首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The inner periplast component (IPC) of numerous cryptomonads is composed of discrete inner plates, situated beneath (and intimately associated with) the plasma membrane (PM). Freeze-fracture images reveal that the PM is organized into a series of ordered structural domains, which directly correspond in size and shape to the underlying inner plates. Freeze-fracture images are used here to compare IPC arrangement inRhinomonas pauca, Proteomonas sulcata [haplomorph],Rhodomonas baltica, andCryptomonas ovata, and to examine development of inner plates in these cryptomonads. In all genera examined, the IPC is highly ordered across most of the cell periphery but appears to be modified adjacent to the vestibulum and mid-ventral line, which represent the anamorphic zones. Variations in the size and shape of PM domains in these regions suggest that development of the IPC occurs within anamorphic zones, by the de novo formation and enlargement of inner plates throughout the cell cycle.  相似文献   

2.
Summary The structure and development of the complex periplast, or cell covering, of cryptomonads is reviewed. The periplast consists of the plasma membrane (PM) plus an associated surface periplast component (SPC) and cytoplasmic or inner periplast component (IPC). The structure of the SPC and IPC, and their association with the PM, varies considerably between genera. This review, which concentrates on cryptomonads with an IPC of discrete plates, discusses relationships between periplast components and examines the development of this unique cell covering. Formation and growth of inner plates occurs throughout the cell cycle from specialized regions termed anamorphic zones. Crystalline surface plates, which comprise the SPC in many cryptomonad species, appear to form by self-assembly of disorganized subunits. InKomma caudata the subunits are composed of a high molecular weight glycoprotein that is produced within the endomembrane system and deposited onto the cell surface within anamorphic zones. The self-assembly of subunits into highly ordered surface plates appears closely associated with developmental changes in the underlying IPC and PM.  相似文献   

3.
L. Perasso  M. Ludwig  R. Wetherbee 《Protoplasma》1997,200(3-4):186-197
Summary The cell covering of the cryptomonadKomma caudata (Geitler) Hill is a trilaminar structure consisting of a surface periplast component (SPC) and an inner periplast component (IPC) that sandwich the plasma membrane. In order to investigate the development of the periplast, we have raised monoclonal antibodies against the cell surface ofK. caudata. Immunoblot analyses using one of these antibodies, K1/D.10, showed that it labeled a high-molecular-mass polypeptide. Immunofluorescence and pre- and post-embedding immunogold labeling studies demonstrated that the antibody recognized sites on the cell surface corresponding to the SPC plates and anotherK. caudata cell surface component, the rosulate scales. Labeling was also detected on surface domains devoid of periplast, namely the vestibular/gullet region of the cell. Post-embedding immunocytochemistry revealed that intracellular sites labeled with K1/D.10 included the Golgi apparatus and its associated vesicles. We propose that the subunits of theK. caudata cell covering are antigenically related molecules and that they self-assemble on the cell surface after secretion via the endomembrane system and deployment at the vestibular/gullet region or, in dividing cells, the cytokinetic furrow.  相似文献   

4.
Summary In several cryptomonad genera the surface periplast component (SPC) is composed of discrete crystalline plates surrounded by structurally distinct borders. Freeze-etch images enable detailed investigation of surface microarchitecture in these cryptomonads, and reveal that the plates consist of precisely aligned arrays of minute subunits. The plate borders are composed of similar subunits which display marked variations in alignment. Differences in the arrangement of subunits within the plates and borders appear closely linked to the organization of the underlying plasma membrane (PM) and inner periplast component (IPC). Development of the crystalline surface plates occurs within specialized anamorphic zones located along the mid-ventral line and around the vestibular margins of cells. Examination of variations in surface microarchitecture within anamorphic zones suggests that the crystalline plates form directly on the cell surface. Development of the surface plates results from the accumulation and self-assembly of subunits, while orderly addition of subunits to plate edges facilitates subsequent growth and enlargement. The close structural relationship between the SPC, PM, and IPC in these cryptomonads suggests that self-assembly of the surface plates may be mediated by developmental changes in the underlying PM and IPC.  相似文献   

5.
It is generally accepted that during fast growth of Escherichia coli, the time (D) between the end of a round of DNA replication and cell division is constant. This concept is not consistent with the fact that average cell mass of a culture is an exponential function of the growth rate, if it is also accepted that average cell mass per origin of DNA replication (Mi) changes with growth rate and negative exponential cell age distribution is taken into account. Data obtained from cell composition analysis of E. coli OV-2 have shown that not only (Mi) but also D varied with growth rate at generation times () between 54 and 30 min. E. coli OV-2 is a thymine auxotroph in which the replication time (C) can be lengthened, without inducing changes in , by growth with limiting amounts of thymine. This property has been used to study the relationship between cell size and division from cell composition measurements during growth with different amounts of thymine. When C increased, average cell mass at the end of a round of DNA replication also increased while D decreased, but only the time lapse (d) between the end of a replication round and cell constriction initiation appeared to be affected because the constriction period remained fairly constant. We propose that the rate at which cells proceed to constriction initiation from the end of replication is regulated by cell mass at this event, big cells having shorter d times than small cells.Abbreviations OD450 and OD630 Optical density at a given wavelength in nm Dedicated to Dr. John Ingraham to honor him for his many contributions to Science  相似文献   

6.
The cell cycle in plant development   总被引:5,自引:1,他引:4  
  相似文献   

7.
Summary A unique form of cell division is reported for the cellsKomma caudata andCryptomonas ovata (Cryptophyceae). During cytokinesis, the posterior tail-like region of each daughter cell develops from the anterior region of the parental cell. This process, termed pole reversal, involves a major realignment in overall cell polarity as well as alterations to cytoplasmic and surface components. Pole reversal may be a consequence of flagellar apparatus transformation and reorientation during division, and pole reversal may facilitate the development of the asymmetric cell shape in daughter cells.  相似文献   

8.
Epidermal cells of maize roots were studied to determine the distribution of Golgi apparatus-derived secretory vesicles in various stages of cell division. The following conclusions were reached: 1) The pattern of Golgi apparatus secretion varies with the cell cycle. 2) Large numbers of secretory vesicles are incorporated into the cell plate. 3) Secretory vesicles from the Golgi apparatus are incorporated primarily in walls undergoing expansion. 4) Secretory vesicles are smaller during mitosis and the first part of cytokinesis than they are during interphase. 5) Secretory vesicles account for at least 12–23% of cell-plate plasma membrane and an estimated 25% of cell-plate volume.  相似文献   

9.
Reevaluation and comparison of seemingly contradictory literature data on the mode of synthesis of wall polysaccharides during the cell cycle ofSaccharomyces cerevisiae explained the source of discrepancies and demonstrated their general consonance in the following points: 1. The rate of synthesis of glucan and mannan is not constant and does not increase continuously throughout the entire cell cycle. 2. The rate of synthesis of both polysaccharides is considerably reduced at the time of cell division and in the prebudding phase.  相似文献   

10.
 The relationship between the cessation of cell expansion and formation of the secondary wall was investigated in the early-wood tracheids of Abies sachalinensis Masters by image analysis and field emission scanning electron microscopy. The area of the lumen and the length of the perimeter of the lumen of differentiating tracheids increased from the cambium towards the xylem. These increases had just ceased in the case of tracheids closest to the cambium in which birefringence was first detected by observations with a polarizing light microscope. Cellulose microfibrils (MFs) deposited on the innermost surfaces of radial walls were not well ordered during the expansion of cells, but well ordered MFs were deposited at the subsequent stage of cell wall formation. The first well ordered MFs were oriented in an S-helix. The well ordered MFs had already been deposited at the tracheids where birefringence was first detected under the polarizing light microscope. These results indicate that the deposition of the well ordered MFs, namely, the formation of the secondary wall, begins before the cessation of cell expansion of tracheids. Therefore, it seems that the expansion of tracheids is restricted by the deposition of the secondary wall because the cell walls become rigid simultaneously with the development of the secondary wall and, therefore, the yield point of cell walls exceeds the turgor pressure of the cell. Received: 3 July 1996 / Accepted: 24 September 1996  相似文献   

11.
12.
13.
Jan Marc  Wesley P. Hackett 《Planta》1992,186(4):503-510
The changes in the pattern of cell arrangement and surface topography at the shoot apical meristem of Hedera helix L., which occur during gibberellic acid (GA3)-induced transition from spiral to distichous phyllotaxis, were examined by scanning electron microscopy of rapidly frozen tissue. The technique preserves the original shape of the cells in their turgid state. It reveals distinct sets of radially oriented cell files, about four to eight cells wide, which extend from the central region of the meristem toward leaf primordia on the meristem flanks. In apices with spiral phyllotaxis, a new emerging primordium (0) appears as an acropetal bulge between the radial files adjacent to the third (3) and the second (2) older primordia. The bulging is associated with radial or oblique cell divisions while those located at the meristem flanks and in the radial files are oriented tangentially. As the displacement of existing primordia away from the central region increases following the GA3 treatment, radial and oblique divisions as well as acropetal bulging invade the radial files adjacent to the primordium 2; consequently the angular divergence of the emerging primordium from the youngest existing primordium (1) increases. In apices with distichous phyllotaxis, the earliest bulging appears on both sides of the radial files facing primordium 2, with a slight depression at the files. The radial files therefore correspond to regions of the meristem where acropetal bulging is generally delayed, although this effect apparently diminishes with increasing distance of existing primordia from the meristem center.Abbreviations GA3 gibberellic acid We thank Mr. Gilbert Ahlstrand, University of Minnesota, for his advice and assistance with the scanning electron microscopy. Contribution of the University of Minnesota Agricultural Experimental Station No. 19032.  相似文献   

14.
During the Caulobacter life cycle, the timing of DNA replication, cell division and development is precisely coordinated. Recent work has begun to unravel the complex regulatory networks that couple these processes. A key aspect of these regulatory networks is the dynamic localization of multiple histidine protein kinases that control a master response regulator, thus driving downstream pathways.  相似文献   

15.
Changes in the composition of cotton fibre cell walls during development   总被引:3,自引:0,他引:3  
H. R. Huwyler  G. Franz  H. Meier 《Planta》1979,146(5):635-642
Purified cell walls, prepared from cotton fibres (Gossypium arboreum L.) at different growth stages, were subjected to successive extractions to give pectic, hemicellulosic, and -cellulosic fractions. The protein content and sugars obtained after hydrolysis of the total cell walls and of the various fractions were quantitatively estimated. The amount of protein in the fibre cell walls from one ovule reached a maximum value at the end of the elongation growth, decreased, and then reached a second maximum at the end of the secondary wall deposition. The absolute amounts of fucose, galactose, mannose, rhamnose, arabinose, uronic acid, and non-cellulosic glucose residues all reached a maximum at the end of the primary wall formation or at the beginning of the secondary wall formation. Only the absolute amounts of xylose and of the cellulosic glucose residues increased until the end of the fibre development. Most conspicuous was the decrease in the absolute amounts of non-cellulosic glucose and of arabinose residues during the secondary wall formation, possibly indicating a turnover of at least some of the hemicellulosic wall material.Abbreviations DPA days post anthesis - TLC thin layer chromatography - SDS sodium dodecyl sulphate  相似文献   

16.
Summary The pattern of follicular development during the estrous cycles of aged rats was examined and compared with that of mature rats. In both, preovulatory follicles are derived from a select group of small pre-Graafian follicles which begin to develop at estrus and reach the preovulatory size by the morning of proestrus, but the rate of growth, as judged by an increase in the percentage of granulosa cells incorporating 3H-thymidine, is accelerated in the follicles of aged rats. A second mechanism, which accounts for preovulatory follicles in aged rats, involves the rescue from atresia of pre-Graafian and preovulatory follicles. The existence of this mechanism is supported by the observation that at metestrus in aged rats virtually all follicles, regardless of their state of atresia, possess a high percentage of granulosa cells incorporating 3H-thymidine, indicating that the follicles are growing rapidly. However, some of these rapidly growing follicles show signs of atresia such as pyknotic nuclei within their granulosa cell layers. Since follicles in the initial stage of atresia contain defective oocytes (Peluso et al. 1979b), their rescue and development into preovulatory follicles would result in the ovulation of defective oocytes, a fact which accounts in part of the lower fertility in these older animals.  相似文献   

17.
Cell morphogenesis in Closterium acerosum (Schrank) Ehrenberg was greatly influenced by colchicine. Addition of colchicine to the medium led to production of tadpole-shaped cells, by decreasing the length and increasing the thickness of the new semicells. Transversely oriented wall microtubules and microfibrils, characteristic of normally elongating semicells, were not observed in colchicine-treated semicells, randomly oriented microfibrils being present instead. About 3.5 h after septum formation, the randomly oriented microfibrils began to be overlaid by bundles of microfibrils as seen in normal semicells at the later stage of elongation. When colchicine treatment was terminated 1 h after septum formation, cell elongation was partially restored and microfibrils were deposited parallel to each other and transversely to the cell axis, indicating that the effect of colchicine on microfibril arrangement in growing semicells is reversible.  相似文献   

18.
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) plays an important role in DNA double-strand break (DSB) repair as the underlying mechanism of the non-homologous end joining pathway. When DSBs occur, DNA-PKcs is rapidly phosphorylated at both the Thr-2609 and Ser-2056 residues, and such phosphorylations are critical for DSB repair. In this study we report that, in addition to responding to DSBs, DNA-PKcs is activated and phosphorylated in normal cell cycle progression through mitosis. Mitotic induction of DNA-PKcs phosphorylation is closely associated with the spindle apparatus at centrosomes and kinetochores. Furthermore, depletion of DNA-PKcs protein levels or inhibition of DNA-PKcs kinase activity results in the delay of mitotic transition because of chromosome misalignment. These results demonstrate for the first time that DNA-PKcs, in addition to its role in DSB repair, is a critical regulator of mitosis and could modulate microtubule dynamics in chromosome segregation.  相似文献   

19.
The yeast cell wall consists of an internal skeletal layer and an outside protein layer. The synthesis of both β-1,3-glucan and chitin, which together form the cell wall skeleton, is cell cycle-regulated. We show here that the expression of five cell wall protein-encoding genes (CWP1, CWP2, SED1, TIP1 and TIR1) is also cell cycle-regulated. TIP1 is expressed in G1 phase, CWP1, CWP2 and TIR1 are expressed in S/G2 phase, and SED1 in M phase. The data suggest that these proteins fulfil distinct functions in the cell wall.  相似文献   

20.
Closterium acerosum (Schrank) Ehrenberg cells cultured on cycles of 16 h light and 8 h dark, undergo cell division synchronously in the dark period. After cell division, the symmetry of the daughter semicells is restored by controlled expansion, the time required for this restoration, 3.5–4 h, being relatively constant. The restoration of the symmetry is achieved by highly oriented surface expansion occurring along the entire length of the new semicell. During early semicell expansion, for about 2.5 h, microfibrils are deposited parallel to one another and transversely to the cell axis on the inner surface of the new wall. Wall microtubules running parallel to the transversely oriented microfibrils are observed during this period. About 2.5 h after septum formation, preceding the cessation of cell elongation, bundles of 7–11 microfibrils running in various directions begin to overlay the parallel-arranged microfibrils already deposited. In the fully elongated cells, no wall microtubules are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号