首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast MTO1 gene encodes an evolutionarily conserved protein for the biosynthesis of the 5-carboxymethylaminomethyl group of cmnm5s2U in the wobble position of mitochondrial tRNA. However, mto1 null mutant expressed the respiratory deficient phenotype only when coupled with the C1409G mutation of mitochondrial 15S rRNA. To further understand the role of MTO1 in mitochondrial RNA metabolism, the yeast mto1 null mutants carrying either wild-type (PS) or 15S rRNA C1409G allele (PR) have been characterized by examining the steady-state levels, aminoacylation capacity of mitochondrial tRNA, mitochondrial gene expression and petite formation. The steady-state levels of tRNALys, tRNAGlu, tRNAGln, tRNALeu, tRNAGly, tRNAArg and tRNAPhe were decreased significantly while those of tRNAMet and tRNAHis were not affected in the mto1 strains carrying the PS allele. Strikingly, the combination of the mto1 and C1409G mutations gave rise to the synthetic phenotype for some of the tRNAs, especially in tRNALys, tRNAMet and tRNAPhe. Furthermore, the mto1 strains exhibited a marked reduction in the aminoacylation levels of mitochondrial tRNALys, tRNALeu, tRNAArg but almost no effect in those of tRNAHis. In addition, the steady-state levels of mitochondrial COX1, COX2, COX3, ATP6 and ATP9 mRNA were markedly decreased in mto1 strains. These data strongly indicate that unmodified tRNA caused by the deletion of MTO1 gene caused the instability of mitochondrial tRNAs and mRNAs and an impairment of aminoacylation of mitochondrial tRNAs. Consequently, the deletion of MTO1 gene acts in synergy with the 15S rRNA C1409G mutation, leading to the loss of COX1 synthesis and subsequent respiratory deficient phenotype.  相似文献   

2.
A restriction map of the T4 transfer RNA gene cluster   总被引:4,自引:0,他引:4  
  相似文献   

3.
In Xenopus laevis, genes encoding tRNAPhe, tRNATyr, tRNA 1 Met , tRNAAsn, tRNAAla, tRNALeu, and tRNALys are clustered within a 3.18-kb (kilobase) fragment of DNA. This fragment is tandemly repeated some 150 times in the haploid genome and its components are found outside the repeat only to a limited extent. The fragment hybridizes in situ to a single site very near the telomere on the long arm of one of the acrocentric chromosomes of the group comprising chromosomes 13–18. All the chromosomes of this group also hybridize with DNA coding for oocyte-specific 5S RNA. The tRNA gene cluster is slightly proximal to the cluster of 5S RNA genes.We respectfully dedicate this paper to Prof. H. Bauer on the occasion of his 80th birthday.  相似文献   

4.
Summary Eight transfer RNA (tRNA) genes which were previously mapped to five regions of the Pisum sativum (pea) chloroplast DNA (ctDNA) have been sequenced. They have been identified as tRNAVal(GAC), tRNAAsn(GUU), tRNAArg(ACG), tRNALeu(CAA), tRNATyr(GUA), tRNAGlu(UUC), tRNAHis(GUG), and tRNAArg(UCU) by their anticodons and by their similarity to other previously identified tRNA genes from the chloroplast DNAs of higher plants or from E. gracilis. In addition,two other tRNA genes, tRNAGly (UCC) and tRNAIle(GAU), have been partially sequenced. The tRNA genes are compared to other known chloroplast tRNA genes from higher plants and are found to be 90–100% homologous. In addition there are similarities in the overall arrangement of the individual genes between different plants. The 5 flanking regions and the internal sequences of tRNA genes have been studied for conserved regions and consensus sequences. Two unusual features have been found: there is an apparent intron in the D-loop of the tRNAGly(UCC), and the tRNAGlu(UUC) contains GATTC in its T-loop.  相似文献   

5.
Analysis of a drosophila tRNA gene cluster   总被引:23,自引:0,他引:23  
  相似文献   

6.
We have earlier characterized Saccharomyces cerevisiae strains with mutations of essential SUP45 and SUP35, which code for translation termination factors eRF1 and eRF3, respectively. In this work, the sup45 and sup35 nonsense mutants were compared with respect to the levels of eight tRNAs: tRNATyr, tRNAGln, tRNATrp, tRNALeu, tRNAArg (described as potential suppressor tRNAs), tRNAPro, tRNAHis, and tRNAGly. The mutants did not display a selective increase in tRNAs, capable of a noncanonical read-through at stop codons. Most of the mutations increased the level of all tRNAs under study. The mechanisms providing for the viability of the sup45 and sup35 nonsense mutants are discussed.  相似文献   

7.
The complete amino acid sequence of human A-I has been determined by manual and automated Edman degradation of intact and peptide fragments of A-I. A-I is a single chain protein of 243 residues with the following amino acid composition: Asp16, Asn5, Thr10, Ser15, Glu27, Gln19, Pro10, Gly10, Ala19, Val13, Met3, Leu37, Tyr7, Phe6, Trp4, Lys21, His5, and Arg16. The amino acid sequence contains no linear segments of hydrophobic or hydrophilic residues. A detailed correlation of the amino acid sequence, conformation, and self association of A-I will add further insight into the molecular mechanisms involved in protein-protein and protein-lipid interactions.  相似文献   

8.
Yeast Saccharomyces cerevisiae MTO2, MTO1, and MSS1 genes encoded highly conserved tRNA modifying enzymes for the biosynthesis of carboxymethylaminomethyl (cmnm)5s2U34 in mitochondrial tRNALys, tRNAGlu, and tRNAGln. In fact, Mto1p and Mss1p are involved in the biosynthesis of the cmnm5 group (cmnm5U34), while Mto2p is responsible for the 2-thiouridylation (s2U34) of these tRNAs. Previous studies showed that partial modifications at U34 in mitochondrial tRNA enabled mto1, mto2, and mss1 strains to respire. In this report, we investigated the functional interaction between MTO2, MTO1, and MSS1 genes by using the mto2, mto1, and mss1 single, double, and triple mutants. Strikingly, the deletion of MTO2 was synthetically lethal with a mutation of MSS1 or deletion of MTO1 on medium containing glycerol but not on medium containing glucose. Interestingly, there were no detectable levels of nine tRNAs including tRNALys, tRNAGlu, and tRNAGln in mto2/mss1, mto2/mto1, and mto2/mto1/mss1 strains. Furthermore, mto2/mss1, mto2/mto1, and mto2/mto1/mss1 mutants exhibited extremely low levels of COX1 and CYTB mRNA and 15S and 21S rRNA as well as the complete loss of mitochondrial protein synthesis. The synthetic enhancement combinations likely resulted from the completely abolished modification at U34 of tRNALys, tRNAGlu, and tRNAGln, caused by the combination of eliminating the 2-thiouridylation by the mto2 mutation with the absence of the cmnm5U34 by the mto1 or mss1 mutation. The complete loss of modifications at U34 of tRNAs altered mitochondrial RNA metabolisms, causing a degradation of mitochondrial tRNA, mRNA, and rRNAs. As a result, failures in mitochondrial RNA metabolisms were responsible for the complete loss of mitochondrial translation. Consequently, defects in mitochondrial protein synthesis caused the instability of their mitochondrial genomes, thus producing the respiratory-deficient phenotypes. Therefore, our findings demonstrated a critical role of modifications at U34 of tRNALys, tRNAGlu, and tRNAGln in maintenance of mitochondrial genome, mitochondrial RNA stability, translation, and respiratory function.  相似文献   

9.
The specificity of thermitase (EC 3.4.21.14), a microbial thermostable serine proteinase fromThermoactinomyces vulgaris, with several oligo- and polypeptide substrates was investigated. Preferred hydrolysis of peptide bonds with a hydrophobic amino acid at the carboxylic site was observed. The proved carboxypeptidolytic splitting of Leu5-enkephalin and bradykinin, as well as the noncleavability of casomorphins by thermitase, can be explained by the position of the glycine and proline residues in these substrates. Major cleavage sites in the oxidized insulin B chain in a 15-min incubation with thermitase at Gln4-His5, Ser9-His10, Leu11-Val12, Leu15-Tyr16 and in the oxidized insulin A chain at Cys SO3H11-Ser12, Leu13-Tyr14, and Leu16-Glu17 were observed. Additional cleavages of the bonds His5-Leu6, Arg22-Gly23, Phe24-Phe25, Phe25-Tyr26, and Tyr26-Thr27 in the oxidized B chain and Cys SO3H6-Cys SO3H7 and Tyr19-Cys SO3H20 in the oxidized A chain in 2-h incubations with thermitase were also noted. Hydrolysis of salmine A I component in a 10-min incubation was observed mainly at four peptide bonds: Arg5-Ser6, Ser6-Ser7, Arg18-Val19, and Gly27-Gly28. The cleavage sites of thermitase in both insulin chains were similar to those reported in the studies of subtilisins.  相似文献   

10.
Total mammalian tRNAs contain on the average less than one mole of ribothymidine per mole of tRNA. Mammalian tRNAs can be grouped into at least four classes, depending upon their ribothymidine content at position 23 from the 3′ terminus. Class A contains tRNA in which a nucleoside other than uridine replaces ribothymidine (tRNAiMet); Class B contains tRNA in which one mole of a modified uridine (rT, ψ, or 2′-O-methylribothymidine) is found per mole of tRNA (tRNASer, tRNATrp, and tRNALys, respectively). Class C contains tRNA in which there is a partial conversion of uridine to ribothymidine (tRNAPhe, tRNA1Gly, tRNA2Gly); Class D contains tRNA which totally lacks ribothymidine (tRNAVal). Only those tRNAs in Class C are acceptable substrates for E.coli uridine methylase, under the conditions used in these studies. These observations cannot be adequately explained solely on the basis of the presence or absence of a specific “universal” nucleoside other than U or rT at position 23 from the 3′ terminus. However, correlations can be made between the ribothymidine and 5-methylcytosine content of eucaryotic tRNA. We postulate that the presence of one or more 5-methylcytosines in and adjacent to loop III (minor loop) in individual tRNAs act to regulate the amount of ribothymidine formed by uridine methylase. Several experiments are proposed as tests for this hypothesis.  相似文献   

11.
We have previously reported that four tRNAs of Drosophila melanogaster randomly labeled with iodine-125 hybridize in part to the 56EF region of polytene chromosomes where 5S RNA genes occur. In the presence of a 100-fold excess of unlabeled 5S RNA no hybridization of randomly labeled 125I-tRNAAsp 2 occurred at 56EF although hybridization elsewhere was not affected. In addition, tRNAAsp 2 labeled by introducing 125I-5-iodocytidylyl residues into the 3-CCA end with tRNA nucleotidyl transferase did not hybridize to 56EF but did hybridize to its other sites. The hybridization of tRNALys 2, tRNAGly 3 and tRNAMet 3 at 56EF was not eliminated by a 25 to 100-fold excess of unlabeled 5S RNA. When these tRNAs were labeled at the -CCA terminus they hybridized to 56EF as well as to their other sites with the exception that terminally labeled tRNALys 2 no longer hybridized to 62A. The hybridization of the latter three species of tRNA to the region of the 5S genes, amongst other sites, is confirmed. The previously observed hybridization of tRNAAsp 2 in this region appears to have been due to contamination of the tRNA sample with traces of material derived from 5S RNA.  相似文献   

12.
Highly purified tRNAs from Drosophila melanogaster were iodinated with 125I and hybridized to squashes of polytene chromosomes of Drosophila salivary glands followed by autoradiography to localize binding sites. Most tRNAs hybridize strongly to more than one site and weakly to one or more additional sites. The major sites for various tRNAs are the following: tRNA 2 Arg , 42A, 84F1,2; tRNA 2 Asp , 29DE; tRNA 3 Gly , 22BC, 35BC, 57BC; tRNA 2 Lys , 42A, 42E; tRNA 5 Lys , 84AB, 87B; tRNA 2 Met , 48B5–7, 72F1–2, 83F-84A; tRNA 3 Met , 46A1–2, 61D1–2, 70F1–2; tRNA 4 Ser , 12DE, 23E; tRNA 7 Ser , 12DE, 23E; tRNA 3a Val , 64D; tRNA 3b Val , 84D3–4, 92B1–9; tRNA 4 Val , 56D3–7, 70BC.  相似文献   

13.
14.
Significant amounts of three tRNAs are associated with the 70 S RNA of avian myeloblastosis virus (AMV). The temperatures at which they are half dissociated from the 70 S RNA in 50 mM NaCl and their respective quantities relative to 35 S RNA are: tRNAArg, 51°C, 1.6; tRNALys, 57°C, 0.7 and tRNATrp, 76°C, 1.0. Possible functions for the non-primer tRNAs (tRNAArg and tRNALys) were evaluated by determining the effect of their thermal dissociation on: (a) conversion of 70 S to 35 S RNA, (b) capacity of 70 S and/or 35 S RNA to be translated in vitro, and (c) capacity of 70 S and/or 35 S RNA to be reverse transcribed in vitro. Conversion of 70 S to 35 S RNA occurred with a tm of 56°C and is consistent with the hypothesis that tRNALys might be involved in joining two 35 S RNA subunits to form the 70 S RNA complex. There was no indication that the association of either tRNAArg or tRNALys influenced the rate or quality of translation of 70 S or 35 S RNA. A decrease in the rate at which 70 S RNA is transcribed occurs in parallel with the dissociation of tRNAArg and tRNALys.  相似文献   

15.
Strains of Escherichia coli have been produced which express very high levels of the tRNAleu1 isoacceptor. This was accomplished by transforming cells with plasmids containing the leuV operon which encodes three copies of the tRNALeu1 gene. Most transformants grew very slowly and exhibited a 15-fold increase in cellular concentrations of tRNALeu1 As a result, total cellular tRNA concentration was approximately doubled and 56% of the total was tRNALeu1. We examined a number of parameters which might be expected to be affected by imbalances in tRNA concentration: in vivo tRNA charging levels, misreading, ribosome step time, and tRNA modification. Surprisingly, no increase in intracellular ppGpp levels was detected even though only about 40% of total leucyl tRNA was found to be charged in vivo. Gross ribosomal misreading was not detected, and it was shown that ribosomal step times were reduced between two- and threefold. Analyses of leucyl tRNA isolated from these slow-growing strains showed that at least 90% of the detectable tRNALeu1 was hypomodified as judged by altered mobility on RPC-5 reverse-phase columns, and by specific modification assays using tRNA(m1G)-methyltransferase and pseudo-uridylate synthetase. Analysis of fast-growing revertants demonstrated that tRNA concentration per se may not explain growth inhibition because selected revertants which grew at wild-type growth rates displayed levels of tRNA comparable to that of control strains bearing the leuV operon. A synthetic tRNALeu1 operon under the control of the T7 promoter was prepared which, when induced, produced six- to sevenfold increases in tRNALeu1 levels. This level of tRNALeu1 titrated the modification system as judged by RPC-5 column chromatography. Overall, our results suggest that hypomodified tRNA may explain, in part, the observed effects on growth, and that the protein-synthesizing system can tolerate an enormous increase in the concentration of a single tRNA.  相似文献   

16.
In Saccharomyces cerevisiae, the SUP70 gene encodes the CAG‐decoding tRNAGlnCUG. A mutant allele, sup70‐65, induces pseudohyphal growth on rich medium, an inappropriate nitrogen starvation response. This mutant tRNA is also a UAG nonsense suppressor via first base wobble. To investigate the basis of the pseudohyphal phenotype, 10 novel sup70 UAG suppressor alleles were identified, defining positions in the tRNAGlnCUG anticodon stem that restrict first base wobble. However, none conferred pseudohyphal growth, showing altered CUG anticodon presentation cannot itself induce pseudohyphal growth. Northern blot analysis revealed the sup70‐65 tRNAGlnCUG is unstable, inefficiently charged, and 80% reduced in its effective concentration. A stochastic model simulation of translation predicted compromised expression of CAG‐rich ORFs in the tRNAGlnCUG‐depleted sup70‐65 mutant. This prediction was validated by demonstrating that luciferase expression in the mutant was 60% reduced by introducing multiple tandem CAG (but not CAA) codons into this ORF. In addition, the sup70‐65 pseudohyphal phenotype was partly complemented by overexpressing CAA‐decoding tRNAGlnUUG, an inefficient wobble‐decoder of CAG. We thus show that introducing codons decoded by a rare tRNA near the 5′ end of an ORF can reduce eukaryote translational expression, and that the mutant tRNACUGGln constitutive pseudohyphal differentiation phenotype correlates strongly with reduced CAG decoding efficiency.  相似文献   

17.
Chemically synthesized genes encodingEscherichia coli tRNA 1 Leu and tRNA 2 Leu were ligated into the plasmid pTrc99B. then transformed intoEscherichia coli MT102, respectively. The positive transformants, named MT-Leu1 and MT-Leu2, were confirmed by DNA sequencing, and the conditions of cultivation for the two transformants were optimized. As a result, leucinc accepting activity of their total tRNA reached 810 and 560 pmol/A260, respectively: the content of tRNA 1 Leu was 50% of total tRNA from MT-Leu1, while that of tRNA 2 Leu was 30% of total tRNA from MT-Leu2. Both tRNALeus from their rotal tRNs were fractionated to 1 600 pmol/A260 after DEAE-Sepharose and BD-cellulose column chromatography. The accurate kinetic constants of aminoacylation of the two isoacceptors of tRNALeu catalyzed by leucyl-tRNA synthetase were determined. Project supported by the National Natural Science Foundation of China (Grant No. 39570164).  相似文献   

18.
Normal and Mutant Glycine Transfer RNAs   总被引:21,自引:0,他引:21  
THE glycine-specific tRNAs of E. coli can be grouped into three subspecies which are separated by chromatography on benzoylated DEAE cellulose (BDC): tRNAGly1 (GGG), tRNAGly2 (GGA/G) and tRNAGly3 (GGU/C)1,2. The tRNAGly1 and tRNAGly2 are specified by the genes, glyU and glyT, respectively, which have been located at 55 and 77 minutes on the E. coli chromosome. Suppressors of tryptophan A gene (trpA) missense mutations and partial diploid strains have been used extensively to characterize the glycine tRNA structural genes (Table 1)1–3. A common property of these suppressor mutations is that the altered tRNAGly is no longer aminoacylated at the normal rate by the glycyl tRNA synthetase (GRS). When ordinary loading conditions are used virtually none of the suppressor tRNA species are amino-acylated. These studies have shown that single gene copies are normally present at the glyT and glyU loci.  相似文献   

19.
The number of gene copies for tRNA2Gln in λpsu+2 was determined by genetic and biochemical studies. The transducing phage stimulates the production of the su+2 (amber suppressor) and su°2 glutamine tRNAs and methionine tRNAm. When the su+2 amber suppressor was converted to an ochre suppressor by single-base mutation, the phage stimulated ochre-suppressing tRNA2Gln, instead of the amber-suppressing tRNA2Gln. From the transducing phage carrying the ochre-suppressing allele, strains carrying both ochre and amber suppressors were readily obtainable. These phages stimulated both ochre-suppressing and amber-suppressing tRNA2Gln, but not the non-suppressing form. We conclude that the original transducing phage carries two tRNA2Gln genes, one su+2 and one su°2. The transducing phage carrying two suppressors, ochre and amber, segregates one-gene derivatives that encode only one or the other type of suppressor tRNA. These derivatives apparently arise by unequal recombination involving the two glutamine tRNA genes in the parental phage. This segregation is not accompanied by the loss of the tRNAmMet gene. Based on these results, it is suggested that Escherichia coli normally carries in tandem two identical genes specifying tRNA2Gln at 15 minutes on the bacterial chromosome. su+2 mutants may arise by single-base mutations in the anticodon region of either of these two, leaving the other intact. By double mutations, tRNA2Gln genes could also become ochre suppressors. A tRNAmMet gene is located near, but not between, these two tRNA2Gln genes.  相似文献   

20.
Recognition of tRNA by the cognate aminoacyl-tRNA synthetase during translation is crucial to ensure the correct expression of the genetic code. To understand tRNALeu recognition sets and their evolution, the recognition of tRNALeu by the leucyl-tRNA synthetase (LeuRS) from the primitive hyperthermophilic bacterium Aquifex aeolicus was studied by RNA probing and mutagenesis. The results show that the base A73; the core structure of tRNA formed by the tertiary interactions U8–A14, G18–U55 and G19–C56; and the orientation of the variable arm are critical elements for tRNALeu aminoacylation. Although dispensable for aminoacylation, the anticodon arm carries discrete editing determinants that are required for stabilizing the conformation of the post-transfer editing state and for promoting translocation of the tRNA acceptor arm from the synthetic to the editing site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号