首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Olive fruits of the Arbequina variety are differentiated from those of Hojiblanca and Picual by the differing presence of 132-OH-chlorophyll a and of dephytylated chlorophyll derivatives during the life cycle of the fruit. During the fruit growth stage, which coincides with chlorophyll synthesis, chlorophyllase (EC: 3.1.1.14) is present in the three varieties but only yields chlorophyllides in Arbequina. The presence of oxidized catabolites of chlorophyll a in fruits of the Arbequina variety during this same period confirms the activity of oxidative enzyme systems. The low synthesis of chlorophylls in the fruits of the Arbequina variety is associated with the fact that, during the natural biosynthetic turnover, the catabolic pathway is more potentiated than the anabolic one. In the ripening phase, in the Hojiblanca and Picual fruits, chlorophyllase activity was measured but the absence of chlorophyllides showed that this enzyme remains latent and that oxidative enzymes are the ones taking part in the chlorophyll disappearance. In the Arbequina variety, both chlorophyllase and oxidative enzymes are responsible for the chlorophyll degradation.  相似文献   

2.
以丰香和红丰草莓为试材,对果实发育成熟过程中细胞壁水解酶活性和细胞壁成份变化进行了研究.结果表明:半乳糖苷酶和α-甘露糖苷酶活性随草莓果实成熟而提高,葡萄糖苷酶活性不随草莓果实成熟而提高.随着果实发育成熟,纤维素酶活性、果胶酶活性不断提高.果实中未检测到内切多聚半乳糖醛酸酶活性,外切多聚半乳糖醛酸酶活性变化不随果实成熟软化而提高.随果实发育成熟,细胞壁中可溶性果胶和半纤维素增加,而离子结合果胶和共价结合果胶及纤维素减少.  相似文献   

3.
Effect of GA3 on postharvest ripening in strawberry fruit was evaluated through different biochemical parameters. Strawberry slices at different ripening stages were incubated with GA3. A significant decrease on respiratory activity depending on GA3 concentration was obtained. Also GA3 was applied to whole and deachened fruit at white and green ripening stages. Our results show that GA3 has an inhibitory effect on strawberry fruit ripening, evidenced by a decrease in the respiratory activity and a delay in anthocyanin synthesis and chlorophylls degradation.  相似文献   

4.
The analyses of some antioxidant enzyme activities were carried out in the course of strawberry fruits development and ripening. The catalase activity was maximum in small-sized green fruits, it decreased in middle-sized green fruits and increased again during the ripening stages. The highest superoxide dismutase and peroxidase activities were observed in white fruits.  相似文献   

5.
6.
Phospholipase D alpha (PLD, EC 3.1.4.4)) is a key enzyme involved in membrane deterioration that occurs during fruit ripening and senescence. The biochemical and molecular characteristics of PLD was studied in strawberry (Fragaria ananassa Duch) fruits, which are non-climacteric fruits. PLD activity was primarily associated with the mitochondrial and microsomal fractions and showed increased activity during development. Optimal pH levels of activity were observed at 5.5 and 6.5 for mitochondrial PLD and at 5 and 7 for microsomal PLD. Calcium enhanced microsomal PLD activity at 1-40 microM levels. PLD activity followed Michaelis-Menten kinetics. Lineweaver-Burk analysis gave Km values in the range of 114 and 277 microM using dipalmitoylphosphatidylcholine (DPPC) as substrate for mitochondrial and microsomal PLD, respectively. The Vmax value for the microsomal PLD was nearly 12-fold higher than that of mitochondrial PLD. A 2874 bp full-length cDNA for PLD alpha was amplified from strawberry fruit mRNA using RT-PCR and 5'- and 3'-RACE encoding an 810 amino acid-polypeptide. The predicted strawberry PLD sequence showed the characteristic C2 domain and the phospholipase domains conferring calcium sensitivity and the enzyme activity, respectively. The strawberry PLD alpha showed a high degree of similarity to other PLD alphas from plants. The implications of PLD regulation during ripening of fruits are discussed.  相似文献   

7.
Pigment breakdown mediated by activated oxygen species is a consequence and a general symptom of oxidative stress and injury to plants. We have attempted to estimate the patterns of pigment bleaching and follow pigment susceptibility to irradiation as related to the process of senescence/ripening. Light‐induced pigment breakdown was studied in situ in the leaves of a shade‐requiring plant, wax flower ( Hoya carnosa R. Br.), as well as in apple ( Malus domestica Borlh. cv. Zhigulevskoe) and lemon ( Citrus limon Burm. cv. Pavlovsky) fruits, using reflectance spectroscopy. It was found that the sensitivity of plant pigments to photobleaching increases as ripening progresses in lemon fruit. Kinetic analysis showed that in all systems a rapid breakdown of the pigment occurs after a lag‐phase. The signature analysis revealed a common pattern of chlorophyll and carotenoid changes, but degradation of the individual pigments was found to be inhomogeneous. Both in lemon and apple fruits a decrease in reflectance in the band of carotenoid absorption preceded pigment photodestruction. In the fruits, the bulk of chlorophyll b and the long‐wavelength chlorophyll a forms were degraded at early stages of the process whereas the breakdown of both chlorophylls in H. carnosa leaves was more synchronous. Prolonged irradiation induced bleaching of the main chlorophyll a band with maximum at 678 nm in the difference spectra, as well as carotenoids. Some features of reflectance spectra in the bands of chlorophyll and carotenoid absorption were found to be suitable for the differentiation of photo‐induced pigment breakdown from the transformation of the pigments taking place during senescence.  相似文献   

8.
9.
The decrease of strawberry (Fragariaxananassa Duch.) fruit firmness observed during ripening is partly attributed to pectolytic enzymes: polygalacturonases, pectate lyases and pectin methylesterases (PMEs). In this study, PME activity and pectin content and esterification degree were measured in cell walls from ripening fruits. Small green, large green, white, turning, red and over-ripe fruits from the Elsanta cultivar were analyzed. Using the 2F4 antibody directed against the calcium-induced egg box conformation of pectin, we show that calcium-bound acidic pectin was nearly absent from green and white fruits, but increased abruptly at the turning stage, while the total pectin content decreased only slightly as maturation proceeded. Isoelectrofocalisation performed on wall protein extracts revealed the expression of at least six different basic PME isoforms. Maximum PME activity was detected in green fruits and steadily decreased to reach a minimum in senescent fruits. The preliminary role of PMEs and subsequent pectin degradation by pectolytic enzymes is discussed.  相似文献   

10.
Phenolic compounds generated from lignin degradation during the pre-treatment step in the process of producing bioethanol from lignocellulosic biomass are known to be inhibitory to enzymatic hydrolysis and fermentation. The inactivation mechanism of a GH11 endoxylanase (Tx-Xyl) by several phenolic compounds varying in their hydroxyl and methoxyl radical content was investigated. Apparent kinetic inactivation parameters were measured as an approximate index of the inhibitory effects. All the tested aromatic compounds had strong negative impact on enzyme activity and kinetic analysis revealed non competitive multi-site inhibition mechanism. The interactions between Tx-Xyl and the phenolic compounds were further studied by steady-state (tryptophan) fluorescence spectroscopy. Changes in λmax of emission and quenching of fluorescence intensity indicated changes in the microenvironment of tryptophan residues. In agreement with the kinetic parameters, the fluorescence derived binding constants evidenced higher enzyme–phenolics interaction affinity with increasing phenolic hydroxyl radical content, suggesting clear correlations of such radicals with the inhibitory effects. Results indicated that the inhibitory effects of phenolic compounds on Tx-Xyl activity are most likely brought about by conformational alterations of the enzyme protein inducing steric inactivation.  相似文献   

11.
Six peach and six nectarine cultivars were evaluated for the phenolic content in their pulp and peel tissues. Chlorogenic acid, catechin, epicatechin, rutin and cyanidin-3-glucoside were detected as the main phenolic compounds of ripened fruits. The concentration was always higher in peel tissue, with average values ranging from 1 to 8 mg g−1 dry weight (DW) depending on cultivar. Of the tested varieties, the white-flesh nectarine 'Silver Rome' emerged as the cultivar with the highest amount of total phenolics. Phenolic compounds were also profiled during fruit growth and ripening in the yellow nectarine cv. 'Stark Red Gold', which showed a decreasing concentration during fruit development in both peel and pulp tissues. Average amounts of total phenolics were approximately 25 mg g−1 DW 60 days after full bloom and decreased to 3 mg g−1 DW at ripening in pulp tissue. Differences among peel and pulp composition show the different dietetic and antioxidant potential of fruits consumed unpeeled and peeled.  相似文献   

12.
Effect of some plant growth regulator treatments on apple fruit ripening   总被引:2,自引:0,他引:2  
The activity of IAA oxidase (IAAox), peroxidases (POD), and polyphenoloxidases (PPO), as affected by different pre-harvest growth regulator treatments (ABA, AVG, NAA, PDJ), was determined in on-tree ripening apples (cv. Golden Delicious) before and during the ethylene climacteric. The production of ethylene was inhibited by AVG and delayed by NAA, whereas ABA and PDJ treatments caused, in the on-tree remaining fruits, a marked fruit drop and a decrease or a slight increase in ethylene levels respectively. While all treatments reduced POD activity, jasmonate increased IAAox and PPO activity. The inhibitory effect of NAA on all enzyme activity seems related to interference with C2H2 action or to a reduced sensitivity of the fruit abscission zone tissues to the hormone. The observed high fruit drop induced by ABA treatment made it impossible to detect differences in enzyme activity. AVG-treated fruits showed no substantial effects on IAAox and PPO activity in comparison to the control, a finding that seems to be related to a delay in all senescence processes caused by the very low level of the inhibited ethylene production. In control fruits IAAox activity increased during the initial ripening stages and decreased thereafter, POD activity increased throughout ripening and PPO showed little variation.  相似文献   

13.
Landmann C  Fink B  Schwab W 《Planta》2007,226(2):417-428
Fragaria × ananassa UDP-glucose:cinnamate glucosyltransferase (FaGT2) catalyzes the formation of cinnamic acid and p-coumaric acid glucose esters during strawberry fruit ripening. Here, the ripening and oxidative stress induced enzyme was further characterized by testing a range of structurally different substrates of natural and unnatural origin in vitro and comparing their kinetic parameters to elucidate its additional biological functions. The accepted substrates ranged from derivatives of cinnamic acid and benzoic acid to heterocyclic and aliphatic compounds resulting in the formation of O- and S-glucose esters, as well as O-glucosides. In planta assays confirmed the formation of glucose derivatives after injection of the substrates into strawberry fruits. Common chemical and structural features required for activity were the easy subtraction of a proton from the glucosylation site and the conjugation of the formed anion with π-electrons as best realized in the simplest substrate sorbic acid. In addition to cinnamic acid, the natural compounds anthranilic acid, trans-2-hexenoic acid, nicotinic acid and 2,5-dimethyl-4-hydroxy-3[2H]-furanone were glucosylated in vitro. But FaGT2 was also capable of efficiently converting xenobiotic substances like the herbicide 2,4,5-trichlorophenol and the herbicide analogue 3,5-dichloro-4-hydroxybenzoic acid. The results suggest that FaGT2 is involved in the detoxification of xenobiotics in accordance to its induction by oxidative stress. GenBank Accession number of FaGT2: AY663785.  相似文献   

14.
The effect of methylmercuric iodide modification of sulfhydryl groups in soybean lipoxygenase-1 on linoleate oxidation, carbonyl production and beta-carotene and chlorophyll alpha bleaching were determined under aerobic and anaerobic conditions. Linoleate oxidation at pH 9.0 was strongly inhibited by modification of the enzyme. On the other hand, pigment bleaching was enhanced with the modified enzyme. Unmodified lipoxygenase-1 was not sensitive to chlorophyll inhibition, but activity of modified lipoxygenase-1 was affected. Linoleate oxidation was inhibited up to 70% when 2.2 microM chlorophyll was present in the reaction mixture. Chlorophyll inhibition was similar with affinity chromatography-purified lipoxygenase-2 and modified lipoxygenase-1. Unmodified lipoxygenase-1 exhibited high bleaching activity under anaerobic conditions and relatively low activity under aerobic (oxygen or air) conditions. Modified lipoxygenase-1 showed a significant increase in carotene and chlorophyll bleaching under both anaerobic and aerobic conditions. Under anaerobic conditions in the presence of either pigment, both modified and unmodified lipoxygenase-1 exhibited high 285 nm absorbing material production. Antioxidants (butylated hydroxyanisole, butylated hydroxytoluene, alpha-tocopherol, propyl gallate and tertiary butylated hydroxyquinone ) were powerful inhibitors of pigment bleaching by modified lipoxygenase-1. However, only tertiary butylated hydroxyquinone and propyl gallate blocked the increase in the rate of absorbance at 285 nm.  相似文献   

15.
16.
随着草莓果实采后成熟衰老,ABA和乙烯生成迅速增长,乙烯累积与果实的变质腐烂程度呈正相关。ABA处理能增高纤维素酶活性和呼吸,而GA有抑制作用。ABA能促进乙烯、ACC生成,对MACC则无影响。GA_3抑制乙烯、ACC生成,促进MACC积累。CO_2对草莓有良好保鲜效果,并有效地抑制ABA和乙烯生成,低温下效果更为显著。  相似文献   

17.
The effect of exogenously applied gibberellic acid (GA3) on the postharvest color change of strawberry fruit was evaluated through their external color and surface color parameters. A significant delay on color evolution was observed in fruits treated with GA3. The evolution of activities of phenylalanine ammonia-lyase (PAL), chlorophyllase, and peroxidase was also analyzed. PAL activity increased during strawberry ripening, but in fruits treated with GA3 the increase in such activity was slower, and, probably as consequence, the development of red color was delayed. Moreover, the activity of chlorophyllase and peroxidase, enzymes possibly involved in chlorophyll metabolism, decreased during strawberry ripening. However, a delay was observed in the decrease of such activities in GA3-treated fruits.Abbreviations PAL phenylalanine ammonia-lyase - GA3 gibberellic acid3 - PVPP polyvinylpolyprrolidone - CEAU chlorophyllase enzymic activity unit - PEAU peroxidase enzymic activity unit - LSD least significant difference. Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) de la República Argentina. Author for correspondence.Members of the Research Career of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) de la República Argentina.  相似文献   

18.
Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) catalyses the conversion of p-hydroxy-cinnamaldehydes to the corresponding alcohols and is considered a key enzyme in lignin biosynthesis. By a differential screening of a strawberry (Fragariax ananassa cv. Chandler) fruit specific subtractive cDNA library, a full-length clone corresponding to a cad gene was isolated (Fxacad1). Northern blot and quantitative real time PCR studies indicated that the strawberry Fxacad1 gene is expressed in fruits, runners, leaves, and flowers but not in roots. In addition, the gene presented a differential expression in fruits along the ripening process. Moreover, by screening of a strawberry genomic library a cad gene was isolated (Fxacad2). Similar to that found in other cad genes from higher plants, this strawberry cad gene is structured in five exons and four introns. Southern blot analyses suggest that, probably, a small cad gene family exists in strawberry. RT-PCR studies indicated that only the Fxacad1 gene was expressed in all the fruit ripening stages and vegetative tissues analysed. The Fxacad1 cDNA was expressed in E. coli cells and the corresponding protein was used to raise antibodies against the strawberry CAD polypeptide. The antibodies obtained were used for immunolocalization studies. The results showed that the CAD polypeptide was localized in lignifying cells of all the tissues examined (achenes, fruit receptacles, runners, leaves, pedicels, and flowers). Additionally, the cDNA was also expressed in yeast (Pichia pastoris) as an extracellular protein. The recombinant protein showed activity with the characteristic substrates of CAD enzymes from angiosperms, indicating that the gene cloned corresponds to a CAD protein.  相似文献   

19.
Quinazolinone derivatives have been studied as both in vitro and in vivo inhibitors of aspartate transcarbamylase (ATCase). In vitro treatment of mammalian ATCase with four compounds revealed that they inhibited enzyme activity and that 2-phenyl-1,3-4(H)benzothiazin-4-thione was the most potent one. This compound acts as a noncompetitive inhibitor towards both aspartate and carbamoyl phosphate. The values of the inhibition constant (K(i)) indicate that this compound exerts a potent inhibitory effect upon ATCase activity. Moreover, in vivo treatment with different doses of these derivatives showed also an inhibitory effect upon ATCase, the relative activity being decreased by 40%-58% with a 1 mg dose. These data support the inhibition of ATCase by quinazolinone derivatives as a new type of inhibitor for the enzyme.  相似文献   

20.
Caffeic, coumaric, sinapic and ferulic acids and naringenin were found in green tomato fruit, Chlorogenic acid accounted for 75% of the total phenolics in mature green fruit but only 35% in ripe fruit. There was very little change in the phenolic composition of the flesh of the fruit during ripening, whereas in the skin, naringenin increased markedly at the onset of the climacteric and three unidentified compounds increased during the climacteric rise. The increase in the concentration of naringenin was accompanied by an increase in the production of ethylene in the skin. Investigation of three systems producing ethylene from 4-methylmercapto-2-oxobutyric acid in the presence of peroxidase, showed that only p`-coumaric acid or naringenin were capable of acting as phenolic substrates, the other phenolic compounds being inhibitory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号