首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of conventional doses of two synthetic contraceptive steroids on the concentration and rate of secretion of plasma triglycerides from the splanchnic region were investigated. Studies were undertaken in miniature swine under steady state conditions produced by prolonged constant hypercaloric intravenous infusions of glucose. The steroids, alone or in combination, were administered with the high carbohydrate diet for at least 2 weeks prior to study of splanchnic metabolism and were also infused intravenously during the studies. Splanchnic triglyceride secretion was determined from measurements of plasma flow and transsplanchnic radiochemical gradients of plasma triglycerides. Compared with studies in the untreated animal, norethindrone acetate significantly reduced the arterial concentration (1.1 +/- 0.1 vs. 0.7 +/- 0.1 mM) and rate of splanchnic secretion of plasma triglyceride fatty acids (2.0 +/- 0.4 vs. 0.8 +/- 0.1 micro mol/min.kg body wt(0.75)) and decreased the percent of free fatty acids entering the splanchnic region that was converted to plasma triglycerides (22 +/- 5 vs. 13 +/- 3%, P < 0.05). Ethynylestradiol, in the dose employed, had no significant effect on these variables; however, ethynylestradiol and norethindrone acetate together gave responses similar to norethindrone acetate alone. When the glucose was given intraduodenally vs. intravenously, values for splanchnic metabolism of triglycerides were unchanged. The hypolipemic effect of norethindrone acetate in glucose-fed swine was attributable to inhibition of hepatic triglyceride secretion.-Wolfe, B. M., and D. M. Grace. Norethindrone acetate inhibition of splanchnic triglyceride secretion in conscious glucose-fed swine.  相似文献   

2.
To assess the possible role of altered hepatic processing of free fatty acids in dietary sucrose-induced accumulation of triglyceride in the liver and blood plasma, livers from rats fed commercial laboratory stock and high sucrose diets were perfused both with and without oleic acid substrate. Consumption of the sucrose diet exerted a multiplicity of effects on oleic acid metabolism, characterized by decreased conversion to both ketone bodies and carbon dioxide, increased esterification into liver triglyceride, and increased secretion in triglyceride-rich lipoproteins. During the infusion of oleic acid, livers from sucrose-fed rats also exhibited decreased ketogenesis, and increased secretion of triglyceride from endogenous sources. Since oleic acid uptake from the perfusion medium was identical in both groups, the observed effects of sucrose feeding are ascribed to altered rates of intracellular metabolic processes. Mass and radiochemical analyses of perfusate ketone bodies and triglycerides were indicative of greater mobilization of triglycerides from hepatocellular lipid droplets in the livers from sucrose-fed rats. These livers contained more triglyceride and secreted more triglyceride even in the absence of infused oleic acid. In summary, the sucrose-rich diet increased the esterification:oxidation ratio of intracellular free fatty acids derived from both the circulation and endogenous sources within the hepatocyte. In response, secretion of triglyceride-rich lipoproteins by the liver and deposition of triglyceride within the liver were promoted. It is concluded that alterations in the processing of free fatty acids by the liver contribute significantly to the liver and plasma triglyceride accumulation following sucrose consumption.  相似文献   

3.
High carbohydrate diets enhance the hepatic output of very low density lipoprotein triglycerides. The fatty acids of these triglycerides could come from exogenous sources (i.e., diet or adipose tissue) or from de novo fatty acid synthesis in the liver. The role of exogenous free fatty acids was evaluated in rats fed Purina Chow or diets containing 10% fructose for up to 14 wk. In carbohydrate-fed rats, serum triglycerides were twice normal, and VLDL accounted for about 60% of the increases. Pre-beta-lipoprotein was increased and alpha- and beta-lipoprotein were decreased. Phospholipid and cholesterol levels were unchanged. Livers were perfused with glucose and free fatty acids. Perfusate free fatty acids rose from 180 to 1800 micro eq/liter as the infused acids increased from 0 to 992 micro eq/3 hr; simultaneously, net free fatty acid uptake rose from < 1 to 18 micro eq/g/hr and triglyceride output by the liver doubled. However, rates of secretion of triglyceride became constant, and triglyceride accumulated in liver at uptakes of free fatty acids > 13 micro eq/g/hr. More lauric and myristic acid appeared in the perfusate than was infused, suggesting the hepatic discharge of free fatty acids. Livers of fructose-fed rats secreted twice as much oleate-(14)C-labeled triglyceride as controls at all levels of free fatty acid uptake. The ratios of the specific activities of perfusate triglyceride to free oleate-(14)C were unaffected by diet and were about 0.6 and 1.0 at low and high triglyceride secretion rates, respectively. Thus, carbohydrate feeding did not result in altered uptakes of free fatty acids or preferential secretion of triglycerides containing endogenously synthesized fatty acid. Instead, the increased secretion of triglyceride was accomplished by enhanced formation of VLDL triglyceride from exogenous free fatty acids.  相似文献   

4.
Reliable and precise quantification of endogenous triglyceride transport in man has not been possible with simple means to date. Direct measurement of net splanchnic secretion of triglyceride fatty acids (TGFA) in very low density lipoproteins (VLDL) provides the must unambiguous information, but precision is low. Coupling infusion of labeled fatty acid with sampling of arterial and hepatic venous blood increases precision; however, the contribution of precursors other than plasma free fatty acids (FFA) must be assessed. Measurement of the rate of hydrolysis of plasma triglycerides after displacing lipases into the blood with heparin holds promise as a simple, nonisotopic method, but it has not been carefully validated and heparin itself alters FFA and triglyceride transport. Multicompartmental analysis following pulse injection of labeled fatty acid offers a practical approach, but uncertainties about the number and location of interacting compartments have made it impossible to determine an absolute value for transport. Reinjection of biologically labeled plasma VLDL is impractical for large scale use, and validity of this approach remains uncertain because of heterogeneity of VLDL-triglycerides and their complex metabolic behavior. Methods to label VLDL-triglycerides in vitro deserve more study as does labeling of other components, such as the B-apoprotein. Such approaches will require rigorous comparison with biologically labeled material as well as careful assessment of alterations in kinetic behavior that may occur when VLDL are separated from blood plasma.  相似文献   

5.
Plasma triglyceride concentrations were significantly lowered by a single feeding of glucose to rats that had been fasted for 22 hr. Three feedings of glucose produced a similar effect. In the glucose-refed animals mobilization of free fatty acids from adipose tissue was impaired more rapidly than hepatic lipogenesis was restored from its low fasting level. These effects of glucose were shown by both a 50% fall in plasma free fatty acid concentration and an 84% decrease in free fatty acid release by isolated epididymal fat pads within 30 min after a single refeeding of glucose. Hepatic lipogenesis from either acetate-1-(14)C or glucose-U-(14)C was not restored even after glucose had been fed three times at hourly intervals. Triton-induced hypertriglyceridemia was used to measure the hepatic triglyceride secretory rate; it was found that glucose refeeding decreased this rate in all but one of several experiments. This decreased secretion rate was sufficient to account for the nearly complete disappearance of triglyceride in very low density lipoproteins (d < 1.019) that occurred within 1 hr after a single glucose intubation.  相似文献   

6.
1. When livers from fed rats were perfused with blood containing elevated concentrations of rat insulin or blood to which fructose was added, the oxidation of free fatty acids was depressed and their esterification was increased. 2. Raised concentrations of insulin or addition of fructose increased secretion of triglyceride in very-low-density lipoproteins, but only insulin caused more of the free fatty acids taken up by the liver to be incorporated into very-low-density lipoproteins. 3. When insulin and fructose were added together the combined effect on oxidation and esterification of free fatty acids and on secretion of very-low-density lipoproteins was equal to the sum of the effects of either alone. No statistically significant interaction between the effects of fructose and insulin was found for any of the parameters investigated. 4. Bovine insulin had similar effects, in most respects, to comparable studies with raised concentrations of rat insulin. 5. Lipogenesis was increased in the livers treated with fructose plus bovine insulin. 6. A significant proportion of the fatty acids in very-low-density lipoproteins were derived either from the liver triglyceride pool or from lipogenesis. This fraction was increased both by treatment with insulin or fructose, and was augmented further when both insulin and fructose were present together. 7. The uptake of fructose by the perfused liver was similar to that found in vivo. It was unaffected by the presence of insulin. 8. Addition of fructose to the perfused liver caused perfusate lactate concentrations to increase, as a result of diminished hepatic uptake of lactate. 9. The uptake of free fatty acids by the perfused liver was unaffected by the addition of either insulin or fructose. 10. The distribution among the various lipid classes in plasma lipoproteins of label arising from the hepatic uptake of [(14)C]oleate was unaltered by the addition of either fructose or insulin. 11. It is suggested that the effects described are due principally to control of the balance between esterification of fatty acids and lipolysis of the ensuing triglyceride, fructose enhancing esterification and insulin inhibiting lipolysis.  相似文献   

7.
Quantitative aspects of free fatty acid metabolism in the fasted rat   总被引:9,自引:0,他引:9  
Palmitate-1-(14)C was injected intravenously into unanesthetized, fasted rats. Disappearance of tracer from plasma free fatty acids was studied. A large component of free fatty acid (FFA) recycling was directly demonstrated by reinjection experiments. The latter studies also indicated the existence of an unidentified, rapidly turning over polar lipid in plasma which was synthesized from palmitate-(14)C. The appearance of (14)C in hepatic and extrahepatic triglycerides, in other esters, and in respired CO(2) was also followed. The data were analyzed using a multicompartmental model and a digital computer. Only a small fraction of the triglycerides formed in liver was derived directly from plasma free fatty acids. The major portion of net triglyceride formation appeared to be by way of an intermediate nontriglyceride ester pool which turned over relatively slowly compared to plasma free fatty acids. Initial approximations are as follows ( micromoles of fatty acid per min per 100 g body weight): net free fatty acid mobilization (irreversible disposal) = 2.4; hepatic triglyceride formation directly from plasma free fatty acid = 0.1; total hepatic lipid formation from plasma free fatty acids = 0.5; oxidation of free fatty acids to CO(2) = 0.8; percentage of respired CO(2) from direct oxidation of fatty acids = 12%; extrahepatic triglyceride formation directly from fatty acids = 0.4; total extrahepatic lipid formed directly from fatty acids = 1.2.  相似文献   

8.
10 to 20% of [1-14C] palmitate injected into pregnant guinea pigs was recovered in lipids of their fetuses. From these data and the rate of transport of palmitate in maternal blood, it appears that placental transport of free fatty acids can account for the accumulation of lipids in late gestational fetuses. About 80% of the labeled palmitate in the fetus appeared initially in lipids of the liver. 14C appeared in plasma triglyceride fatty acids after a few minutes and subsequently accumulated in lipids of white and brown adipose tissue, suggesting that much of the palmitate deposited in adipose tissue were derived from hepatogenous triglyceride fatty acids. By contrast, 14C was usually maximal in heart and carcass lipids before it appeared in plasma triglyceride fatty acids. Lipoprotein lipase activity in fetal adipose tissue was low, and activity of cofactor protein of lipoprotein lipase in fetal blood plasma was much lower than that observed in other mammalian species. On the basis of these and earlier observations, it is concluded that the accumulation of triglycerides in liver and blood plasma of fetal guinea pigs during late gestation is at least partly the result of the large uptake of maternally derived free fatty acids by the fetal liver accompanied by rapid synthesis and secretion of triglyceride-rich very low density lipoproteins into the blood. However, limited uptake of triglyceride fatty acids in adipose tissue may contribute to the fatty liver and hyperlipemia.  相似文献   

9.
Adipose lipid obtained from fed rats 15 or 60 min after injection of radioactive glucose was separated into 10 triglyceride classes of differing fatty acid compositions. The distribution among these classes of total and radioactive triglyceride-glycerol was determined and found to be the same. Thus newly synthesized adipose triglycerides resemble in kind and proportion the triglycerides which exist in the tissue. This finding is in accord with the concept that the structures of adipose triglycerides are stable over long periods and that the turnover rate of the several triglyceride species are similar. After administration of radioactive glucose, the specific activity of saturated fatty acids was higher in the more saturated triglyceride species. These data indicate that newly formed saturated acids do not mix completely with all adipose tissue fatty acids available for esterification. Fatty acids derived from plasma triglyceride influenced the composition of newly synthesized adipose tissue triglyceride and thus constitute an important source of adipose tissue lipid.  相似文献   

10.
Comparative lipid metabolism of rats and hamsters was investigated to determine the metabolic basis for the relatively high concentrations of serum triglycerides in the hamster. It was found that serum free fatty acids (FFA) in the hamster are higher than in the rat in the fed condition. In addition, a higher percentage of the fatty acids esterified in the liver of the hamster is utilized for triglyceride synthesis. These factors combine to elevate hepatic triglyceride synthesis in the hamster. However, triglyceride does not accumulate in the liver in these animals in the fed state. In fact, liver triglycerides are lower in the fed hamster than in the fed rat, and the hamster stores much less triglyceride in liver lipid droplets than does the rat in this nutritional state. Most of the liver triglyceride in fed hamsters is present in dense particles corresponding to vesicular lipoprotein triglyceride in the secretory pool. In isolated organ perfusion experiments hamsters livers exhibited greater net triglyceride secretion than did rat livers. Serum triglycerides in the hamster remain elevated in the fasting state. In this condition the high proportion of free fatty acids utilized for liver triglyceride synthesis, relative to that incorporated into hepatic phospholipids, persists in the hamster and marked liver triglyceride accumulation occurs. Lipid droplets are extremely abundant in these livers. The present study implicates increased conversion of free fatty acids to triglyceride in the liver and increased hepatic production of very low density lipoproteins (VLDL) in the hamster in the genesis of the hyperglyceridemia characteristic of this species.  相似文献   

11.
1. Concentrations and compositions of liver, serum and milk lipids of cows were measured during 6 days' starvation and serum lipids during 60 days' re-feeding. 2. The concentration of free fatty acid in serum increased fivefold during starvation. 3. The content of total lipid in liver (g/100g of liver dry matter) doubled owing to a 20-fold increase in triglyceride, an eightfold increase in cholesterol ester, a three fold increase in free fatty acid and a 20% increase in cholesterol. There were no changes in the content or composition of liver phospholipids. 4. Starvation lowered the concentrations of total lipid, phospholipid and cholesterol ester of dextran sulphate-precipitable serum lipoproteins. Total lipid and cholesterol ester concentrations in lipoproteins of d greater than 1.055 and in lipoproteins not precipitable by dextran sulphate decreased from day 4 of the starvation period and during the first 20 days' re-feeding. 5. During starvation there were decreases in percentages of stearic acid and increases in oleic acid in serum free fatty acids and triglycerides and in liver neutral lipid. 6. Throughout starvation total milk lipid yield decreased, yields and percentages of C4-14 fatty acids decreased and percentages of C18 fatty acids increased. 7. It is suggested that accumulation of triglyceride in liver may be caused by increased uptake of plasma free fatty acids without corresponding increase in lipoprotein secretion.  相似文献   

12.
The liver secretes triglyceride-rich VLDLs, and the triglycerides in these particles are taken up by peripheral tissues, mainly heart, skeletal muscle, and adipose tissue. Blocking hepatic VLDL secretion interferes with the delivery of liver-derived triglycerides to peripheral tissues and results in an accumulation of triglycerides in the liver. However, it is unclear how interfering with hepatic triglyceride secretion affects adiposity, muscle triglyceride stores, and insulin sensitivity. To explore these issues, we examined mice that cannot secrete VLDL [due to the absence of microsomal triglyceride transfer protein (Mttp) in the liver]. These mice exhibit markedly reduced levels of apolipoprotein B-100 in the plasma, along with reduced levels of triglycerides in the plasma. Despite the low plasma triglyceride levels, triglyceride levels in skeletal muscle were unaffected. Adiposity and adipose tissue triglyceride synthesis rates were also normal, and body weight curves were unaffected. Even though the blockade of VLDL secretion caused hepatic steatosis accompanied by increased ceramides and diacylglycerols in the liver, the mice exhibited normal glucose tolerance and were sensitive to insulin at the whole-body level, as judged by hyperinsulinemic euglycemic clamp studies. Normal hepatic glucose production and insulin signaling were also maintained in the fatty liver induced by Mttp deletion. Thus, blocking VLDL secretion causes hepatic steatosis without insulin resistance, and there is little effect on muscle triglyceride stores or adiposity.  相似文献   

13.
Hepatic steatosis is often associated with insulin resistance and obesity and can lead to steatohepatitis and cirrhosis. In this study, we have demonstrated that hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), two enzymes critical for lipolysis in adipose tissues, also contribute to lipolysis in the liver and can mobilize hepatic triglycerides in vivo and in vitro. Adenoviral overexpression of HSL and/or ATGL reduced liver triglycerides by 40-60% in both ob/ob mice and mice with high fat diet-induced obesity. However, these enzymes did not affect fasting plasma triglyceride and free fatty acid levels or triglyceride and apolipoprotein B secretion rates. Plasma 3-beta-hydroxybutyrate levels were increased 3-5 days after infection in both HSL- and ATGL-overexpressing male mice, suggesting an increase in beta-oxidation. Expression of genes involved in fatty acid transport and synthesis, lipid storage, and mitochondrial bioenergetics was unchanged. Mechanistic studies in oleate-supplemented McA-RH7777 cells with adenoviral overexpression of HSL or ATGL showed that reduced cellular triglycerides could be attributed to increases in beta-oxidation as well as direct release of free fatty acids into the medium. In summary, hepatic overexpression of HSL or ATGL can promote fatty acid oxidation, stimulate direct release of free fatty acid, and ameliorate hepatic steatosis. This study suggests a direct functional role for both HSL and ATGL in hepatic lipid homeostasis and identifies these enzymes as potential therapeutic targets for ameliorating hepatic steatosis associated with insulin resistance and obesity.  相似文献   

14.
ATP-citrate lyase (ACL) is a key lipogenic enzyme that converts citrate in the cytoplasm to acetyl-CoA, the initial precursor that yields malonyl-CoA for fatty acid biosynthesis. As cytosolic citrate is derived from the tricarboxylic acid cycle in the mitochondrion, ACL catalyzes a critical reaction linking cellular glucose catabolism and lipid synthesis. To investigate the metabolic action of ACL in lipid homeostasis, we specifically knocked down hepatic ACL expression by adenovirus-mediated RNA interference in mice maintained on a low-fat or high-fat diet. Hepatic ACL abrogation markedly reduced the liver abundance of both acetyl-CoA and malonyl-CoA regardless of dietary fat intake, which was paralleled with decreases in circulating levels of triglycerides and free fatty acids. Moreover, hepatic ACL knockdown resulted in diet-dependent changes in the expression of other lipogenic enzymes, accompanied by altered fatty acid compositions in the liver. Interestingly, ACL deficiency led to reduced serum VLDL-triglyceride levels but increased hepatic triglyceride content, resulting at least partially from decreased hepatic secretion of VLDL-containing apolipoprotein B-48. Together, these results demonstrate that hepatic ACL suppression exerts profound effects on triglyceride mobilization as well as fatty acid compositions in the liver, suggesting an important role for ACL in lipid metabolism.  相似文献   

15.
We examined effects on intestinal absorption of cholesterol and triglycerides and intestinal lipoprotein formation by feeding rats diets in which saturated fatty acids (palmitic plus stearic) comprised 78%, 68%, 48%, or 38% of triglyceride fatty acids. Absorption into lymph of radiolabeled cholesterol was proportional to triglyceride absorption. The rates of absorption of these lipids were related inversely to the % saturated fatty acids fed. The distribution of newly absorbed cholesterol and triglyceride into intestinal lipoproteins differed. With increasing cholesterol absorption more was recovered in very low density lipoproteins in contrast to the appearance preferentially in chylomicrons of larger quantities of fatty acid. Lymph lipid content did not reflect a consistent pattern in relation to the experimental diet fed. The fatty acid composition of triglyceride-rich lymph lipoproteins resembled the diet closely. One-quarter of the intestinal lymph particles from rats fed the highly saturated diets was flattened and polygonal as judged by electron microscopy if cooled to room temperature; whereas with the same diets, particles collected and isolated at 37 degrees C were round. Proportions of A-I and C apolipoproteins in triglyceride-rich intestinal particles varied inversely; apoA-I increased as fat/cholesterol absorption was greater. Diet-induced alterations in plasma lipoproteins and increased circulating triglycerides in this study in rats were unrelated to the variations in intestinal absorption or lymph lipoprotein formation.  相似文献   

16.
The relative importance of fatty acid synthesis in triglyceride secretion by perfused livers from lean (normal control) and obese Zucker rats was investigated. Livers from fed animals were perfused in a recirculating system with tritiated water and a constant infusion of oleic acid. Triglyceride secretion was 5 times greater and cholesterol secretion was 35% greater in the obese rat livers. The very-low-density lipoprotein hypersecreted by perfused livers from obese rats contained more apolipoprotein B and exhibited an increased B-48/B-100 ratio. Apo-B was also elevated in the hypertriglyceridemic plasma of obese rats in both fed and fasting states. The very-low-density lipoprotein isolated therefrom was likewise characterized by an increased B-48/B-100 ratio. Ketogenesis was depressed 40% in the obese rat livers and increased hepatic malonyl-CoA was implicated in this alteration. The de novo synthesis and secretion of newly synthesized cholesterol was moderately increased in the perfused livers from obese rats. Tritium incorporation into fatty acids was 15 times greater in the obese genotype. Most of the synthesized fatty acids remained in the liver and were recovered after perfusion in triglyceride and phospholipids. Newly synthesized fatty acids accounted for only 3 and 15% of the triglyceride secreted by the lean and obese rat livers, respectively. A large portion of the secreted triglyceride fatty acids was derived from endogenous liver lipids. When the turnover of newly synthesized fatty acids in these pools was considered, the contribution of de novo fatty acid synthesis to triglyceride secretion was estimated to be 9% in the lean and 44% in the obese rat livers. Therefore, the altered partition of free fatty acids (Fukuda, N., Azain, M. J., and Ontko, J. A. (1982) J. Biol. Chem. 257, 14066-14072) and increased fatty acid synthesis are both major determinants of the hypersecretion of triglyceride-rich lipoproteins by the liver in the genetically obese Zucker rat.  相似文献   

17.
The formation and transport of hepatic triglyceride fatty acids (TGFA) were studied after intravenous administration of palmitate-1-(14)C or palmitate-9,10-(3)H in rabbits pretreated with ethanol or ethionine. Administration of ethanol produced significant hypertriglyceridemia without consistent accumulation of hepatic fat. The isotopic studies suggest that plasma free fatty acids were the major precursors of TGFA in d < 1.006 lipoproteins and that fatty acids synthesized in the liver were not the source of the hypertriglyceridemia in the ethanol-treated animals. Administration of ethionine resulted in an increased concentration of TGFA in the liver, a decreased level of TGFA in d < 1.006 lipoproteins and a very low specific activity in this plasma fraction. These findings suggest that the development of fatty liver after administration of ethionine is in part accompanied by impaired release of TGFA from the liver.  相似文献   

18.
Much of the lipid present in the ascites plasma in which Ehrlich cells grow is contained in very low density lipoproteins (VLDL). Chemical measurements indicated that triglycerides were taken up by the cells during in vitro incubation with ascites VLDL. When tracer amounts of radioactive triolein were incorporated into the ascites VLDL, the percentage uptakes of glyceryl tri[1-(14)C]oleate and triglycerides measured chemically were similar. The cells also took up [2-(3)H]glyceryl trioleate that was added to VLDL, but the percentage of available (3)H recovered in the cell lipids was 30-40% less than that of (1 4)C from glyceryl tri[1-(1 4)C]oleate. This difference was accounted for by water-soluble (3)H that accumulated in the incubation medium, suggesting that extensive hydrolysis accompanied the uptake of VLDL triglycerides. Radioactive fatty acids derived from the VLDL triglycerides were incorporated into cell phospholipids, glycerides, and free fatty acids, and they also were oxidized to CO(2). Triglyceride utilization increased as the VLDL concentration was raised. These results suggest that one function of the ascites plasma VLDL may be to supply fatty acid to the Ehrlich cells and that the availability of fatty acid to this tumor is determined in part by the ascites plasma VLDL concentration. Although Ehrlich cells incorporate almost no free glycerol into triglycerides, considerable amounts of [2-(3)H]glyceryl trioleate radioactivity were recovered in cell triglycerides. This indicates that at least some VLDL triglycerides were taken up intact. The net uptake of VLDL protein and cholesterol was very small relative to the triglyceride uptake, suggesting that intact triglycerides are transferred from the ascites VLDL to the Ehrlich cells and that hydrolysis occurs after the triglyceride is associated with the cells.  相似文献   

19.
During its prolonged period of gestation, the fetal guinea pig gradually develops a striking hyperlipemia (plasma triglycerides ca. 500-1500 mg/dl) and fatty liver (hepatic triglycerides ca. 25% of wet weight). The parenchymal cells of the liver contain not only many fat droplets in the cytoplasm, but also large numbers of osmiophilic particles, interpreted as precursors of plasma lipoproteins, within profiles of the cisternae and secretory vesicles of the Golgi apparatus. Similar particles are found in intercellular spaces, in the space of Disse, and in the hepatic sinusoids. Near the end of gestation, these particles enlarge to the size range characteristic of chylomicrons secreted from the intestinal mucosa after ingestion of fat. At the same time, the hyperlipemia increases and is characterized by the accumulation of particles resembling chylomicrons morphologically and chemically. The results are interpreted as evidence of intense hepatic synthesis and secretion of very low density lipoproteins which may be related to the extensive transplacental transport of free fatty acids known to occur in this species. After birth, the hyperlipemia subsides rapidly and the hepatic steatosis more gradually. The blood plasma of the guinea pig fetus also contains moderate amounts of low density and high density lipoproteins. The latter decrease to barely detectable levels during the first 2 wk of postnatal life. Comparably low levels of high density lipoproteins are found in nonpregnant and pregnant adults.  相似文献   

20.
Lipoprotein lipase (LPL) releases fatty acids from triglyceride-rich lipoproteins for use in cellular metabolic reactions. How this hydrolysis, which occurs at the vascular endothelium, is regulated is poorly understood. A fatty acid feedback system has been proposed by which accumulation of fatty acids impedes LPL-catalyzed hydrolysis and dissociates the enzyme from its endothelial binding sites. We examined this hypothesis in humans who were subjected to an oral fat tolerance test of a mixed-meal type. Plasma triglycerides, free fatty acids, and LPL activity were measured before and repeatedly during a 12-h period after intake of the fat load. Since soybean oil with a high content of linoleic fatty acid was the source of triglycerides, a distinction could be made between endogenous free fatty acids (FFA) and FFA derived directly from lipolysis of postprandial triglyceride-rich lipoproteins. Mean LPL activity was almost doubled (P less than 0.01) 6 h after intake of the oral fat load. The rise in LPL activity was accompanied by an increase of plasma triglycerides and linoleic free fatty acids (18:2 FFA), but not of total plasma FFA, which instead displayed a heterogeneous pattern with essentially unchanged mean levels. The postprandial response of LPL activity largely paralleled the postprandial responses of 18:2 FFA and triglycerides. The highest degree of parallelism was seen between postprandial 18:2 FFA and LPL activity levels. Furthermore, the integrated response (area under the curve, AUC) for plasma measurements of LPL correlated with the AUC for 18:2 FFA (r = 0.40, P less than 0.05), but not with the AUC for plasma triglycerides (r = 0.21, ns). The high degree of parallelism and significant correlation between postprandial plasma LPL activity and 18:2 FFA support the hypothesis of fatty acid control of endothelial LPL during physiological conditions in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号