首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of serum luteinizing hormone (LH) to naloxone, an opiate antagonist, and gonadotropin-releasing hormone (GnRH) was measured in cows in late pregnancy to assess opioid inhibition of LH. Blood samples were collected at 15-min intervals for 7 h. In a Latin Square arrangement, each cow (n = 6) received naloxone (0, 0.5, and 1.0 mg/kg BW, i.v.; 2 cows each) at Hour 2 on 3 consecutive days (9 +/- 2 days prepartum). GnRH (7 ng/kg body weight, i.v.) was administered at Hour 5 to all cows on each day. Mean serum LH concentrations (x +/- SE) before naloxone injection were similar (0.4 +/- 0.1 ng/ml), with no serum LH pulses observed during the experiment. Mean serum LH concentrations post-naloxone were similar (0.4 +/- 0.1 ng/ml) to concentrations pre-naloxone. Mean serum LH concentrations increased (p less than 0.05) following GnRH administration (7 ng/kg) and did not differ among cows receiving different dosages of naloxone (0 mg/kg, 1.44 +/- 0.20; 0.5 mg/kg, 1.0 +/- 0.1; 1.0 mg/kg, 0.9 +/- 0.1 ng/ml). In Experiment 2, LH response to naloxone and GnRH was measured in 12 ovariectomized cows on Day 19 of estrogen and progesterone treatment (5 micrograms/kg BW estrogen: 0.2 mg/kg BW progesterone) and on Days 7 and 14 after steroid treatment. On Day 19, naloxone failed to increase serum LH concentrations (Pre: 0.4 +/- 0.1; Post: 0.4 +/- 0.1 ng/ml) after 0, 0.5, or 1.0 mg/kg BW.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Suckling, a common practice in smallholder dairy-farming systems in the developing world, delays the onset of post-partum ovarian activity in dairy buffalo. The present study was designed to assess the effect of suckling on pituitary function in lactating buffaloes 25-35 days post-partum. Six suckled and nine non-suckled buffaloes were challenged intravenously with a bolus injection of GnRH (20microg buserelin acetate; Receptal). Heparinized venous blood samples were collected at 15min intervals for 2h before and up to 4h after GnRH for luteinizing hormone (LH) estimation. Pretreatment basal LH concentrations were similar in the suckled (0.6+/-0.2ng/ml) and the non-suckled (0.5+/-0.1ng/ml) buffaloes. All but one suckled buffaloes released a LH surge, starting 15-60min post-GnRH treatment, which lasted for 180-225min. While one suckled buffalo did not respond to GnRH, the LH response in the remaining suckled buffaloes was significantly less than in the non-suckled buffaloes in terms of peak LH concentrations (14.3+/-2.7ng/ml versus 26.2+/-4.3ng/ml) and area under the LH curve (1575.6+/-197.4mm(2) versus 2108.9+/-323.9mm(2)). The LH response was least in suckled buffaloes challenged with GnRH while in the luteal phase of an oestrus cycle and with plasma progesterone concentration >1ng/ml. In conclusion, suckling suppressed pituitary responsiveness to exogenous GnRH challenge in post-partum buffaloes.  相似文献   

3.
Thirty-two ovariectomized cows were used to determine the time course for the negative feedback effect of estradiol-17beta (E) on secretion of the luteinizing hormone (LH). The cows were injected with gonadotropin releasing hormone (GnRH; 40 mug) 2.5 or 5 h after pretreatment with E (1 mug/kg body weight) or with a vehicle for control (C). Pretreatment with E resulted in lower serum concentrations of LH at 2.5 h (0.27 vs 0.90 ng/ml; P < 0.01) and at 5 h (0.27 vs 0.67 ng/ml; P < 0.01); less LH was released in response to GnRH at 2.5 h after treatment compared to cows treated with C (10 +/- 4.9 vs 27 +/- 3.8 ng/ml; P < 0.001). However, when GnRH was administered 5 h after E or C, there was no difference in the total amount of LH released (34 +/- 1.8 vs 26 +/- 4.4 ng/ml; P > 0.2). Time to half area (estimate of decay for the induced surge of LH) was longer for cows treated with E when compared to those treated with C (1.3 vs 0.9 h, P < 0.001; 1.5 vs 0.8 h, P < 0.001). Time to half area was not affected by the time of administration of GnRH after E (P > 0.4). These results suggest that E acts in the pituitary to cause the initial decrease in concentrations of LH. Pituitaries in animals pretreated with E regained the capacity to release as much LH at 5 h after treatment as those treated with C at a time when LH concentrations were still suppressed by E. Thus, the hypothalamus or an extra-hypothalamic area may be involved in maintaining the suppression of LH secretion after the initial effect on the pituitary has declined.  相似文献   

4.
This study was conducted to determine proopiomelanocortin (POMC) mRNA levels in the preoptic and hypothalamic brain regions of postpartum anestrous cows. An additional objective was to determine if calf suckling influences POMC mRNA concentration in these regions. Twenty cows were randomly assigned to suckled and nonsuckled treatment groups and slaughtered between 30 and 36 days postpartum. Serum luteinizing hormone (LH) concentrations were determined from blood collected every 15 minutes for 8 hours, starting 20 hours prior to slaughter. POMC mRNA levels in brain tissues were determined by dot blots. Serum LH concentrations between nonsuckled and suckled cows were 1.3 +/- 0.2 and 0.9 +/- 0.1 ng.ml(-1) (mean +/- SEM; P = 0.19), respectively. The POMC gene is expressed in the hypothalamus of postpartum anestrus cows with POMC mRNA levels higher (P<0.05) in the hypothalamus than in the preoptic region. Hypothalamic POMC mRNA levels tended (P = 0.12) to be lower in nonsuckled (14.9 +/- 3.8 ADU) than in suckled cows (23.5 +/- 3.6 ADU). Covariate analysis indicated (P = 0.10) that as mean serum LH concentrations increased, hypothalamic POMC mRNA levels decreased.  相似文献   

5.
In the first experiment, the effect of the stress of blood collection (via tail vessel puncture) on serum luteinizing hormone (LH) was evaluated in six nonsuckled first calf Brangus heifers. The animals were bled on days 22 and 31 postpartum at 15 minute intervals for a period of two hours. Blood was processed to yield serum and analyzed for LH via radioimmunoassay (RIA). There were no significant differences or fluctuations in serum LH levels between bleeding periods or between cows. Serum LH concentrations in nonsuckled cows were not affected by the stress of blood collection. In the second experiment, 24 first calf Brangus heifers were randomly assigned to one of four treatment groups. Treatment 1 cows were suckled once daily for approximately 30 min starting day 21 postpartum. Treatment 2 cows were suckled twice daily for approximately 30 min each time, starting 21 days postpartum. Treatment 3 cows were suckled once daily for approximately 30 min starting 30 days postpartum. Treatment 4 cows were suckled twice daily for approximately 30 min each time starting 30 days postpartum. Each cow was bled via tail vessel puncture on days one and nine following the start of each treatment. The blood sampling regime was similar to that used in Experiment 1 and consisted of four presuckling samples taken at 15 min intervals, one midsuckling sample (the calf was allowed to suckle for 15 min) and four postsuckling samples taken at 15 min intervals. Blood was collected, processed to yield serum and assayed for LH via RIA. Suckling intensity (SI) was found to have a significant effect on serum LH levels. The once daily suckled cows had higher (P<.01) mean serum LH levels than did the twice daily suckled cows (1.70 +/- .03 and 1.53 +/- .03 ng/ml, respectively). The LH concentrations decreased (P<.01) from the first to last bleeding time (BT). The mean serum LH levels for the presuckling, midsuckling and the first postsuckling samples were higher (P<.05) than the last postsuckling sample. The mean serum LH level for the first time period prior to suckling was higher (P<.05) than the last postsuckling sample. The mean serum LH level for the first time period prior to suckling was higher (P<.05) than the last two periods after suckling (1.73 +/- .08 ng/ml vs 1.51 +/- .06 and 1.41 +/- .06 ng/ml). Bleeding day (BD) and weaning day (WD) did not alter serum LH levels. The interactions found to be significant (P<.01) were SIxBD, SIxWD, BDxWD and BTxSIxBDxWD.  相似文献   

6.
The effect of an intravenous infusion of gonadotrophin releasing hormone (GnRH) on the duration of postpartum anestrus in suckled beef cows was studied. Twenty-eight, mature, suckled beef cows were assigned in equal numbers to one of four treatment groups which were based on infusion with saline or GnRH (15ug/hour for 12 hours) and stage postpartum (pp) (20 or 35 days). Serum LH and progesterone were determined by radioimmunoassay for the period which began 5 days pre-infusion and ended at 55 days postpartum (ie: 35 or 20 days post-infusion). Serum LH remained below 5ng/ml during infusion in all control cows. Peak serum LH values, times of LH peaks, and duration of LH responses (means +/- SE) during infusion were 49 +/- 12 ng/ml, 162 +/- 42 minutes and 7.8 +/- 1.3 hours for the 20 day group and 44 +/- ng/ml, 144 +/- 6 minutes, and 8.2 +/- 1.1 hours for the 35 day group respectively. Serum progesterone levels indicated that the proportion of cows showing the onset of estrous cycles within 10 days of infusion was greater in the 20 day pp GnRH group (4/7) than the 20 day pp saline group (0/7) (p < .05) but was not significantly different between the 35 day pp GnRH (4/7) and 35 day pp saline (2/6) groups. The incidence of estrus was not affected by GnRH treatment and was 37% in all cows prior to 55 days pp. It was concluded that infusions of GnRH for 12 hours at a rate of 15 ug/hour could induce estrous cycles in suckled beef cows treated at 20 days postpartum.  相似文献   

7.
Eighteen anestrous crossbred suckled beef cows were assigned to one of three treatment groups. Treatments were as follows: Group 1 cows (n = 3) were untreated and served as controls, Groups 2 cows (n = 6) were intramuscularly administered 250 mug GnRH, and Group 3 cows (n = 9) were subcutaneously administered a progestin ear implant for eight days prior to the administration of 250 mug GnRH. The GnRH was given to cows in Group 3 24 h after the time of progestin implant removal. Cows were 21 to 31 days postpartum at the time of GnRH treatment. The percent of cows that ovulated after the time of GnRH treatment was 0%, 83% and 100% for Groups 1, 2 and 3, respectively. For the cows that ovulated, more (P < 0.05) cows in Group 2 (80%) had abnormal luteal phases than in Group 3 (33%). The GnRH-induced LH release and peak LH concentrations were greater (P < 0.01) in the cows in Group 3 (214.3 +/- 37.1 ng/ml) than in the cows in Group 2 (142.7 +/- 19.0 ng/ml). The LH concentrations of the control cows remained very low throughout the sampling period. Although prostaglandin metabolite (PGFM) concentrations were not significantly (P > 0.10) different among groups, mean concentrations were higher and more variable for cows in Groups 1 (39.2 +/- 5.2 pg/ml) and 2 (39.4 + 6.1 pg/ml) than for cows in Group 3 (25.1 + 1.4 pg/ml).  相似文献   

8.
In three experiments, we examined endogenous opioid inhibition of luteinizing hormone (LH) secretion during the bovine estrous cycle. An increase in serum LH in response to the opioid antagonist naloxone (Na; 1 mg/kg i.v.) was the criterion for opioid inhibition. Estrous cycles were synchronized via prostaglandin administration. In Experiment 1, mean serum LH was not different during the luteal phase in yearling heifers (n = 6/group) at Hour 1 after Nal (2.1 ng/ml) compared to controls (1.8 ng/ml). However, LH peak amplitude was increased (p less than 0.05) in the Nal compared to the control group. Serum LH was increased (p less than 0.01) during the follicular phase in heifers at Hour 1 post-Nal compared to controls (4.7 and 3.5 ng/ml, respectively). Again, Nal administration was followed by increased (p less than 0.05) LH pulse amplitude compared to control. In Experiment 2, no effect of Nal upon serum LH was detected in cows (n = 9) during proestrus, metestrus, midluteal and late luteal portions of the estrous cycle. In Experiment 3, the LH response to Nal was examined simultaneously in yearling heifers and cows (n = 5/group) during the luteal and follicular phases. Serum LH increased (p less than 0.001) during Hour 1 post-Nal in heifers compared to cows during the follicular (3.4 vs. 1.7 ng/ml) but not during the luteal phase. LH pulse amplitude also increased (p less than 0.05) during Hour 1 post-Nal in heifers compared to cows during the luteal (2.5 vs. 1.1 ng/nl and follicular (2.5 vs. 1.3 ng/ml) phases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Thirty-two postpartum (PP) cows were used to investigate the effect of suckling on secretion of luteinizing hormone (LH). Calves remained with their dams (suckled; S), or they were removed within 24 h of birth (nonsuckled; NS). To evaluate the relationship between suckling and negative feedback regulation of LH, cows were ovariectomized on Day 5 PP, then injected intravenously with estradiol-17 beta (E) or vehicle (V) on Day 10 PP. To investigate the influence of suckling on the gonadotropin-releasing hormone (GnRH)-induced release of LH, cows were injected with 80 micrograms of GnRH on a single day varying from 18 to 85 days PP. Suckling inhibited the postcastration rise in LH, as LH concentrations increased at a faster rate in NS compared with S cows [0.031 +/- 0.02 ng/(ml X day) LH: P less than 0.05]; this was not influenced by basal amounts of E since amounts did not differ between S and NS cows at ovariectomy (5.37 +/- 0.36 vs. 5.34 +/- 0.48 pg/ml E; P greater than 0.05). Serum concentrations of LH were negatively related to total follicular E only in S cows (r = -0.71; P less than 0.01). Estradiol-17 beta caused a decrease not only in the level but also the variability in LH concentrations in both S and NS cows: LH in S cows was less variable after E than in NS cows (P less than 0.001), but the magnitude of LH suppression was not influenced by suckling (P greater than 0.25). The regression of LH response on days PP was essentially the same over time for both S (P greater than 0.25) and NS (P greater than 0.25) cows, indicating that LH response to a GnRH injection was not influenced by suckling or days PP. Suckled cows had a tendency to release more LH relative to their baseline in response to GnRH as time PP increased (P less than 0.10), but NS cows did not. These results indicate that even though ovarian secretions inhibit LH release from the pituitary, other inhibitory influences may have a major effect in S cows. Concentrations of LH were lower in S cows than NS cows on Day 10 PP, following removal of the ovaries on Day 5, suggesting that suckling had a direct effect on the hypothalamic-pituitary axis.  相似文献   

10.
In ewes in the mid-luteal phase, LH pulse frequency (P less than 0.01) and amplitude (P less than 0.05) increased during a 24 h infusion of naloxone (0.5 mg/kg/h) compared to a 24 h infusion of vehicle (mean +/- s.e.m.; 0.25 +/- 0.03 vs 0.14 +/- 0.01 pulses/h and 0.84 +/- 0.08 vs 0.55 +/- 0.08 ng/ml serum, respectively). The increase in pulse amplitude was immediate, but was less (P less than 0.05) during the second 12 h, compared to the first 12 h, of naloxone infusion (0.52 +/- 0.14 vs 0.98 +/- 0.08 ng/ml serum). Oestradiol concentrations were higher (P less than 0.01) during naloxone than during control infusion (5.63 +/- 0.26 vs 4.13 +/- 0.15 pg/ml serum). In ovariectomized ewes in the breeding season, LH pulse frequency was lower (P less than 0.01) during a 24 h infusion of morphine (0.5 mg/kg/h) than during a 24 h infusion of vehicle (mean +/- s.e.m.; 1.17 +/- 0.08 vs 1.71 +/- 0.06 pulses/h). We conclude that long-term infusion of naloxone results in a sustained increase in LH pulse frequency but only a transient elevation in pulse amplitude. No effects on FSH secretion were noted. LH secretion was sensitive to morphine in the absence of ovarian steroids, suggesting that ovarian steroids are not required for the presence of functional opioid receptors capable of modulating LH release.  相似文献   

11.
Twelve lactating sows were used at 22.4 +/- 0.8 days postpartum to determine whether endogenous opioid peptides (EOP) are involved in the suckling-induced inhibition of luteinizing hormone (LH) secretion. Four sows each received either 1, 2, or 4 mg/kg body weight of naloxone (NAL), an opiate antagonist, in saline i.v. Blood was collected at 15-min intervals for 2 h before and 4 h after NAL treatment. All sows were then given 100 micrograms gonadotropin-releasing hormone (GnRH) in saline i.v., and blood samples were collected for an additional h. Pigs were weaned after blood sampling. At 40 h after weaning, sows were treated and blood samples collected as during suckling. Serum concentrations of LH after treatment with NAL were similar for all doses; therefore, the data were pooled across doses. During suckling, serum concentrations of LH were 0.41 +/- 0.04 ng/ml before NAL treatment, increased to 0.65 +/- 0.08 ng/ml at 30 min after NAL treatment, and remained elevated above pretreatment concentrations for 120 min (p less than 0.05). Naloxone failed to alter serum concentrations of LH after weaning. These data indicate that EOP may be involved in the suckling-induced suppression of LH secretion and that weaning may either decrease opioid inhibition of LH secretion or decrease pituitary LH responsiveness to endogenous GnRH released by NAL.  相似文献   

12.
Serum luteinizing hormone (LH) and cortisol concentrations were measured in ten fall calving, Angus cows averaging 38 +/- 8 days postpartum. Calves from five cows were weaned at the beginning of the study. Blood samples were collected at 20 min. intervals for 48 h after weaning and for 8 h on day 4 and day 6 postweaning. Mean serum LH concentrations increased (P<0.01) in weaned cows (W) from 0.55 +/- 0.01 ng/ml at time of calf removal to 1.3 +/- 0.04 ng/ml 48 h afterwards. Comparable LH concentrations for suckled cows (S) were 0.65 +/- 0.08 ng/ml and 0.62 +/- 0.03 ng/ml respectively. Average serum LH concentrations at 48 h after weaning were greater (P<0.01) for W cows than S cows and a treatment by time interaction occurred (P<0.01) with serum LH concentrations increasing (P<0.01) from time of calf removal to 48 h after calf removal in W cows. Frequency of LH peaks increased (P<0.01) in W cows and by 48 h after weaning was greater (P<0.01) in W cows than in S cows. Magnitude of LH peaks did not differ between the two groups. Serum cortisol concentrations were not different between W and S cows except for a transient elevation (P<0.01) in W cows from 7.6 +/- 0.9 ng/ml to 11.9 +/- 1.0 ng/ml 9 to 12 h after calf removal. Since serum LH concentrations were increased in W cows but not in S cows at 48 h and serum cortisol concentrations increased transiently in W cows we suggest that circulating cortisol levels may not be a physiological inhibitor of LH secretion in the suckled postpartum beef cow.  相似文献   

13.
Plasma LH concentrations were monitored in 6 Hereford X Friesian suckled cows at about 80 days post partum, before and during a 14-day period of continuous s.c. infusion of GnRH (20 micrograms/h). Blood samples were collected at 10-min intervals on Days -2, -1, 1, 2, 3, 4, 7, 10, 13 and 14 (Day 1 = start of infusion). Plasma LH concentrations rose from mean pretreatment levels of 1.3 +/- 0.20 ng/ml to a maximum of 17.1 +/- 3.09 ng/ml within the first 8 h of GnRH infusion, but returned to pretreatment levels by Day 2 or 3. In 4/6 animals, the initial increase was of a magnitude characteristic of the preovulatory LH surge. In all animals, an i.v. injection of 10 micrograms GnRH, given before the start and again on the 14th day of continuous infusion, induced an increase in LH concentrations but the increase to the second injection was significantly (P less than 0.01) less (mean max. conc. 6.4 +/- 0.76 and 2.3 +/- 0.19 ng/ml). Mean LH concentrations (1.0 +/- 0.08, 1.1 +/- 0.08 and 0.9 +/- 0.06 ng/ml) and LH episode frequencies (3.3,4.3 and 3.2 episodes/6 h) did not differ significantly on Days -2,7 and 13. However, the mean amplitude of LH episodes was significantly lower (P less than 0.05) on Day 13 (1.3 +/- 0.10 ng/ml) than on Day -2 (1.8 +/- 0.16 ng/ml). Therefore, although the elevation in plasma LH concentrations that occurs in response to continuous administration of GnRH is short-lived and LH levels return to pre-infusion values within 48 h of the start of infusion, these results show that the pituitary is still capable of responding to exogenous GnRH, although the LH response to an i.v. bolus injection of GnRH is reduced. In addition, this change in pituitary sensitivity is not fully reflected in endogenous patterns of episodic LH secretion.  相似文献   

14.
Ten primiparous crossbred cows were assigned to two dietary groups at calving. One group received 120% and the other group received 80% of the National Research Council (NRC) recommended allowance of dietary energy for primiparous cows. At 60 days postpartum, calves were removed from their dams. Blood samples were collected from the cows at 15-min intervals for 8 hr beginning at the time of calf removal and again 24 hr, 48 hr and 72 hr after calf removal. At 72 hr after calf removal, all cows were given 200 ug GnRH intravenously. At calf removal, serum LH concentrations were higher (P<0.01) for cows on 120% (0.9 +/- 0.03 ng/ml) compared to cows on 80% (0.5 +/- 0.03 ng/ml) of recommendations. Serum LH concentrations increased (1.6 +/- 0.1 ng/ml, P<0.01) by 24 hr in cows on the highenergy diet. In contrast, a similar increase was not observed in cows on the low-energy diet until 48 hr after calf removal (1.4 +/- 0.2 ng/ml, P<0.01). These contrasting patterns in serum LH concentrations resulted in a diet by time interaction (P<0.01). Serum LH concentrations increased in both dietary energy groups following GnRH injection, but the response was greater (P<0.01) in cows on the low-energy diet compared to the cows fed the high-energy diet. These results indicate that inadequate dietary energy delays the LH response to calf removal and increases the LH response to exogenous GnRH.  相似文献   

15.
Twenty-two mature pluriparous beef cows were randomly assigned to one of six treatments in a 2 X 3 factorial experiment in order to study the role of suckling and ovarian factors on control of the tonic and episodic release of luteinizing hormone (LH). Twelve cows remained intact (INT) and 10 were ovariectomized (OVX) within 4 days following the day of parturition (Day 0). The suckling intensities were nonsuckled (0), suckled once daily for 30 min (1) and suckled ad libitum by two calves (2). Blood samples were collected at 15-min intervals for 6 h weekly, from Days 6 to 76 postpartum. The postpartum intervals to initiation of ovarian luteal function were 31 +/- 3, 41 +/- 4 and 67 +/- 1 days (means +/- SEM) for INT cows with 0, 1 and 2 suckling intensities, respectively. Mean LH concentrations and frequency of LH pulses increased as time of ovulation approached in INT cows. In OVX animals, both mean LH concentrations and frequency of LH pulses increased as time postovariectomy progressed. No differences were detected in mean LH concentrations or frequency of LH pulses between the two suckled OVX groups. Mean LH in the OVX-0 cows was greater on Days 13, 20 and 27 postpartum when compared to the respective days in suckled OVX cows. Frequency of LH pulses tended to be lower (P less than 0.10) in both suckled OVX groups when compared with OVX-0 cows from Day 6 to Day 55 postpartum. It is postulated that suckling and ovarian factors act together during the postpartum period to suppress LH levels and frequency of LH pulses in beef cows.  相似文献   

16.
Ewes were sampled during the mid-late luteal phase of the oestrous cycle. Hypophysial portal and jugular venous blood samples were collected at 5-10 min intervals for a minimum of 3 h, before i.v. infusions of saline (12 ml/h; N = 6) or naloxone (40 mg/h; N = 6) for 2 h. During the 2-h saline infusion 2/6 sheep exhibited a GnRH/LH pulse; 3/6 saline infused ewes did not show a pulse during the 6-8-h portal blood sampling period. In contrast, large amplitude GnRH/LH pulses were observed during naloxone treatment in 5/6 ewes. The mean (+/- s.e.m.) amplitude of the LH secretory episodes during the naloxone infusion (1.07 +/- 0.11 ng/ml) was significantly (P less than 0.05) greater than that before the infusion in the same sheep (0.54 +/- 0.15 ng/ml). Naloxone significantly (P less than 0.005) increased the mean GnRH pulse amplitude in the 5/6 responding ewes from a pre-infusion value of 0.99 +/- 0.22 pg/min to 4.39 +/- 1.10 pg/min during infusion. This episodic GnRH secretory rate during naloxone treatment was also significantly (P less than 0.05) greater than in the saline-infused sheep (1.53 +/- 0.28 pg/min). Plasma FSH and prolactin concentrations did not change in response to the opiate antagonist. Perturbation of the endogenous opioid peptide system in the ewe by naloxone therefore increases the secretion of hypothalamic GnRH into the hypophysial portal vasculature. The response is characterized by a large-amplitude GnRH pulse which, in turn, causes a large-amplitude pulse of LH to be released by the pituitary gland.  相似文献   

17.
Twenty-seven fall calving Brangus cows were randomly allotted to one of four treatment groups: nonsuckled monensin (NSM), suckled monensin (SM), nonsuckled control (NSC), and suckled control (SC). Cows were group fed 1.82 kg/hd/day concentrate and Coastal bermuda grass hay adlibitum. Monensin cows received 200 mg monensin/hd/day in the concentrate. At 0800 hr on day 21 postcalving, the calves were separated from the cows. Suckled monensin and SC cows were allowed to suckle their calves for 30 min at 6-hr intervals. Nonsuckled monensin and NSC cows were not suckled. Calves were given free access to the cows after 1400 hr on day 22 postpartum. At 0800 hr on day 22 postpartum, a blood sample was collected. A 100 μg GnRH challenge was administered IM at 0801 hr. Blood samples were collected at 15-min intervals for 6 hr postinjection. Changes in body weight and body condition from day 21 postpartum to the day of first estrus were not different (P>0.10) by dietary treatment. Monensin cows consumed 10.7% less hay than did the control cows. Serum luteinizing hormone (LH) following GnRH was greater (P<0.005) in suckled than nonsuckled cows. Control cows released more (P<0.005) LH in response to GnRH than did the monensin cows. The postpartum interval (to first estrus) for the monensin cows (92.4±14.7 days) was shorter (P<0.025) than the controls (138.5±9.5 days). A greater proportion (P<0.005) of the monensin cows (8 of 14) exhibited estrus by 90 days postpartum compared to the control cows (0 of 13). Monensin and suckling appear to exert independent and agonistic influences on pituitary function in the postpartum beef cow.  相似文献   

18.
The fall in pituitary GnRH receptors in female mice after ovariectomy (Ovx) was further decreased (greater than 50%), rather than prevented, by treatment with a GnRH antiserum, despite suppression of the post-gonadectomy increase in serum gonadotrophins, suggesting that increased endogenous GnRH secretion is not the mediator of GnRH receptor fall after ovariectomy in mice. Furthermore, GnRH antiserum reduced GnRH receptors by 30-50% in intact normal females, without altering receptor affinity, and rendered serum LH and FSH undetectable but did not reduce receptors in GnRH-deficient, hpg mice. When GnRH was administered to ovariectomized mice this failed to restore receptor values (fmol/pituitary) (intact = 55.3 +/- 2.4; Ovx = 30.1 +/- 2; Ovx + GnRH = 31.6 +/- 2.8), but serum LH was reduced from high post-ovariectomy values (231 +/- 42 ng/ml) to values normal for intact females (24 +/- 2 ng/ml). In contrast, multiple GnRH injections to intact female mice increased GnRH receptor by 35%, while serum LH was reduced to just detectable levels. A marked dissociation between GnRH receptor and serum gonadotrophin concentrations was observed. Administration of oestrogen (E2) plus progesterone (P) to ovariectomized mice in which endogenous GnRH had been immunoneutralized reversed the inhibitory effect of GnRH antiserum on GnRH receptors and increased values above those of ovariectomized controls, although no increase in serum or pituitary gonadotrophin levels was seen in ovariectomized mice treated with E2 + P + GnRH antiserum. Treatment with E2 and P of intact females receiving GnRH antiserum did not prevent the inhibitory effect of antiserum on receptors, while E2 + P treatment alone of intact female mice reduced GnRH receptors by 30%. These data suggest that the gonadal steroids reduce GnRH receptors in intact female mice by inhibiting hypothalamic GnRH secretion, and that a certain degree of pituitary exposure to GnRH is required for maintenance of a normal receptor complement. These results suggest that (1) the fall in GnRH receptors after ovariectomy is primarily attributable to removal of gonadal factors. The fall is not a reflection of alteration in endogenous GnRH interaction with the gonadotroph; (2) homologous ligand 'up-regulation' of GnRH receptors in female mice depends upon the presence of the ovaries; (3) endogenous GnRH is also required for GnRH receptor maintenance in intact female mice; and (4) GnRH receptor and serum gonadotrophin responses to hormonal changes can be dissociated and their relationship is complex.  相似文献   

19.
Studies were undertaken to determine if changes in the amplitude of luteinizing hormone (LH) pulses that occur in response to changes in the frequency of gonadotropin-releasing hormone (GnRH) pulses are due to an alteration in the number of GnRH receptors. Ewes were ovariectomized (OVX) and the hypothalamus was disconnected from the pituitary (HPD). Ewes were then given pulses of GnRH at a frequency of 1/h or 1/3 h. Two control groups were included: OVX ewes not subjected to HPD, and HPD ewes that were not OVX. At the end of one week of treatment, blood samples were collected to determine the amplitude of LH pulses. The treated ewes were killed just before the next scheduled pulse of GnRH, and the content of LH and number of GnRH receptors were measured in each pituitary. The amplitude of LH pulses was highly correlated with the amount of LH in the pituitary gland (r = 0.71, p less than 0.01), and both LH content and pulse amplitude (mean + SEM) were higher in ewes receiving GnRH once per 3 h (189.7 +/- 39.3 microgram/pituitary, 10.3 +/- 1.1 ng/ml, respectively) than in ewes receiving GnRH once per h (77.8 +/- 11.4 microgram/pituitary, 5.2 +/- 1.3 ng/ml). The pituitary content of LH was highest in the OVX ewes (260.2 +/- 57.4 micrograms/pituitary) and lowest in the nonpulsed HPD ewes (61.7 +/- 51.2 micrograms/pituitary). The number of GnRH receptors was similar in all groups, and was not correlated with any other variable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Effects of estradiol on serum luteinizing hormone (LH) were studied in prepubertal boars. In Exp. 1, 15-wk-old boars were given (iv) 50 mug estradiol, 1 mg testosterone or 1.5 ml ethanol. Estradiol (P<0.05) decreased LH over a 2.5-hr period, but testosterone did not. In Exp. 2, an estradiol implant reduced LH sample variance (P<0.01) while LH (547 +/- 96 vs 655 +/- 43 pg/ml) and estradiol (14.2 +/- 3.3 vs 18.4 +/- 1.0 pg/ml; control vs implant) were unchanged in 12-wk-old boars. Pulsatile LH releases (4.3 +/- 1.1 vs 3.0 +/- 0.4 pulses/pig/8 hr; control vs treated) and pulse amplitude (272 +/- 34 vs 305 +/- 40 pg/ml) were not affected. The implant tended to decrease serum testosterone (4.86 +/- 0.75 vs 7.66 +/- 1.51 ng/ml; P<0.10). In Exp. 3, LH was higher after zero implants than after four implants (279 +/- 7 vs 227 +/- 9 pg/ml; P<0.01), and LH after two implants was also higher than after four implants (263 +/- 7 pg/ml; P<0.01) in 14-wk-old boars in a Latin square design. Peak LH after 40 mug gonadotropin releasing hormone (GnRH) was less after two and four implants (1,100 +/- 126 and 960 +/- 167 pg/ml, respectively; P<0.01) than after zero implants (1,742 +/- 126 pg/ml). Slope of the first 20 min of LH response to GnRH was greater after zero implants (45.3 pg/min; P<0.05) than after either two or four implants (20.6 and 16.9 pg/min, respectively). Implant treatment decreased serum testosterone (P<0.025) but increased estradiol (P<0.10). Small changes in serum estradiol resulted in changes in LH. These changes in sample variance and mean LH were recognized by boars as different from normal because serum testosterone decreased. Changes in LH may result from estradiol's negative effect on pituitary responsiveness to endogenous GnRH because response to exogenous GnRH was depressed by estradiol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号