首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Elsa Etilé  Emma Despland 《Oikos》2008,117(1):135-143
In insects, size and age at adult emergence depend on larval growth that occurs in discrete steps or instars. Understanding the mechanisms controlling stepwise larval growth and the onset of metamorphosis is essential to the study of insect life history. We examined the patterns of growth of forest tent caterpillars Malacosoma disstria to quantify variation in the number of instars that larvae undergo before pupation, to identify the mechanisms underlying variation in larval development, and to evaluate the life history consequences of this variation. All caterpillars were reared under the same conditions; at each molt, the date, the head capsule width and the mass of the freshly molted insect were recorded. Logistic regression analysis showed that a threshold size (measured either as mass or head capsule width) must be reached at the beginning of a stadium for pupation to occur at the next molt. This threshold size was higher for females than for males, and as a result, females attained a higher pupal mass than males. To achieve this larger size, females often required more instars than males, despite a higher growth ratio (size increase within an instar). Within each sex, slow growing individuals exhibited more larval instars and longer larval development time, but attained the same pupal mass as faster growing individuals. The combination of a threshold size for pupation, discrete growth steps and variation in the number of these steps can thus complicate relationships between growth rate, pupal mass and larval development time. In our study, growth ratio and number of instars were correlated with development time but not with pupal mass, and no relationship was observed between development time and pupal mass. These findings imply that, in species with variable instar number, one cannot extrapolate overall larval growth from growth during a single instar. Given the constraints of discrete larval growth, variation in instar number provides greater flexibility for insects to compensate for poor growing conditions. In this case, inferior larval growth conditions don't necessarily lead to smaller adult size.  相似文献   

3.
Larvae of the cockroach Diploptera punctata were reared in isolation, in pairs, or in groups of 8–10. Duration of larval development, age at each ecdysis, weights at birth and ecdyses, and adult head-capsule width were measured. Duration of larval development was longer and adult size was larger in isolated animals than in animals reared in pairs and groups. The effect of isolation on development was more pronounced in males. All females had 4 larval instars, whereas males had 3 or 4 instars. The proportion of males with 4 larval instars was higher among animals reared in isolation. There was no difference in the duration of larval development or adult size between pair- and group-reared animals. The sex of animals in the group did not affect adult size or the duration of larval development. Males which underwent 3 or 4 larval instars had different schedules of moulting. Rates of growth of males of both instar types reared in isolation and pairs were similar. Greater adult weight of isolated animals and 4-instar-type males was a result of their longer duration of larval development. Both a higher rate of growth and longer duration of larval development contribute to the larger adult size of females than males.  相似文献   

4.
Achieving high sexual size dimorphism in insects: females add instars   总被引:2,自引:0,他引:2  
Abstract.  1. In arthropods, the evolution of sexual size dimorphism (SSD) may be constrained by a physiological limit on growth within each particular larval instar. A high SSD could, however, be attained if the larvae of the larger sex pass through a higher number of larval instars.
2. Based on a survey of published case studies, the present review shows that sex-related difference in the number of instars is a widespread phenomenon among insects. In the great majority of species with a sexually dimorphic instar number, females develop through a higher number of instars than males.
3. Female-biased sexual dimorphism in final sizes in species with sexually dimorphic instar number was found to considerably exceed a previously estimated median value of SSD for insects in general. This suggests a causal connection between high female-biased SSD, and additional instars in females. Adding an extra instar to larval development allows an insect to increase its adult size at the expense of prolonged larval development.
4. As in the case of additional instars, SSD is fully formed late in ontogeny, larval growth schedules and imaginal sizes can be optimised independently. No conflict between selective pressures operating in juvenile and adult stages is therefore expected.
5. In most species considered, the number of instars also varied within the sexes. Phenotypic plasticity in instar number may thus be a precondition for a sexual difference in instar number to evolve.  相似文献   

5.
Directly developing larvae of the butterfly Lycaena hippothoe sumadiensis exhibited two growth strategies with one cohort passing four larval instars at high growth rates, and the other five instars at lower growth rates. The 4‐instar‐cohort displayed decreased development times, in combination with slightly reduced pupal and adult weights. In addition to adjustment of growth rate, omitting a larval instar may comprise a further mechanism to decrease development time when needed. Using the 4‐instar‐cohort, sex‐related differences in reaction norms were investigated over a temperature gradient. At high temperatures, protandrous males showed early emergence at a reduced size, whereas weight of females remained similar throughout. These differences suggest that large size is more important for female than for male fitness. The pattern is similar to that previously reported for alpine L. tityrus, indicating that sex‐specific reaction norms might be widespread in species living under severe time constraints.  相似文献   

6.
榆木蠹蛾幼虫龄数的确定   总被引:4,自引:0,他引:4  
为弄清榆木蠹蛾Holcocerus vicarius Walker幼虫的发育情况及预测其发生时间, 通过测量榆木蠹蛾幼虫的头壳宽、 体长、 体宽、 前胸背板宽、 上颚长和上颚宽, 运用Crosby生长法则和线性回归方法分析来找出判定幼虫龄数的最佳形态指标, 推断其幼虫的龄数。结果表明: 各龄幼虫头壳宽平均值的变异系数和Crosby指数最小, 其他5项指标的变异系数和Crosby指数较大, 头壳宽为最佳分龄指标。根据头壳宽将榆木蠹蛾幼虫分为20龄, 不同龄幼虫头壳宽值符合Dyar定律提出的幼虫头壳宽增长规律, 头壳宽和龄数的回归方程为y=0.233+1.686x+0.127x2-0.005x3 (R2=0.996)。榆木蠹蛾幼虫龄数的确定为研究其发生规律、 生物学习性及进行综合防治提供依据。  相似文献   

7.
双条杉天牛幼虫龄数的划分(鞘翅目:天牛科)   总被引:1,自引:0,他引:1       下载免费PDF全文
双条杉天牛 Semanotus bifasciatus Motschulsky 是危害我国侧柏 Platycladus orientalis 和圆柏 Sabina chinensis 的重要钻蛀性害虫,其幼虫龄数及最佳分龄指标的确定是进一步研究其生物学特性、发生规律的基础.本研究通过室内木段饲养法获取不同发育阶段的双条...  相似文献   

8.
Internode borer (INB), Chilo sacchariphagus indicus has been a serious threat to sugarcane cultivation for more than six decades. We have determined the number of instars for INB through frequency distribution analysis of cast head capsule widths. This is the first report, which proves that the INB of sugarcane passes through five larval instars to attain its pupal stage. The number of instars determined by kernel density estimation was in corroboration with the number of instars observed in the laboratory. The mean Dyar’s ratios for both the instar-wise observed data on head capsule widths and the theoretical data derived from the frequency distribution analysis were one and the same (1.46). Linear regression (R2 > 0.998) between the instar numbers and their corresponding mean head capsule widths reaffirmed that no instar has been overlooked. Further, the theoretical misclassification probabilities of 0.16–1.97% indicates that the chance of misidentifying an INB instar into its preceding or succeeding one is very remote. Since the determination of the exact number of instars in a pest species is a pre-requisite for developing appropriate management strategies, the outcome of this study holds great promise in managing the most notorious Crambid borer of sugarcane.  相似文献   

9.
The number of larval instars of Simulium (Hemicnetha) rubrithorax Lutz (Diptera: Nematocera) was determined using the lateral length of the head capsule. In this study 1,035 larvae, of different sizes, were measured (639 from the state of Roraima and 396 from the state of Minas Gerais). A frequency distribution analysis was carried out on the measurements of the lateral length of the head capsule to determine the number of larval instars. The limits of each instar were defined by the lower frequency of the measurements falling in a range of values, by the presence of the "egg burster" that characterizes the first larval instar, and by the developmental stage of the gill histoblast. The determination of the instar number was tested using a Student's t-test (p < 0.05), the Dyar rule and the Crosby growth rule. The results indicate the existence of 7 larval instars for this species, although this result was not in accordance to the Crosby rule. Last-instar larvae from two widely separated geographical populations (Roraima and Minas Gerais), collected in habitats with different water temperature were compared and no differences (p > 0.05) were observed between them.  相似文献   

10.
The potato tuber moth (PTM), Phthorimaea operculella (Zeller), is an important pest of Solanaceae crops and especially devastating to potatoes. There is no significant difference in morphological characteristics of PTM from the first to third instar larvae; therefore, it is difficult to directly determine the number of instars of this pest based on morphology. In the present study, head capsule width and length and mandible width of 340 PTM individuals were measured. Density‐based spatial clustering of applications with noise (DBSCAN) clustering was used for instar grouping. The results of DBSCAN clustering were compared with those obtained using Gaussian mixture models and k‐means clustering; the results of the three clustering methods were verified using Brooks–Dyar rule, Crosby rule and linear regression model. The clusters obtained using the three methods were the same and comprised four PTM instars with three morphological characteristics. Moreover, the results of the three methods fit the Brooks–Dyar rule, Crosby rule, frequency analysis and logarithmic regression model well. Head capsule width was the best morphological characteristic for determining the number of instars of PTM, and this characteristic may be used for determining PTM instars in the field. These results show that the DBSCAN clustering method is a promising tool for the identification of insect instars.  相似文献   

11.
绿豆象幼虫虫龄的划分及末龄幼虫头部形态和感器观察   总被引:1,自引:0,他引:1  
【目的】明确绿豆象Callosobruchus chinensis幼虫的龄期,了解其末龄幼虫头部感受器的种类、形态和分布。【方法】测量绿豆象幼虫体长、头壳宽和上颚宽,根据所得数据的频次分布图、关系拟合结果和戴氏法则确定绿豆象最佳分龄指标,明确幼虫虫龄数,并利用Crosby生长法则和线性回归的方法进行验证;采用扫描电镜对末龄幼虫头部形态及感受器进行观察。【结果】绿豆象体长、头壳宽和上颚宽的频次分布均呈显著的4个峰,因此推断绿豆象幼虫为4个虫龄。各龄的体长变幅分别为1.581~2.556, 2.406~3.381, 3.381~4.281和4.206~4.881 mm,头壳宽度变幅分别为0.444~0.689, 0.654~0.934, 0.934~1.179和1.144~1.389 mm,上颚宽变幅分别为0.080~0.256, 0.234~0.344, 0.322~0.542和0.542~0.652 mm。体长、头壳宽和上颚宽均符合戴氏法则和Crosby生长法则,并呈现明显的线性关系,因此体长、头壳宽和上颚宽可作为绿豆象幼虫龄期划分的重要指标。头壳宽的Crosby指数均小于体长和上颚宽的Crosby指数,且头壳宽与体长测量值的对数值与幼虫龄期的相关系数要优于上颚宽测量值的对数值与幼虫龄期的相关系数,因此可将头壳宽作为最佳分龄指标。绿豆象末龄幼虫头部感器共有锥形感器、毛形感器、瓶形感器、刺形感器、板形感器、栓锥形感器和坛形感器7种感器,主要分布于触角、下颚须、上唇和上颚。【结论】绿豆象幼虫分龄形态指标和头部形态观察为研究其行为活动及综合防治提供理论基础。  相似文献   

12.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Therefore, it is important to establish if the functional response and interference interactions differ between life‐stages. These hypotheses were tested by (i) comparing the functional response of second, third, fourth and fifth larval instars of Rhyacophila dorsalis, using three stream tanks with one Rhyacophila larva per tank and one of 10 prey densities between 20 and 200 larvae of Chironomus sp.; (ii) using other experiments to assess interference within instars (two to five larvae of the same instar per tank), and between pairs of different instars (one, two or three larvae per instar; total predator densities of two, four or six larvae per tank). 2. The first hypothesis was supported. The number of prey eaten by each instar increased with prey density, the relationship being described by a type II model. The curvilinear response was stronger for fourth and fifth instars than for second and third instars. Mean handling time did not change significantly with prey density, and increased with decreasing instar number from 169 s for fifth instars to 200 s for second instars. Attack rate decreased progressively with decreasing instar number. Handling time varied considerably for each predator–prey encounter, but was normally distributed for each predator instar. Variations in attack rate and handling time were related to differences in activity between instars, fourth and fifth instars being more active and aggressive than second and third instars, and having a higher food intake. 3. The second hypothesis was partially supported. In the interference experiments between larvae of the same instar or different instars, mean handling time did not change significantly with increasing predator density, and attack rate did not change for second and third instars but decreased curvilinearly for fourth and fifth instars. Interference between some instars could not be studied because insufficient second instars were available at the same time as fourth and fifth instars, and most third instars were eaten by fourth and fifth instars in the experiments. Prey capture always decreased with decreasing attack rate. Therefore, interference reduced prey consumption in fourth and fifth instars, but not in second and third instars. The varying feeding responses of different instars should be taken into account when assessing their role in predator–prey relationships in the field.  相似文献   

13.
The polyphagous shot hole borer (PSHB), Euwallacea sp., was first detected in 2003 in Los Angeles County, California, USA. Recently, this invasive species has become a major pest of many hardwood trees in urban and wildland forests throughout southern California. PSHB is nearly identical in morphology and life history to the tea shot hole borer (TSHB), Euwallacea fornicatus, an invasive pest of hardwoods in Florida, USA and many other parts of the world. However, molecular studies have suggested that the taxa are different species. We conducted morphometric and chemical analyses of the phenotypes of Euwallacea sp. collected in southern California (Los Angeles County) and E. fornicatus collected in Florida (Miami‐Dade County). Our analyses indicated that PSHB has 3 larval instars. The third larval instar was separated from the first 2 instars by head capsule width with 0 probability of misclassification. The body length, head width, and pronotal width of PSHB adult males were significantly less than those of females. Head width and pronotal width of female PSHB were significantly less than those of female TSHB. In contrast, body length, and ratio of body length to pronotal width of female PSHB were significantly greater than those of female TSHB. However, females of these 2 species could not be separated completely by these 4 measurements because of the overlapping ranges. Cuticular hydrocarbons detected in both species were exclusively alkanes (i.e., n‐alkanes, monomethylalkanes, dimethylalkanes, and trimethylalkanes). Cuticular hydrocarbon profiles of PSHB males and females were similar, but they both differed from that of TSHB females. Cuticular hydrocarbons of PSHB were predominantly internally branched dimethylalkanes with backbones of 31 and 33 carbons, whereas cuticular hydrocarbons of TSHB females were dominated by internally branched monomethylalkanes and dimethylalkanes with backbones of 28 and 29 carbons. Multiple compounds within these classes appear to be diagnostic for PSHB and TSHB, respectively.  相似文献   

14.
In the present paper, the larval development of the queenless ponerine ant Diacamma ceylonense is studied. Four instars were identified on the basis of cuticular processes – tubercles and spinules – which show discontinuous variation during growth and provide precise and reliable external morphological criteria for instar discrimination. In the first three instars, the larva possesses a striking proboscis, which disappears between the third and fourth instars. Larval weight increased around 50‐fold in the 21 days of larval life between eclosion and pupation (mean weight for first instar = 0.37 mg; for fourth instar = 20 mg). In addition, the morphology of the gemmae, structures resembling vestigial wings in workers, is described in nymphae.  相似文献   

15.
The hemlock looper [Lambdina fiscellaria (Guenée)], a widespread and highly polyphagous Geometridae, is considered one of the most economically important defoliators of North American coniferous forests. Variations in the number of larval instars between geographic populations of this species have been previously reported in the literature. However, whether such developmental polymorphism occurs within a given population is unknown. In this study, we report the presence of both four and five larval instar individuals within a population of hemlock looper in Newfoundland when reared on balsam fir. For both sexes, the majority of individuals reared on balsam fir shoots went through four larval instars, but more than one third of the females (35.3%) went through five larval instars. Females with four larval instars developed faster and had smaller pupal weight than females with five larval instars. However, a growth-related index (weight gain per unit of time) was similar for the two ecotypes (four or five larval instars). No significant difference was observed between the two ecotypes in terms of reproductive capacity (fecundity and egg size). We also found significant differences in life history traits between males and females. Results indicate that developmental polymorphism, in this case, the variation in the number of larval instars, might provide some adaptive attributes that allowed exploitation of a broader ecological niche.  相似文献   

16.
Larvae of the moth Samea multiplicalis (Lepidoptera: Pyralidae), developed more rapidly when their food plant, Salvinia molesta was richer in nitrogen. Larvae that fed on plants with less than 1.35% nitrogen during their first instar completed the larval stage in 18.0–24.2 days, after passing through six instars. In contrast, larvae that had fed on food richer in nitrogen during their first instar completed the larval stage in 14.1–17.4 days, and passed through five instars. Experience of nitrogen in later instars had little additional effect on total larval development time. Oöcyte complements of 1-day old adult females was correlated with the mean food nitrogen content over the larval period. Food nitrogen content experienced by larvae in earlier instars was as important as that in the final instars, in determining number of mature oöcytes, which suggests early conditioning of the nitrogen use effciencies of later instars.  相似文献   

17.
The larval head widths at each instar, life cycles, and food habits of late instars were determined for five species of Rhyacophila from two Appalachian mountain streams in South Carolina, U.S.A. Rhyacophila acutiloba Morse & Ross was univoltine with two cohorts, one emerging in the spring and another presumably emerging in early autumn. Rhyacophila fuscula (Walker), R. nigrita Banks, and R. carolina Banks were apparently multicohort, univoltine species with extended flight periods. Rhyacophila minor Banks was univoltine with a spring emergence. All species were predaceous and consumed mainly Plecoptera nymphs and Trichoptera larvae.  相似文献   

18.
With the aim of developing better procedures for rearing the microtype tachinid fly Pales pavida (Meigen), we performed ecological studies in the laboratory using the natural host Mythimna separata (Walker), investigating larval development, mating behaviour, individual oviposition patterns and relationships between parasitisation and number of eggs ingested (NEI) per host. The host instar at the time of parasitoid egg ingestion significantly affected the development time of the immature parasitoid: development took longer when the hosts ingested eggs when at the fifth instar than at the sixth (last) instar. There was no difficulty obtaining mated females in the laboratory when day 0–1 female flies were kept with day 2–4 males. Mean lifetime fecundity was 5805?±?568 eggs per female. Daily rates of oviposition by individual females varied widely; the greatest number of eggs laid in a day was exactly 1700. When the NEI by day 1 fifth instars or day 0 or 3 last instars was 1, 3, 6 or 10, the parasitisation percentage tended to increase with increasing NEI, although it did not differ significantly between NEI 6 and 10. Therefore, the percentage adult emergence per egg ingested decreased from NEI 6 to 10, particularly in the case of last instars. Using day 0 last instars, with six eggs ingested per host, should increase parasitisation rates and shorten the development time of the parasitoid for rearing.  相似文献   

19.
The oviposition deterrent effect of water extract of Spodoptera littoralis and Agrotis ipsilon larval frass on Phthorimaea operculella adult females was studied using two types of larval food “Natural host and Semi-artificial diet” under laboratory and storage simulation (semi-field) conditions. Extracted frass of fed larvae on semi-artificial diet showed complete oviposition deterrent effect at treatments with 4th, 5th and 6th instars of S. littoralis, also at treatments with 1st–3rd and 6th instars of A. ipsilon, while the same effect was observed when the larvae fed on castor oil leaves as a natural host only at treatment with frass extract of A. ipsilon 6th instar larvae. Presence of low amounts of phenols and flavonoids in water extract of A. ipsilon larval frass resulted in relatively more effect as oviposition deterrent to fertile adult females on treated oviposition sites, while the opposite effect was obtained in S. littoralis larval frass experiments. At semi-field experiments, the percentage reduction of laid eggs reached 100% after two?days at treatments with frass extracts of 4th and 5th S. littoralis larval instars and A. ipsilon 6th instar larvae fed on semi-artificial diet and/or castor oil leaves. Percentage reduction of laid eggs for untreated sacks reached 93.24 and 48.95% after 2 and 30?days, respectively, when placed between treated sacks, in comparison with the mean number of laid eggs for isolated control.  相似文献   

20.
W. Wipking 《Oecologia》1988,77(4):557-564
Summary Zygaena trifolii is a long-day insect with temperature-dependent photoperiodic responses. All larval instars are sensitive to photoperiod; however, diapause may occur at the third larval stage or any subsequent larval instars. There were quantitative differences within populations in the threshold photoperiod for diapause induction. The diapause response was polymorphic, so that larvae might enter diapause at different instars under the same culture conditions. Furthermore, decreasing photoperiods below a critical daylength shifted the diapausing instar towards earlier stages. Geographic strains of Z. trifolii showed discontinuous clinal variation. Near the northern edge of the distribution [Cologne (Köln), FRG], there is first an obligatory diapause, mainly during early instars, and additional facultative (repeat) diapauses during later larval instars in subsequent years. In the southern part of its distribution, this burnet moth is partially bivoltine in the field with a facultative first developmental arrest and a decreased capacity for repeated diapause (Valencia, Spain; Marseille, France). Further experiments indicated that the photoperiodically controlled diapause reaction is also influenced by the number of photoperiodic cycles experienced during the period spent in each larval instar, which depends on temperature. The adaptive significance of obligatory and facultative repeated diapause, varying even among the offspring of a single female, may be to buffer the populations against the more extreme and, from year to year, unpredictable fluctuations in climatic conditions at the northern edge of the distribution.Abbreviations L3 feeding 3rd larval instar - L4D diapausing 4th larval instar - L5D2 repeat-diapausing larval instar with second diapause at the 5th larval stage - LD light-dark cycle - KT shortday conditions (e.g. LD 8:16) - LT long-day conditions (e.g. LD 16:8)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号