 0.05 and 0.17 mM. The pH profile indicates a broad range of activity from about pH 5.5 to pH 11.2 with apparent maxima at about pH 7 and pH 9.7. The formation of Pi and glutamate was equimolar over a wide pH range. When the enzyme was incubated with ATP, Mg2+, K+, and L-2-imidazolidone-4-carboxylate or L-dihydroorotate, cleavage of ATP to ADP and Pi occurred, but no cleavage of the imino acid substrates was observed; when the enzyme was incubated under these conditions with 2-piperidone-6-carboxylate, 4-oxy-5-oxoproline, and 3-oxy-5-oxoproline, the corresponding dicarboxylic amino acids were formed, but the molar ratio of Pi to amino acid formation was significantly greater than unity.  相似文献   

3.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

4.
Carbamate kinase has been prepared from Lactobacillus buchneri NCDO110. An approximately 91-fold increase in the specific activity of the enzyme was achieved. The purified extract exhibited a single band following polyacrylamide gel electrophoresis. The apparent molecular weight as determined by gel electrophoresis was about 97,000. The enzyme is stable for 2 weeks at -20 degrees C. Maximum enzymatic activity was observed at 30 degrees C and pH 5.4 in 0.1 M acetate buffer. L. buchneri carbamate kinase requires Mg2+ or Mn2+; its activity is higher with Mn2+. The activation energy of the reaction was 4078 cal mol-1 for the reaction with Mn2+ and 3059 cal mol-1 for the reaction with Mg2+. From a Dixon plot a pK value of 4.8 was calculated. The apparent Km values for ADP with Mg2+ or Mn2+ were 0.71 X 10(-3) and 1.17 X 10(-3) M, respectively, and the apparent Km values for carbamyl phosphate with Mg2+ or Mn2+ were 1.63 X 10(-3) and 1.53 X 10(-3) M, respectively. ATP and CTP acted as inhibitors of this reaction and the following values were obtained: Ki (ATP)Mg2+ = 9.4 mM, Ki (ATP)Mn2+ = 6.2 mM, and Ki (CTP)Mg2+ = 4.4 mM.  相似文献   

5.
Deoxyguanosine kinase from human placenta   总被引:1,自引:0,他引:1  
Deoxyguanosine kinase (ATP:deoxyguanosine 5'-phosphotransferase) has been purified up to a specific activity of 10.3 nmol/min per mg protein from human placenta. The enzyme appears to have a molecular weight of 58 000 from the results of Sephadex G-75 gel filtration. The enzyme catalyzed phosphorylation of deoxyguanosine and deoxyadenosine, but deoxycytidine was not phosphorylated. An apparent Km value for deoxyguanosine was 2.5 micro M. When ATP was used as a phosphate donor, the pH optimum was at pH 6.0, but the optimum was shifted to pH 6.8 by the addition of dTTP. At physiological pH, the activity was stimulated 3-4-fold by dTTP. dTTP was also an effective phosphate donor, but using dTTP as a phosphate donor, a broad pH optimum of 7.0 was observed. Two Km values of 0.13 and 2.2 mM were obtained for both MgATP2- and MgdTTP2-. The activity was strongly inhibited by dGTP and dGDP; 50% inhibition by 1.0 micro M dGTP and 2.1 micro M dGDP, respectively. The enzyme required the presence o Mg2+ or Mn2+.  相似文献   

6.
The pyruvate carboxylase of Pseudonomas fluorescens was purified 160-fold from cells grown on glucose at 20 degrees C. The activity of this purified enzyme was not affected by acetyl-coenzyme A or L-aspartate, but was strongly inhibited by ADP, which was competitive towards ATP. Pyruvate gave a broken double reciprocal plot, from which two apparent Km values could be determined, namely 0-08 and 0-21 mM, from the lower and the higher concentration ranges, respectively. The apparent Km for HCO3 at pH 6-9, in the presence of the manganese ATP ion (MnATP2-), was 3-1 mM. The enzyme reaction had an optimum pH value of 7-1 or 9-0 depending on the use of MnATP2- or MgATP2-, respectively, as substrate. Free Mg2+ was an activator at pH values below 9-0. The enzyme was strongly activated by monovalent cations; NH4+ and K+ were the better activators, with apparent Ka values of 0-7 and 1-6 mM, respectively. Partially purified enzymes from cells grown on glucose at 1 or 20 degrees C had the same properties, including the thermal stability. In both cases 50% of the enzyme activity was lost after pre-incubation for 10 min at 46 degrees C. The molecular weight was estimated to be about 300000 daltons by gel filtration on Sephadex G-200. The regulatory properties and molecular weight are thus similar to those determined for the pyruvate carboxylases from Pseudomonas citronellolis and Azotobacter vinelandii.  相似文献   

7.
Thymidylate kinase derived from the blast cells of human chronic myelocytic leukemia was purified 2186-fold to near homogeneity by means of alcohol precipitation, alumina-Cgamma gel fractionation, calcium phosphate gel fraction, ultrafiltration, and affinity column chromatography. The molecular weight was estimated by glycerol gradient centrifugation to be 50,000. This enzyme had an optimal activity at pH 7.1 and required a divalent cation in order to catalyze the reaction. Mg2+ and Mn2+ were found to be the preferential divalent cations. The activation energy was estimated to be 19.1 kcal/mol at pH 7.2. Initial velocity study suggested that the reaction followed a sequential mechanism. Mg2+ ATP had a Km of 0.25 mM and dTMP had a Km of 40 micrometer. The enzyme was unstable even at 4 degrees. In the presence of ATP or dTMP the enzyme maintained its activity. Purine triphosphate nucleosides were found to be better phosphate donors than the pyrimidine triphosphate nucleosides. ATP and dATP had a lower Km and a higher Vmax than GTP and dGTP. dTMP was the only preferred phosphate receptor among all the monophosphate nucleotides tested dTTP and IdUTP competed with both substrates and inhibited the reaction with a Ki of 0.75 mM and 1.1 mM, respectively.  相似文献   

8.
Some kinetic properties of N-acetylglutamate 5-phosphotransferase (ATP: N-acetyl-L-glutamate 5-phosphotransferase EC 2.7.2.8) purified approx. 2000-fold from Pseudomonas aeruginosa have been studied. The enzyme required Mg2+ for activity. Mn2+, Zn2+, Co2+, and Ca2+, in this order, could replace Mg2+ partially. The substrate specificity was narrow: N-carbamoyl-L-glutamate and N-formyl-L-glutamate were phosphorylated, but at a lower rate than N-acetyl-L-glutamate; N-propionyl-L-glutamate was almost inactive as a substrate. dATP, but neither GTP nor ITP, could be used instead of ATP. The enzyme had a broad pH optimum from pH 6.5 to 9. Feedback inhibition by L-arginine was markedly dependent on pH. Above pH 9 no inhibition was observed. L-Citrulline was three times less potent an inhibitor than L-arginine. The enzyme showed Michaelis-Menten kinetics, even at low concentration of the second substrate. The apparent Km was 2 mM for N-acetyl-L-glutamate (at 10 mM ATP) and approx. 3 mM for ATP (at 40 mM N-acetyl-L-glutamate). In the presence of L-arginine the rate-concentration curves for N-acetyl-L-glutamate became signoidal, while no cooperativity was detected for ATP. A method was developed allowing the determination of N-acetyl-L-glutamate in the nanomolar range by means of purified enzyme.  相似文献   

9.
The ammonia-oxidizing chemoautotrophic bacterium Nitrosomonas europaea possesses prominant succinate-reducing activity of succinyl-Coenzyme A synthetase (SCS, EC 6.2.1.5). SCS was purified as an electrophoretically homogeneous protein from Nitrosomonas europaea strain ATCC 25978 about 275-fold, with a 3.9% activity yield. The molecular mass of the native enzyme was estimated to be about 130 kDa by gel filtration, whereas SDS-PAGE gave two protein bands with Mr values of 29 (α) and 36 kDa (β). The isoelectric point of the enzyme was 5.3. The apparent Km values of the enzyme for ATP, succinate and CoA were 0.4 mM, 5 mM and 0.1 mM, respectively. The pH and temperature optima of the SCS were about 5.0 and 55°C, respectively. The SCS was stable in the pH range of 8.0–10.0 and up to 70°C. The enzyme was thermostable; 50% of the enzyme activity was retained at 90–100°C for 10 min. The SCS was activated by Mg2+ at 1.0–100 mM, but inhibited by Cu2+ (0.1 mM) and SDS (1.0 mM). The enzyme utilized ATP as the preferred substrate.  相似文献   

10.
A procedure for the purification of Mg2+ adenosine triphosphatase (EC 3.6.1.3) from free-living and bacteroid forms of Rhizobium lupini NZP2257 is described. The enzyme was released from cell envelopes using Triton X-100 and purified by gel filtration on Ultrogel AcA 22, followed by preparative gel electrophoresis on agarose. The purified ATPase had a molecular weight of about 355,000, as determined from sedimentation coefficients on sucrose gradients. Kinetic analysis of activity of the enzyme from free-living R. lupini showed it to be typical of F1-type Mg2+ ATPases from bacteria. Mg stimulated activity at pH 7.0, although, when present as the free ion, Mg caused non-competitive inhibition (K1 = 1.5 mM). Maximum activity with ATP occurred over a broad pH range from 6.0 to 10.5. ATP, GTP, and UTP, and, to a much lesser degree, CTP and ADP, were hydrolyzed by the enzyme. Hydrolysis of glucose 6-phosphate was not observed. The Km for ATP at pH 7.0 was 0.67 and for GTP 1.4 mM. ATPase activity was inhibited by ADP, and competitive with ATP (KI = 0.18 mM). Azide also caused inhibition but fluoride and DCCD had no effect. Native and sodium dodecyl sulfate-gel electrophoretic analysis revealed no obvious differences between ATPases from free-living and bacteroid forms of R. lupini.  相似文献   

11.
ATP-dependent phosphofructokinase (ATP:D-fructose S-phosphate, 1-phosphotransferase, EC 2.7.1.11, PFK) from endosperm of developing wheat grains was purified to apparent homogeneity with about 45% recovery using ammonium sulfate fractionation, ion-exchange chromatography on DEAE-cellulose and gel filtration through Sepharose CL-SB and Sephadex G-200. The purified enzyme with a molecular weight of about 182 kD, was a heterotetramer with subunit molecular weights ranging between 20 and 80 kD. The enzyme exhibited maximum activity at pH 7.9 and was highly specific for its substrates. The enzyme had absolute requirement for Mg2+. At pH 7.9, the Km values as determined by Lineweaver-Burk plots were 1.43 and 0.70 mM, respectively for fru-S-P and ATP. Fru-2, S-P2 had no effect on the activity of the enzyme. The enzyme was inhibited strongly by citrate, ADP, 3-PGA and PEP with Ki values of 2.40, 1.75, 2.10 and 0.80 mM, respectively. Citrate and PEP inhibited the enzyme competitively with respect to both fru-S-P and ATP. ADP and 3-PGA inhibited the enzyme non-competitively and competitively, respectively with respect to fru-S-P and in a mixed manner with respect to ATP. Hill plot values indicated co-operative interaction of citrate, 3-PGA and PEP with the enzyme.  相似文献   

12.
The acetate activating system of Acetobacter aceti has been studied. The enzyme responsible, acetyl-CoA synthetase, has been purified about 500-fold from crude cell extracts and was approximately 85% pure as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulphate. The purified enzyme showed optimal activity at pH 7.6 in both Tris-HCL and potassium phosphate buffers. In its purest form, the enzyme was stable at 4 degrees-C but denatured upon freezing. The Km values for CoA, ATP and acetate were found to be 0.104 mM, 0.36 mM and 0.25 mM respectively; propionate and acrylate were also activated by the enzyme but not butyrate, isobutyrate or valerate. GTP, UTP, CTP and ADP could not replace ATP in the reaction, and cysteine or pantetheine failed to replace CoA. The cationic requirements were studied and of the divalent cations tested, only Mn2+ could significantly replace Mg2+ in the reaction; K+ and NH4+ stimulated enzyme activity but inhibited at high concentrations; Na+ was a poor activator, but did not inhibit at higher concentrations. The effect of a number of glucose and other metabolites on enzyme activity has been tested.  相似文献   

13.
The NAD(P)-dependent malic enzyme from human term placental mitochondria was purified 108-fold with a final yield of 72% and specific activity of about 2 mumol per minute per milligram protein. The final preparation was completely free of fumarase, malic, and lactic dehydrogenases. Divalent cations were required for NAD(P)-dependent malic enzyme activity, Mn2+ and Co2+ were by far more effective activators than Mg2+ and Ni2+, whereas the reaction did not proceed in the presence of Ca2+. The optimum pH with NAD and NADP as coenzymes was at around 7.1 and 6.4, respectively. The ratio of the rate of NAD:NADP reduction was 7.4 and 1.3 at pH 7.1 and 6.4, respectively. The enzyme is activated by succinate and fumarate and inhibited by ATP. In the absence of fumarate the Michaelis constants for L-malate and NAD were 2.82 and 0.33 mM; and in the presence of fumarate 1.18 and 0.22 mM, respectively. This study presents the first report showing the purification and kinetic properties of NAD(P)-dependent malic enzyme from human tissue.  相似文献   

14.
The effects of Mg2+, K+ and ATP on a H-ATPase activity from a native plasmalemma fraction of oat roots were explored at 20 degrees C and pH 6.5. In the presence of 3 mM ATP and no K+, H-ATPase activity vs. [Mg2+] approached a monotonic activation but it became biphasic, with a decline above 3 mM Mg2+, in the presence of 20 mM K+. Mg2+ inhibition occurred also in K-free solutions when [ATP] was lowered to 0.05 mM. Also, an apparent monotonic H-ATPase activation by [K+] at 3.0 mM ATP was transformed in biphasic (inhibition by high [K+]) when [ATP] was reduced to 0.05 mM. The best fits of the ATP stimulation curves of hydrolysis satisfied the sum of two Michaelian functions where that with higher affinity had lower Vmx. Taking into consideration all conditions of activity assay, the high-affinity component (1) had a Km about 11-16 microM and a Vmx around 0.14-0.28 mumol Pi/mg per min whereas that with lower affinity (2) had a Km of 220-540 microM and a Vmx of 0.5-1.0 mumol Pi/mg per min. Km2 was markedly affected by the [K+] and [Mg2+]; at optimal concentrations of these cations (1 mM Mg2+ and 10 mM K+) it had a value of 235 +/- 24 microM which was increased to 540 +/- 35 microM at 20 mM [Mg2+] and 60 mM [K+]. In addition, Vmx1 was reduced to about a half when the concentrations of Mg2+ and K+ were increased to inhibitory levels. These results could be explained by the existence of two different enzymes or one enzyme with two ATP sites. In the second case, we could not tell at this stage if both are catalytic or one is regulatory.  相似文献   

15.
Bacillus stearothermophilus H-804 isolated from a hot spring in Beppu, Japan, produced an ammonia-specific NAD synthetase (EC 6.3.1.5). The enzyme specifically used NH3 as an amide donor for the synthesis of NAD as it formed AMP and pyrophosphate from deamide-NAD and ATP. None of the l-amino acids tested, such as l-asparagine or l-glutamine, or other amino compounds such as urea, uric acid, or creatinine was used instead of NH3. Mg2+ was needed for the activity, and the maximum enzyme activity was obtained with 3 mM MgCl2. The molecular mass of the native enzyme was 50 kDa by gel filtration, and SDS-PAGE showed a single protein band at the molecular mass of 25 kDa. The optimum pH and temperature for the activity were from 9.0 to 10.0 and 60 degrees C, respectively. The enzyme was stable at a pH range of 7.5 to 9.0 and up to 60 degrees C. The Km for NH3, ATP, and deamide-NAD were 0.91, 0.052, and 0.028 mM, respectively. The gene encoding the enzyme consisted of an open reading frame of 738 bp and encoded a protein of 246 amino acid residues. The deduced amino acid sequence of the gene had about 32% homology to those of Escherichia coli and Bacillus subtilis NAD synthetases. We caused the NAD synthetase gene to be expressed in E. coli at a high level; the enzyme activity (per liter of medium) produced by the recombinant E. coli was 180-fold that of B. stearothermophilus H-804. The specific assay of ammonia and ATP (up to 25 microM) with this stable NAD synthetase was possible.  相似文献   

16.
1. Enzyme activity, basal or dopamine-stimulated (10 microM), was linear with time to 25 min and with protein concentration to 0.8 mg protein/ml of final assay volume. Activity was maximal between pH 7.0 and 7.5. 2. Mg2+ maximally stimulated basal or dopamine-sensitive adenylate cyclase activity at about 4 mM. 3. Adenylate cyclase had a Km of 0.042 mM for ATP and maximum velocities for basal and dopamine-stimulated activity of 107 and 179 pmol cyclic AMP formed/mg protein per min, respectively. 4. Half-maximal stimulation of the enzyme occurred at about 4.2 x 10(-7) M dopamine with the threshold being less than 10(-9) M. Dopamine increased the Vmax but had no effect on the Km of ATP. 5. Eighty-five to 90% of the adenylate cyclase activity was found in the particulate fraction. 6. Calcium ion produced a marked inhibition of adenylate cyclase activity above 0.04 mM and half-maximal inhibition occurred near 0.1-0.2 mM.  相似文献   

17.
A specific alkaline phosphatase (ALPase) from the integument of white pupae has been purified 500-fold. The purification procedure included solubilization with Triton X-100, butanol extraction, fractionation with ammonium sulfate, and chromatography on concanavalin A-Sepharose, Sephadex G-200, and Sepharose 6B. Two peaks with enzyme activity were observed. The major peak had a molecular weight of approximately 180,000, while the minor peak, which had identical kinetic parameters and substrate specificity as those of the major one, was eluted in a high molecular weight form (about 900,000), probably cross-linked with chitin, since the enzyme was separated from the chitin only by lysozyme treatment. The enzyme hydrolyzes only tyrosine phosphate and β-glycerophosphate, with apparent Kms of 0.35 mM and 0.22 mM, respectively, but not serine phosphate, threonine phosphate, ATP, and AMP. The optimum pH was in the alkaline range, with a peak at pH 9.4. The divalent cations Mn2+, Mg2+, and Ba2+ had stimulatory actions, while Cu2+ exerted a very strong inhibitory action on the enzyme activity. The ALPase was inhibited by L-tyrosine in a dose-dependent fashion. At a concentration of 2 mM, L-tyrosine totally inhibited the enzyme activity, while L-phenylalanine inactivated the enzyme about 25%. The accumulated evidence that ALPase is involved in the sclerotization process of insect integument is discussed.  相似文献   

18.
12-Lipoxygenase from rat basophilic leukemia cells was purified about 300-fold by protein-HPLC in a single run. Maximal 12-lipoxygenase activity was observed at pH 7.5, while the enzyme became almost inactive at pH 6 and 9. Although Ca2+ was not essential for 12-lipoxygenase activity, the partially purified enzyme was stimulated approx. 2-fold in the presence of 0.1-5.0 mM Ca2+. Contrary to 5-lipoxygenase from RBL-1 cells, 12-lipoxygenase was not inactivated by preincubation with Ca2+ for 1-10 min, nor was it stimulated by 0.1-10 mM ATP.  相似文献   

19.
The degradation of nucleotides is catalyzed by the family of enzymes called nucleoside triphosphate diphosphohydrolases (NTPDases). The aim of this work was to demonstrate the presence of NTPDase in the rat gastric mucosa. The enzyme was found to hydrolyze ATP and ADP at an optimum pH of 8.0 in the presence of Mg2+ and Ca2+. The inhibitors ouabain (0.01-1 mM), N-ethylmaleimide (0.01-4 mM), levamisole (0.10-0.2 mM) and Ap5A (0.03 mM) had no effect on NTPDase 1 activity. Sodium azide (0.03-30 mM), at high concentrations (>0.1 mM), caused a parallel hydrolysis inhibition of ATP and ADP. Suramin (50-300 microM) inhibited ATP and ADP hydrolysis at all concentrations tested. Orthovanadate slightly inhibited (15%) Mg2+ and Ca2+ ATP/ADPase at 100 microM. Lanthanum decreased Mg2+ and Ca2+ ATP/ADPase activities. The presence of NTPDase as ecto-enzyme in the gastric mucosa may have an important role in the extracellular metabolism of nucleotides, suggesting that this enzyme plays a role in the control of acid and pepsin secretion, mucus production, and contractility of the stomach.  相似文献   

20.
A polynucleotide kinase, which catalyzes the phosphorylation of 5'-hydroxyl ends of deoxyribonucleic acid in the presence of adenosine triphosphate, has been purified 260-fold with a yield of 14% from 0.15 M NaCl extracts of rat liver nuclei. The purified enzyme has a pH optimum of 5.5. The enzyme is reversible inhibited by p-chloromercuribenzoate. The S0.5 value (ligand concentration required for a half-maximal activity) for ATP is 2.5 muM. A bivalent cation is essential for the reaction and S0.5 values for Mg2+, Ca2+ and Mn2+ are 3.3 mM, 4 mM and 0.05 mM respectively. Pyrophosphate remarkable inhibits the activity with I0.5 value (ligand concentration required for a half-maximal inhibition) of 0.2 mM, and sulfate, with I0.5 of 0.5 mM, whereas phosphate weakly inhibits the activity with I0.5 of about 20 mM. An apparent molecular weight of the purified enzyme is estimated to be 8 X 10(4) by gel filtration on a column of Sephadex G-150, and the Stokes radius of the enzyme molecule is shown to be about 0.36 nm. Sucrose density gradient centrifugation reveals that the enzyme has a sedimentation coefficient of about 4.4 S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号