首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
A microassay requiring as few as 2 X 10(5) cells per assay was developed for systematic analysis of 9 purine enzymes in lymphocytes from equine peripheral blood, spleen, lymph node, thymus and bone marrow. The activities of adenosine deaminase (ADA), purine nucleoside phosphorylase (PNP), adenosine kinase (AK), deoxyadenosine kinase (dAK), deoxycytidine kinase (dCK), 5'-nucleotidase (5'-N), AMP deaminase, hypoxanthine-guanine phosphoribosyl transferase (HGPRT or HPRT), and adenine phosphoribosyl transferase (APRT) were measured by this microassay in lymphocytes from peripheral blood from four different breeds of horses (Arabian, Quarter Horse, Thoroughbred and Shetland Pony). There were no significant differences in the enzyme activities among the various breeds. Peripheral blood lymphocytes (PBL) from foals exhibited enzyme activities similar to those observed for adult animals. All lymphoid tissue contained similar levels of activity for each kinase (AK, dAK and dCK). Spleen had the highest activity for ADA, PNP, 5'-N, and HGPRT. The lowest activity for ADA, APRT, PNP and AMP deaminase was found in thymus. Enzymatic activities that varied the most among the tissue were 5'-N, ADA, APRT, HGPRT and AMP deaminase.  相似文献   

3.
Summary We have studied the relationship between purine salvage enzymes, 6-mercaptopurine resistance, and the purR phenotype in E. coli. Mutants resistant to 6-mercaptopurine were found to have defects in HPRT, the purR repressor, or in both. Analysis of these mutants led to the isolation of a hypoxanthine phosphoribosyl transferase-guanine phosphoribosyl transferase double mutant (hpt - gpt-) that is extremely sensitive to adenine. Two classes of adenine resistant mutants were isolated from this strain. The first class was deficient in APRT (apt -) while the second class represented purine regulatory mutants (purR -). There is thus selection for the purR phenotype in a hpt - gpt-background.Abbreviations FGAR formyl glycinamide ribotide - HPRT hypoxanthine phosphoribosyl transferase - GPRT guanine phosphoribosyl transferase - APRT adenine phosphoribosyl transferase - PRPP 5 phosphoribosyl-1 pyrophosphate - 6MP 6-mercaptopurine - FA 2-fluoroadenine  相似文献   

4.
5.
The profiles of hypoxanthine guanine phosphoribosyl transferase (HGPRT) and adenine phosphoribosyl transferase (APRT) activities were examined in normally fertilized human embryos developing at the normal rate in vitro between the 2-4-cell stage on Day 2 and the blastocyst stage on Day 6 after insemination. The activities of both enzymes were assayed simultaneously in extracts of single embryos by measuring the rate of production of the reaction products, inosine monophosphate (IMP) and adenine monophosphate (AMP), separated by high-performance liquid chromatography (HPLC). The activity profiles of the two enzymes over this period showed marked differences. The activity of HGPRT, coded by the X chromosome, increased between Days 2 and 4 (P less than 0.01) but declined sharply by Day 6 (P less than 0.001), whereas autosome-coded APRT activity remained low between Days 2 and 5, but increased on Day 6 (P less than 0.05). The profile of HGPRT activity may reflect a combination of decreasing levels of maternal enzyme inherited from the oocyte and the initiation of embryonic gene expression followed by X inactivation at the blastocyst stage on Day 6.  相似文献   

6.
A new Saccharomyces cerevisiae gene, XPT1, was isolated as a multicopy suppressor of a hypoxanthine phosphoribosyl transferase (HPRT) defect. Disruption of XPT1 affects xanthine utilization in vivo and results in a severe reduction of xanthine phosphoribosyl transferase (XPRT) activity while HPRT is unaffected. We conclude that XPT1 encodes XPRT in yeast.  相似文献   

7.
Paul G. Kratzer 《Genetics》1983,104(4):685-698
X-chromosome activity in early mouse development has been studied by a gene dosage method that involves measuring the activity level of the X-linked enzyme hypoxanthine phosphoribosyl transferase (HPRT) in single eggs and embryos from XO females and from females heterozygous for In(X)1H, a paracentric inversion of the X chromosome. The HPRT activity in oocytes increased threefold over a 24-hr period beginning after ovulation. Afterward, the activity plateaued in unfertilized eggs but continued to increase for at least 66 hr in presumed OY embryos. Both before and after ovulation, the level of activity in unfertilized eggs from In(X)/X females was twice that from XO females, and the distributions of activity in eggs for both sets of females remained unimodal. Beginning with the two-cell stage, distributions of activity for embryos from In(X)/X females were trimodal, which is evidence for embryonic activity. It is proposed that activation of a maternal mRNA or proenzyme is responsible for the HPRT activity increase in oocytes and early embryos and is supplemented by dosage-dependent activity of the embryonic Hprt gene as early as the two-cell stage.  相似文献   

8.
We have used a highly sensitive biochemical microassay to monitor the expression of a cloned minigene for hypoxanthine phosphoribosyl transferase (HPRT, EC.2.4.2.8) in preimplantation mouse embryos. The mouse HPRT promoter and the mouse metallothionein promoter (MT-I) function equally well in embryos at the 2-cell stage whereas the viral SV40 promoter does not allow HPRT expression. Induced HPRT activity from the MT-I HPRT minigene construct occurs in cleavage embryos cultured in the presence of cadmium. In contrast, negation of enzyme expression from the injected minigene DNA is mediated by simultaneous injection of HPRT antisense DNA.  相似文献   

9.
10.
Kita M  Imai H 《Theriogenology》1993,40(2):357-364
The activity of hypoxanthine phosphoribosyltransferase (HPRT) was determined in the bovine embryo during early embryonic development. Microassay, using [(3)H] hypoxanthine, was improved to measure enzyme activity in the embryonic extract. This activity depended on the reaction time and the concentration of phosphorybosyl pyrophosphate (PRPP) in a reaction. mixture. Maximum activity was obtained at 4 hours of reaction time and at a concentration of 1 mM PRPP, but was much lower than the activity recorded in the mouse embryo. During early embryonic development, HPRT activity rapidly increased beyond the 8-cell stage. When distributions and activities of HPRT, adenine phosphorybosyltransferase (APRT), and the ratio of HPRT: APRT were examined in individual blastocysts, HPRT activity was broadly distributed, but it did not clearly show the bimodal distribution expected. Six of demi-embryos with high or low HPRT:APRT ratios were transferred to recipient cows from which 2 calves were obtained. Both offspring were of the sex predicted by the HPRT: APRT ratio. These results indicate that HPRT activity of bovine preimplantation embryos can be microassayed using radiolabeled hypoxanthine, and this assay could provide an alternative method for embryo sexing.  相似文献   

11.
Spontaneous and mutagen-induced 2,6-diaminopurine-resistant mutants of Chinese hamster ovary (CHO-K1) cells were isolated. Such mutants fell into two classes: spontaneous and ethylmethane-sulfonate-induced mutants had approximately 5% wild-type adenine phosphoribosyl transferase (APRT) activity, whereas ICR-170G-induced mutants had barely detectable APRT activity. Since it has been reported that human hypoxanthine-guanine phosphoribosyl transferase (HGPRT) (Lesch-Nyhan syndrome) and APRT mutants over-produce purines, we examined the control and rate of purine biosynthesis in the Chinese hamster mutants. End product inhibition by adenine could not be demonstrated in such mutants, indicating that the active feedback inhibitor is a nucleotide rather than the free purine base, HGPRT activity was normal in all mutants examined except in one isolate. Purine biosynthesis as measured by the accumulation of the purine biosynthetic intermediate phosphoribosyl formylglycineamide was not elevated in the mutants as might have been predicted from work with Lesch-Nyhan cells. The data also suggest that our strain of CHO-K1 is physically or functionally haploid for the APRT locus.  相似文献   

12.
Two allelic isozymes of adenine phosphoribosyl transferase (APRT) were detected by starch gel electrophoresis of baboon hemolysates. Extensive family data verified autosomal codominant inheritance. The gene frequencies of five subspecies of baboons differed significantly. The activity of erythrocyte APRT is sufficiently high to enable the use of this enzyme as a sensitive marker for assessing chimerism in research involving bone marrow transplantation.This research was supported in part by NIH Grants HL28972, HG00336, and HV53030.  相似文献   

13.
14.
Measurements were made of the activity of phosphoribosyl pyrophosphate amidotransferase (PPRibP-At, EC 2.4.2.14) and of adenine (APRT, EC 2.4.2.7) and hypoxanthine (HPRT, EC 2.4.2.8) phosphoribosyltransferases, representing the 'de novo' and salvage pathways respectively. PPRibP-At activity increased within 3 days of diabetes, whereas APRT and HPRT increased later. Incorporation of [14C]formate and of [8-14C]adenine into the nucleic acids of kidney slices showed that formate was incorporated earlier, and to a greater extent, than was adenine. These results indicate that, although the 'de novo' pathway for nucleotide synthesis is the main route in early diabetes, the salvage pathway assumes greater importance at later stages.  相似文献   

15.
Mutations in the X-linked hypoxanthine-guanine phosphoribosyl transferase gene (HPRT) result in deficiencies of HPRT enzyme activity, which may cause either a severe form of gout or Lesch-Nyhan syndrome depending on the residual enzyme activity. Mutations leading to these diseases are heterogeneous and include DNA base substitutions, DNA deletions, DNA base insertions and errors in RNA splicing. Identification of mutations has been performed at the RNA and DNA level. Sequencing genomic DNA of the HPRT gene offers the possibility of direct diagnostic analysis independent on the expression of the mature HPRT mRNA. We describe a Dutch and a Spanish family, in which the Lesch-Nyhan syndrome and a severe partial HPRT-deficient phenotype, respectively, were diagnosed. Direct sequencing of the exons coding for the HPRT gene was performed in both families. Two new exon 3 mutations have been identified. At position 16676, the normally present G was substituted by an A in the Dutch kindred (HPRTUtrecht), and led to an arginine for glycine change at residue 70. At position 16680, the G was substituted by a T in the Spanish family (HPRTMadrid); this substitutes a valine for glycine at residue 71. These new mutations are located within one of the clusters of hotspots in exon 3 of the HPRT gene in which HPRTYale and HPRTNew Haven have previously been identified.  相似文献   

16.
Summary The possible influence of the fragile X mutation at Xq27 on the expression of the neighbouring gene (at Xq26) for hypoxanthine phosphoribosyl transferase (HPRT) was studied by determination of the levels of HPRT-RNA and HPRT enzyme activity in fibroblast cell cultures from 7 fragile X patients. These levels were lower (although not statistically significantly lower) than in normal fibroblast cultures. Hence, these data do not support the notion of a major effect of the fragile X mutation on the expression of the HPRT gene.  相似文献   

17.
Summary In order to study the biochemical basis of a complete deficiency of adenine phosphoribosyl transferase (APRT) the enzyme was purified to homogeneity, its properties were characterized, and antibodies raised. The enzyme is indirectly involved in adenine uptake. Apparently, by forming AMP the internal concentration of adenine is kept low allowing its diffusion.The same APRT is present in various tissues as was revealed by antibody inactivations employing anti-erythrocyte APRT as well as by direct enzyme assays in cells from the APRT deficient patient. In vitro cultured fibroblasts derived from this patient had less than 0.02% enzyme activity. No cross-reacting material was found in erythrocytes obtained from an APRT deficient child.  相似文献   

18.
19.
Cloning the complete human adenine phosphoribosyl transferase gene   总被引:5,自引:0,他引:5  
A M Murray  E Drobetsky  J E Arrand 《Gene》1984,31(1-3):233-240
We have isolated a clone from a human genomic lambda library which cross-hybridises with the cloned hamster adenine phosphoribosyl transferase gene (aprt). After restriction mapping and further hybridisation to the hamster gene, a series of putative human aprt-containing fragments has been isolated and tested for ability to transform adenine phosphoribosyl transferase-deficient (aprt-) strains of Chinese hamster ovary (CHO) cells to APRT proficiency. Transforming activity was detected in a 48-kb lambda clone, the 17.4-kb EcoRI insert, and an 8.6-kb HincII fragment. Smaller fragments have thus far shown no transforming activity. Transformants appear to be stable for the APRT+ phenotype, and human aprt DNA sequences are present in the hamster transformants. The 8.6-kb HincII fragment has been subcloned and the insert mapped. Nonrepetitive regions of this subclone have been identified, and should prove valuable for chromosome walking studies on human chromosome 16, familial studies of a human aprt- trait, the analysis of restriction fragment length polymorphisms (RFLPs) in the area surrounding the aprt gene, and the fine structure mapping of the mutations induced by chemical carcinogens and alkylating agents.  相似文献   

20.
Immunoglobulin produced in rabbits against normal human red cell hypoxanthine phosphoribosyl transferase (HPRT, EC 2.4.2.8) was used to study cell lysates of individuals with deficient enzyme activity. The reaction of immunoglobulin with HPRT formed partially active insoluble and fully active soluble complexes. The insoluble complexes were separated from soluble complexes and the free enzyme by centrifugation. The soluble complexes and free enzyme were separated by electrophoresis. Hemolysates from 13 patients with the Lesch-Nyhan syndrome who have virtually total deficiency of HPRT activity and 2 patients with hyperuricemia and 2–5% of normal activity were unable to neutralize immunoglobulin and showed no evidence of cross-reacting material (CRM). In contrast, 2 other partially deficient males with 4.5 and 50% of normal actvity, and a partially deficient heterozygous female with 34% of normal activity, were CRM+ in this assay. The amount of CRM present in the cells of these 2 males appeared to be disproportionate to their HPRT activity. The heterozygous female contained about 30% of normal CRM which was consistent with the estimated activity provided by her normal cell population. This indicated that her abnormal cells were CRM?. Absence of CRM in her abnormal cells was consistent with the observed lack of CRM in hemolysates of her hyperuricemic half-brother. These data indicate the presence of considerable heterogeneity in human mutation at the HPRT locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号