首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Colicin K greatly decreased the incorporation of 32P-labeled inorganic orthophosphate into nucleotides and nucleic acids, causing a concomitant increase in the formation of 32P-labeled sugar phosphates in sensitive cells of Escherichia coli. These sugar phosphates were formed in aerobically growing cells, as well as in cells under stringent control of ribonucleic acid synthesis. The main 32P-labeled product was identified as sedoheptulose 7-phosphate in two strains (B1 and K-12 MK-1) and fructose 1,6-diphosphate in one strain (K-12 CP78). The formation of sugar phosphates induced by colicin K was inhibited by carbonyl cyanide m-chlorophenylhydrazone. It was also not observed in N,N'-dicyclohexylcarbodiimide-treated cells or Mg2+-(Ca2+)-adenosine triphosphatase-less mutant (strain K-12 AN120) cells. Thus, the formation of sugar phosphates in colicin K-treated cells is dependent on the formation of adenosine 5'-triphosphate by oxidative phosphorylation.  相似文献   

2.
J V Staros  J R Knowles 《Biochemistry》1978,17(16):3321-3325
A dipeptide containing a nitrene precursor, glycyl-4-azido-2-nitro-L-phenylalanine, has been synthesized. This compound is a photoaffinity inhibitor of dipeptide transport in E. coli. In the dark, the dipeptide is a reversible inhibitor of glycylglycine uptake by live E. coli W cells. The 14C-labeled compound is a substrate for the transport system, with a Km of 7 micrometer and V max of 5 x 10(3) molecules cell-1 s-1 (compare 9 micrometer and 1 x 10(4) molecules cell-1 s-1, respectively, for the transport of glycylglycine under the same conditions). When intact E. coli cells are photolyzed at approximately 350 nm in the presence of the photolabile dipeptide, their ability to transport either glycylglycine or unphotolyzed glycyl-4-azido-2-nitro-L-phenylalanine is irreversibly inhibited, but their ability to transport arginine is unaffected. The presence of glycylglycine in the medium during photolysis protects the cells against the light-dependent inactivation of dipeptide transport.  相似文献   

3.
The lipophilic chelator bathophenanthroline inhibits electron transport in membranes from Escherichia coli. The less lipophilic 1,10-phenanthroline, bathophenanthroline sulfonate, and alpha,alpha-dipyridyl have little effect. Reduced nicotinamide adenine dinucleotide oxidase is more sensitive to bathophenanthroline inhibition than lactate oxidase activity. Evidence for two sites of inhibition comes from the fact that both reduced nicotinamide adenine dinucleotide menadione reductase and duroquinol oxidase activities are inhibited. Addition of uncouplers of phosphorylation before bathophenanthroline protects against inhibition.  相似文献   

4.
Reconstitution of sugar phosphate transport systems of Escherichia coli   总被引:19,自引:0,他引:19  
Studies with Escherichia coli cells showed that the transport systems encoded by glpT (sn-glycerol 3-phosphate transport) and uhpT (hexose phosphate transport) catalyze a reversible 32Pi:Pi exchange. This reaction could be used to monitor the glpT or uhpT activities during reconstitution. Membranes from suitably constructed strains were extracted with octylglucoside in the presence of lipid and glycerol, and proteoliposomes were formed by dilution in 0.1 M KPi (pH 7). Both reconstituted systems mediated a 32Pi:Pi exchange which was blocked by the appropriate heterologous substrate, sn-glycerol 3-phosphate (G3P) or 2-deoxyglucose 6-phosphate (2DG6P), with an apparent Ki near 50 microM. In the absence of an imposed cation-motive gradient, Pi-loaded proteoliposomes also transported the expected physiological substrate; Michaelis constants for the transport of G3P or 2DG6P were near 20 microM. The heterologous exchange showed a maximal velocity of 130 nmol/min/mg protein via the glpT system and 11 nmol/min/mg protein for the uhpT system. This difference was expected because the G3P transport activity had been reconstituted from a strain carrying multiple copies of the glpT gene. Taken together, these results suggest that anion exchange may be the molecular basis for transport by the glpT and uhpT proteins.  相似文献   

5.
Maltose and lactose transport systems have been used to investigate the action of procaine on insertion and activity of membrane proteins and translocation of exported proteins in Escherichia coli. Procaine mildly inhibited growth on lactose. The level of inhibition was consistent with the small reduction observed in active and facilitated transport functions of the lac permease. However, procaine caused a severe reduction of growth rate on maltose, as well as an inhibition of induction of maltose regulon activities. In both constitutive and inducible strains, the synthesis of both maltose transport activity (malB operon) and amylomaltase activity (malA operon) was inhibited. Coordinate inhibition of soluble and membrane products was not observed with the lac operon. beta-Galactosidase synthesis proceeded normally during growth on procaine, whereas, the appearance of new transport activity was reduced. Regardless of carbon source, procaine specifically inhibited the appearance of ompF protein in the membrane fraction.  相似文献   

6.
E. coli cells growing on the medium containing glucose and lactate do not utilize lactate. One reason of preferential utilization of glucose is catabolite inhibition of lactate transport. It is necessary for glucose to penetrate into the cell to inhibit lactate transport. Besides glucose the inhibition of the lactate transport is also caused by fructose and by non-metabolized analogue of glucose--alpha-methylglucoside.  相似文献   

7.
8.
The carbon skeleton of glucose is extensively randomized during conversion to cell wall glucosamine by Escherichia coli K-12. Exogenous glucosamine-1-(14)C is selectively oxidized, and isotope incorporation into cellular glucosamine is greatly diluted during assimilation. A mutant unable to grow with N-acetylglucosamine as a carbon and energy source was isolated from E. coli K-12. This mutant was found to be defective in glucosamine-6-phosphate deaminase. Glucosamine-1-(14)C and N-acetylglucosamine-1-(14)C were assimilated during the growth of mutant cultures without degradation or carbon randomization. Assimilated isotopic carbon resided entirely in cell wall glucosamine and muramic acid. Some isotope dilution occurred from biosynthesis, but at high concentrations (0.2 mm) of added N-acetylglucosamine nearly all cellular amino sugar was derived from the exogenous source. Growth of the mutant was inhibited with 1 mmN-acetylglucosamine.  相似文献   

9.
Several methods were used to study the source of energy in the uptake of hexose phosphates by Escherichia coli K12. The uptake was sensitive to inhibition by agents that affect electron transport, such as lack of oxygen, cyanide, and heptylhydroxyquinoline-N-oxide, and by agents that affect ATP utilization, such as dicyclohexylcarbodiimide and arsenate. It was also sensitive to uncouplers in the presence of absence of oxygen. The strain of E. coli used extruded protons during respiration. Uncer anaerobic conditions, the uptake of approximately 1 eg to H+ per glucose 6-phosphate. These observations are consistent with a chemiosmotic mechanism of genergized glucose 6-phosphate uptake. The rate of glucose 6-phosphate uptake was maximal in KC1, but was also stimulated by MgC12 or CaC12. Inhibition by A217, a nigericin-like antibiotic, was prevented by K+ whereas valinomycin and gramicidin inhibited in the presence or absence of K+.  相似文献   

10.
J.S. CHAPMAN AND M.A. DIEHL. 1995. Exposure of log phase Escherichia coli cells to inhibitory levels of 5-chloro-2-methyl-isothiazolin-3-one (MCI) results in rapid bacteriostasis and a delayed onset of bactericidal activity. Inhibition of respiration occurs within the same time frame as bacteriostasis, and is followed by a decline in intracellular ATP levels. In vitro and in vivo experiments suggest that growth inhibition is the result of selective inhibition of particular targets, with succinate dehydrogenase being identified as a possible target. Such selectivity was not anticipated from this highly reactive molecule. MCI-induced lethality is positively correlated with a loss of reduced protein sulphydryls ( r 2= 0·79). A greater than equimolar loss of reduced protein sulphydryls, compared with the number of MCI molecules added, and a reduction in killing by MCI after induction of the OxyR regulon suggest that free radical generation may have a role in the antibacterial activity of MCI. We present an examination of the in vivo effects of MCI exposure on bacterial cells, and evidence that the isothiazolones exhibit selectivity in their cellular targets and antimicrobial effects.  相似文献   

11.
Regulation of sugar accumulation by Escherichia coli   总被引:4,自引:0,他引:4  
  相似文献   

12.
A purine-sensitive phenotype results from a previously described mutation in the structural gene (pyrE) for orotate phosphoribosyltransferase (OPT) in Escherichia coli K-12. OPT from both the mutant and the wild-type was partially inhibited by adenine and adenosine, although other purine derivatives were not effective for this inhibition. The Km values of the mutant OPT were 580 and 760 microM for orotate and 5'-phosphoribosyl-1'-pyrophosphate (PRib-PP), respectively, whereas the corresponding values for the wild-type OPT were 40 and 60 microM. The intracellular level of PRib-PP was decreased to less than 15% of the normal level when purine derivatives were added to exponentially growing cultures of both the parent and mutant strains. However, this decrease of the PRib-PP level was not found in strains derived from the mutant, in which the purine-sensitive phenotype was suppressed by a secondary mutation. The purine-sensitive phenotype was caused by retardation of the pyrimidine de novo pathway, when the intracellular level of PRib-PP was diminished by exogenously supplied purine derivatives.  相似文献   

13.
Pantothenate transport in Escherichia coli.   总被引:3,自引:5,他引:3       下载免费PDF全文
The function of the stable 6S RNA of Escherichia coli is not known. Recently, it was proposed that the 6S RNA is a component of a bacterial signal recognition particle required for protein secretion. To test this proposal, we isolated a mutant that lacks the 6S RNA. Studies of the mutant show that the 6S RNA is not essential for growth or for protein secretion. The gene for the 6S RNA (ssr) maps near serA at 63 min on the E. coli genetic map.  相似文献   

14.
15.
Ethionine-induced inhibition of growth of E. coli has been measured. In the presence of 10 mMl-ethionine this inhibition amounts to about 55% and is readily reversed by methionine. ATP (7.5–10 mM) also reverses the ethionine-induced inhibition of growth.It has been shown previously that ATP counteracts ethionine-induced inhibition of growth in animals and plants. ATP as well as l-methionine has now been found to reverse the ethionine-induced growth inhibition of E. coli.  相似文献   

16.
Fructose transport by Escherichia coli   总被引:2,自引:0,他引:2  
The utilization of fructose by Escherichia coli involves, as first step, the uptake of the sugar, normally via the phosphoenolpyruvate-dependent phosphotransferase system (PTS). This fructose-specific PTS differs in several ways from that effecting the uptake of other sugars that also possess the 3,4,5-D-arabino-hexose configuration: these differences are discussed. Mutants that lack the genes ptsI and ptsH, which specify components of the PTS common to most PT-sugars, can mutate further to regain the ability to utilize fructose when this is present in relatively high concentration (i.e. greater than 2 mM) in the medium. Some of the properties of this unusual uptake system is discussed.  相似文献   

17.
The twin-arginine translocation (Tat) pathway in Escherichia coli transports fully folded and assembled proteins across the energy-transducing periplasmic membrane. In chloroplasts, Tat transport requires energy input only from the proton motive force. To elucidate the mechanism and energetics of bacterial Tat protein transport, we developed an efficient in vitro transport assay using TatABC-enriched inverted membrane vesicles and the physiological precursor pre-SufI. We report transport efficiencies of 60-80% for nanomolar pre-SufI concentrations. Dissipation of the pH gradient does not reduce pre-SufI transport efficiency. Instead, pre-SufI transport requires at least two electrical potential (Deltapsi)-dependent steps that differ in both the duration and minimum magnitude of the required Deltapsi. The data are consistent with a model in which a substantial Deltapsi of short duration is required for an early transport step, and in which a small Deltapsi of long duration is necessary to drive a later transport step.  相似文献   

18.
Melibiose transport of Escherichia coli.   总被引:1,自引:3,他引:1       下载免费PDF全文
K Tanaka  S Niiya    T Tsuchiya 《Journal of bacteriology》1980,141(3):1031-1036
Transport of [3H]melibiose, prepared from [3H]raffinose, was investigated in Escherichia coli. Na+ stimulated the transport of melibiose via the melibiose system, whereas Li+ inhibited it. Kinetic parameters of melibiose transport were determined. The Kt values were 0.57 mM in the absence of Na+ or Li+, 0.27 mM in the presence of 10 mM NaCl, and 0.29 mM in the presence of 10 mM LiCl. The Vmax values were 40 and 46 nmol/min per mg of protein in the absence and in the presence of NaCl and 18 nmol/min per mg of protein in the presence of LiCl. Melibiose transport via the melibiose system was temperature sensitive in a wild-type strain of Escherichia coli and was not inhibited by lactose. On the other hand, melibiose uptake via the lactose system was not temperature sensitive, was inhibited by lactose, and was not affected by Na+ and Li+. Methyl-beta-D-thiogalactoside, a substrate for both systems, inhibited the transport of melibiose via both systems.  相似文献   

19.
The lactose carrier activity of Escherichia coli is inhibited by the binding of dephosphorylated glucose enzyme III. Saier et al. ((1978) J. Bacteriol. 133, 1358-1367) isolated lacY mutants that escaped this inhibition. This communication reports the cloning and sequencing of one of the Saier mutants and the isolation, cloning and sequencing of another similar mutant. Both mutations resulted in amino acid substitutions on the middle cytoplasmic loop of the carrier (alanine-198 to valine and serine-209 to isoleucine). It is concluded that this cytoplasmic loop may be one of the sites of binding of glucose enzyme III.  相似文献   

20.
Cyanase is an inducible enzyme in Escherichia coli that catalyzes the reaction of cyanate with bicarbonate to give two CO2 molecules. The gene for cyanase is part of the cyn operon, which includes cynT and cynS, encoding carbonic anhydrase and cyanase, respectively. Carbonic anhydrase functions to prevent depletion of cellular bicarbonate during cyanate decomposition (the product CO2 can diffuse out of the cell faster than noncatalyzed hydration back to bicarbonate). Addition of cyanate to the culture medium of a delta cynT mutant strain of E. coli (having a nonfunctional carbonic anhydrase) results in depletion of cellular bicarbonate, which leads to inhibition of growth and an inability to catalyze cyanate degradation. These effects can be overcome by aeration with a higher partial CO2 pressure (M. B. Guilloton, A. F. Lamblin, E. I. Kozliak, M. Gerami-Nejad, C. Tu, D. Silverman, P. M. Anderson, and J. A. Fuchs, J. Bacteriol. 175:1443-1451, 1993). The question considered here is why depletion of bicarbonate/CO2 due to the action of cyanase on cyanate in a delta cynT strain has such an inhibitory effect. Growth of wild-type E. coli in minimal medium under conditions of limited CO2 was severely inhibited, and this inhibition could be overcome by adding certain Krebs cycle intermediates, indicating that one consequence of limiting CO2 is inhibition of carboxylation reactions. However, supplementation of the growth medium with metabolites whose syntheses are known to depend on a carboxylation reaction was not effective in overcoming inhibition related to the bicarbonate deficiency induced in the delta cynT strain by addition of cyanate. Similar results were obtained with a deltacyn strain (since cyanase is absent, this strain does not develop a bicarbonate deficiency when cyanate is added); however, as with the deltacynT strain, a higher partial CO(2) pressure in the aerating gas or expression of carbonic anhydrase activity (which contributes to a higher intercellular concentration of bicarbonate/CO(2)) significantly reduced inhibition of growth. There appears to be competition between cyanate and bicarbonate/CO(2) at some unknown but very important site such that cyanate binding inhibits growth. These results suggest that bicarbonate/CO(2) plays a significant role in the growth of E. coli other than simply as a substrate for carboxylation reactions and that strains with mutations in the cyn operon provide a unique model system for studying aspects of the metabolism of bicarbonate/CO(2) and its regulation in bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号