首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the differential responses to alarm calls from juvenile and adult wild bonnet macaques ( Macaca radiata ) in two parks in southern India. Field studies of several mammalian species have reported that the alarm vocalizations of immature individuals are often treated by perceivers as less provocative than those of adults. This study documents such differences in response using field-recorded playbacks of juvenile and adult alarm vocalizations. To validate the use of playback vocalizations as proxies of natural calls, we compared the responses of bonnet macaques to playbacks of alarm vocalizations with responses engendered by natural alarm vocalizations. We found that the frequency of flight, latency to flee, and the frequency of scanning to vocalization playbacks and natural vocalizations were comparable, thus supporting the use of playbacks to compare the effects of adult and juvenile calls. Our results showed that adult alarm calls were more provocative than juvenile alarm calls, inducing greater frequencies of flight with faster reaction times. Conversely, juvenile alarm calls were more likely to engender scanning by adults, a result interpreted as reflecting the lack of reliability of juvenile calls. Finally, we found age differences in flight behavior to juvenile alarm calls and to playbacks of motorcycle engine sounds, with juveniles and subadults more likely to flee than adults after hearing such sounds. These findings might reflect an increased vulnerability to predators or a lack of experience in young bonnet macaques.  相似文献   

2.
Playback experiments were conducted to investigate interspecific discrimination of male loud calls in Sulawesi macaques. Loud calls of four macaque species living in Sulawesi (Macaca tonkeana, M. maurus, M. hecki, andM. nigrescens) and a control stimulus (an 8-sec frequency modulated sound) were played back to semi-free-ranging Tonkean macaques (M. tonkeana). A preliminary acoustic analysis indicated that the calls of these four species differ in some spectral and temporal features. In the playback experiments, Tonkean macaques responded in a similar manner to conspecific calls and calls of two other species,M. maurus andM. hecki. In contrast, animals responded more weakly to the call ofM. nigrescens and the control stimulus. Males responded more strongly than females to all stimuli, while females appeared to be more discriminating for species differences than males. Analyses on the acoustic features of loud calls suggested that high frequency, wide frequency range, and repetition of sound units at a high rate elicit quick responses from animals.  相似文献   

3.
4.
5.
A comparison of developmental patterns of white matter (WM) within the prefrontal region between humans and nonhuman primates is key to understanding human brain evolution. WM mediates complex cognitive processes and has reciprocal connections with posterior processing regions [1, 2]. Although the developmental pattern of prefrontal WM in macaques differs markedly from that in humans [3], this has not been explored in our closest evolutionary relative, the chimpanzee. The present longitudinal study of magnetic resonance imaging scans demonstrated that the prefrontal WM volume in chimpanzees was immature and had not reached the adult value during prepuberty, as observed in humans but not in macaques. However, the rate of prefrontal WM volume increase during infancy was slower in chimpanzees than in humans. These results suggest that a less mature and more protracted elaboration of neuronal connections in the prefrontal portion of the developing brain existed in the last common ancestor of chimpanzees and humans, and that this served to enhance the impact of postnatal experiences on neuronal connectivity. Furthermore, the rapid development of the human prefrontal WM during infancy may help the development of complex social interactions, as well as the acquisition of experience-dependent knowledge and skills to shape neuronal connectivity.  相似文献   

6.
We observed 420 aggressive interactions between tourists and Macaca fascicularis at the Padangtegal Wanara Wana Temple forest site in Bali, Indonesia, during the months of June and July 2001. The data collected included patterns of aggression, presence or absence of food, and demographic information on resident macaques and human visitors. Analyses of the interactions suggest that macaques respond differentially to humans according to the age/sex classes involved. Additionally, adult and subadult male macaques participated in more aggressive behaviors than expected, while adult female macaques and immatures participated in such behaviors less than expected. These variations in interaction patterns between macaques and tourists may have substantial implications for management issues and the potential for pathogen transmission.  相似文献   

7.
Significant scientific and translational questions remain in auditory neuroscience surrounding the neural correlates of perception. Relating perceptual and neural data collected from humans can be useful; however, human-based neural data are typically limited to evoked far-field responses, which lack anatomical and physiological specificity. Laboratory-controlled preclinical animal models offer the advantage of comparing single-unit and evoked responses from the same animals. This ability provides opportunities to develop invaluable insight into proper interpretations of evoked responses, which benefits both basic-science studies of neural mechanisms and translational applications, e.g., diagnostic development. However, these comparisons have been limited by a disconnect between the types of spectrotemporal analyses used with single-unit spike trains and evoked responses, which results because these response types are fundamentally different (point-process versus continuous-valued signals) even though the responses themselves are related. Here, we describe a unifying framework to study temporal coding of complex sounds that allows spike-train and evoked-response data to be analyzed and compared using the same advanced signal-processing techniques. The framework uses a set of peristimulus-time histograms computed from single-unit spike trains in response to polarity-alternating stimuli to allow advanced spectral analyses of both slow (envelope) and rapid (temporal fine structure) response components. Demonstrated benefits include: (1) novel spectrally specific temporal-coding measures that are less confounded by distortions due to hair-cell transduction, synaptic rectification, and neural stochasticity compared to previous metrics, e.g., the correlogram peak-height, (2) spectrally specific analyses of spike-train modulation coding (magnitude and phase), which can be directly compared to modern perceptually based models of speech intelligibility (e.g., that depend on modulation filter banks), and (3) superior spectral resolution in analyzing the neural representation of nonstationary sounds, such as speech and music. This unifying framework significantly expands the potential of preclinical animal models to advance our understanding of the physiological correlates of perceptual deficits in real-world listening following sensorineural hearing loss.  相似文献   

8.
Temperament differs among individuals both within and between species. Evidence suggests that differences in temperament of group members may parallel differences in social behavior among groups or between species. Here, we compared temperament between three closely related species of monkey—rhesus (Macaca mulatta), long‐tailed (M. fascicularis), and pigtailed (M. nemestrina) macaques—using cage‐front behavioral observations of individually housed monkeys at a National Primate Research Center. Frequencies of 12 behaviors in 899 subjects were analyzed using a principal components analysis to identify temperament components. The analysis identified four components, which we interpreted as Sociability toward humans, Cautiousness, Aggressiveness, and Fearfulness. Species and sexes differed in their average scores on these components, even after controlling for differences in age and early‐life experiences. Our results suggest that rhesus macaques are especially aggressive and unsociable toward humans, long‐tailed macaques are more cautious and fearful, and pigtailed macaques are more sociable toward humans and less aggressive than the other species. Pigtailed males were notably more sociable than any other group. The differences observed are consistent with reported variation in these species’ social behaviors, as rhesus macaques generally engage in more social aggression and pigtailed macaques engage in more male–male affiliative behaviors. Differences in predation risks are among the socioecological factors that might make these species‐typical behaviors adaptive. Our results suggest that adaptive species‐level social differences may be encoded in individual‐level temperaments, which are manifested even outside of a social context. Am. J. Primatol. 75:303‐313, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Schmitt V  Pankau B  Fischer J 《PloS one》2012,7(4):e32024
Understanding the evolution of intelligence rests on comparative analyses of brain sizes as well as the assessment of cognitive skills of different species in relation to potential selective pressures such as environmental conditions and social organization. Because of the strong interest in human cognition, much previous work has focused on the comparison of the cognitive skills of human toddlers to those of our closest living relatives, i.e. apes. Such analyses revealed that apes and children have relatively similar competencies in the physical domain, while human children excel in the socio-cognitive domain; in particular in terms of attention sharing, cooperation, and mental state attribution. To develop a full understanding of the evolutionary dynamics of primate intelligence, however, comparative data for monkeys are needed. We tested 18 Old World monkeys (long-tailed macaques and olive baboons) in the so-called Primate Cognition Test Battery (PCTB) (Herrmann et al. 2007, Science). Surprisingly, our tests revealed largely comparable results between Old World monkeys and the Great apes. Single comparisons showed that chimpanzees performed only better than the macaques in experiments on spatial understanding and tool use, but in none of the socio-cognitive tasks. These results question the clear-cut relationship between cognitive performance and brain size and--prima facie--support the view of an accelerated evolution of social intelligence in humans. One limitation, however, is that the initial experiments were devised to tap into human specific skills in the first place, thus potentially underestimating both true nonhuman primate competencies as well as species differences.  相似文献   

10.
Most previously published electromyographic (EMG) studies have indicated that the temporalis muscles in humans become almost electrically quiet during incisai biting. These data have led various workers to conclude that these muscles may contribute little to the incisai bite force. The feeding behavior and comparative anatomy of the incisors and temporalis muscles of certain catarrhine primates, however, suggest that the temporalis muscle is an important and powerful contributor to the bite force during incision. One purpose of this study is to analyze the EMG activity of the masseter and temporalis muscles in both humans and macaques with the intention of focusing on the conflict between published EMG data on humans and inferences of muscle function based on the comparative anatomy and behavior of catarrhine primates. The EMG data collected from humans in the present study indicate that, in five of seven subjects, the masseter,anterior temporalis, and posterior temporalis muscles are very active during apple incision (i.e., relative to EMG activity levels during apple and almond mastication). In the other two human subjects the EMG levels of these muscles are lower during incision than during mastication, but in no instance are these muscles ever close to becoming electrically quiet. The EMG data on macaques indicate that, in all six subjects, the masseter, anterior temporalis, and posterior temporalis muscles are very active during incision. These data are in general agreement with inferences on muscle function that have been drawn from the comparative anatomy and behavior of primates, but they do not agree with previous experimental data. The reason for this disagreement is probably due to differences in the experimental procedure. In previous studies subjects simply bit isometrically on their incisors and the resulting EMG pattern was compared to the pattern associated with powerful clenching in centric occlusion. In the present study the subjects incised into actual food objects, and the resulting EMG pattern was compared to the pattern associated with mastication of various foods. It is not surprising that these two procedures result in markedly different EMG patterns, which in turn result in markedly different interpretations of jaw-muscle function. In an attempt to explain the evolution of the postorbital septum in anthropoids, it has been suggested that the anterior temporalis is more active than the masseter during incision (Cachel, 1979). The human and macaque EMG data do not support this hypothesis; during incision, the two muscles show no consistent differences in humans and the masseter appears to be in fact more active than the anterior temporalis in macaques.  相似文献   

11.
When a force is applied to an object, the resulting pattern of strain is a function of both the object's geometry and its elastic properties. Thus, knowledge of elastic properties in craniofacial cortical bone is indispensable for exploring the biomechanics and adaptation of primate skulls. However, elastic properties, such as density and stiffness, cannot be measured in all species, particularly extinct species known only from fossils. In order for advanced engineering techniques such as finite element analysis (FEA) to be applied to questions of primate and hominid craniofacial functional morphology, it is important to understand interspecific patterns of variation in elastic properties. We hypothesized that closely related species would have similar patterns of bone elastic properties, and that similarities with extant species should allow reasonable predictions of elastic properties in the skeletons of extinct primate species. In this study, we tested this hypothesis by measuring elastic properties in five areas of the external cortex of the baboon craniofacial skeleton using an ultrasonic technique, and by comparing the results to existing data from macaque and human crania. Results showed that cortical density, thickness, elastic and shear moduli, and anisotropy varied among areas in the baboon cranium. Similar variation had previously been found in rhesus and human crania, suggesting area-specific elastic patterns in the skulls of each species. Comparison among species showed differences, suggesting species-specific patterns. These patterns were more similar between macaques and baboons for density, maximum elastic and shear stiffness, and anisotropy than between either of these and humans. This finding demonstrates that patterns of cortical elastic properties are generally similar in closely related primate species with similar craniofacial morphology. Thus, reasonable estimates of cortical bone elastic properties should be possible for extinct species through the study of phylogenetically related and functionally similar modern forms. For example, reasonable elastic property estimates of cortical bone from fossil hominid skulls should be possible once adequate information about such properties in extant great apes is added to our current data from humans, macaques, and baboons. Such data should eventually allow FEA of craniofacial function in fossil hominids.  相似文献   

12.
We have quantitatively documented the development of sex differences in the behavior of juvenile Japanese macaques (1 to 2 years of age). Mothers treated their offspring differently by sex, i.e., mothers of males broke contact with them more frequently than did mothers of females. Juvenile males played more, and mounted other macaques more frequently; juvenile females groomed their mothers more and were also punished by other group members more frequently than were males. Males showed a pattern of decreasing interactions with their mothers, but females increased the frequency of their maternal interactions. These patterns appear to presage the life histories of the sexes. However, comparisons with other species of nonhuman primates indicate that although sex differences in behavior are common, the variability among species severely limits cross-specific generalizations.  相似文献   

13.
Chimpanzees (Pan troglodytes) are, along with bonobos, humans’ closest living relatives. The advent of diffusion MRI tractography in recent years has allowed a resurgence of comparative neuroanatomical studies in humans and other primate species. Here we offer, in comparative perspective, the first chimpanzee white matter atlas, constructed from in vivo chimpanzee diffusion-weighted scans. Comparative white matter atlases provide a useful tool for identifying neuroanatomical differences and similarities between humans and other primate species. Until now, comprehensive fascicular atlases have been created for humans (Homo sapiens), rhesus macaques (Macaca mulatta), and several other nonhuman primate species, but never in a nonhuman ape. Information on chimpanzee neuroanatomy is essential for understanding the anatomical specializations of white matter organization that are unique to the human lineage.

Diffusion MRI tractography reveals the first complete atlas of white matter of the chimpanzee, with the potential to help understand differences between the organization of human and chimpanzee brains.  相似文献   

14.
This study investigates whether macaques and humans possess a common pattern of relative growth during the fetal period. The fetal samples consist of 16 male pigtailed macaques (mean age, 20.5 gestational weeks) and 17 humans (9 males and 8 females; mean age, 29.5 gestational weeks). For each individual, three-dimensional coordinates of 18 landmarks on the skull were collected from three-dimensional computed tomographic (CT) reconstructed images and two-dimensional CT axial slices. Early and late groups were created from the human (early mean age, 24 weeks, N = 8; late mean age, 34 weeks, N = 9) and macaque samples (early mean age, 17.7 weeks, N = 7; late mean age, 23 weeks, N = 9). Inter- and intraspecific comparisons were made between the early and late groups. To determine if macaques and humans share a common fetal pattern of relative growth, human change in shape estimated from a comparison of early and late groups was compared to the pattern estimated between early and late macaque groups. Euclidean distance matrix analysis was used in all comparisons. Intraspecific comparisons indicate that the growing fetal skull displays the greatest amount of change along mediolateral dimensions. Changes during human growth are primarily localized to the basicranium and palate, while macaques experience localized change in the midface. Interspecific comparisons indicate that the two primate species do not share a common pattern of relative growth, and the macaque pattern is characterized by increased midfacial growth relative to humans. Our results suggest that morphological differences in the craniofacial skeleton of these species are in part established by differences in fetal growth patterns.  相似文献   

15.
DNA methylation is an epigenetic modification involved in regulatory processes such as cell differentiation during development, X-chromosome inactivation, genomic imprinting and susceptibility to complex disease. However, the dynamics of DNA methylation changes between humans and their closest relatives are still poorly understood. We performed a comparative analysis of CpG methylation patterns between 9 humans and 23 primate samples including all species of great apes (chimpanzee, bonobo, gorilla and orangutan) using Illumina Methylation450 bead arrays. Our analysis identified ∼800 genes with significantly altered methylation patterns among the great apes, including ∼170 genes with a methylation pattern unique to human. Some of these are known to be involved in developmental and neurological features, suggesting that epigenetic changes have been frequent during recent human and primate evolution. We identified a significant positive relationship between the rate of coding variation and alterations of methylation at the promoter level, indicative of co-occurrence between evolution of protein sequence and gene regulation. In contrast, and supporting the idea that many phenotypic differences between humans and great apes are not due to amino acid differences, our analysis also identified 184 genes that are perfectly conserved at protein level between human and chimpanzee, yet show significant epigenetic differences between these two species. We conclude that epigenetic alterations are an important force during primate evolution and have been under-explored in evolutionary comparative genomics.  相似文献   

16.
ABSTRACT

Among teleosts, only representatives of several tropical catfish families have evolved two sonic organs: pectoral spines for stridulation and swimbladder drumming muscles. Pectoral mechanisms differ in relative size between pimelodids, mochokids and doradids, whereas swimbladder mechanisms exhibit differences in origin and insertion of extrinsic muscles. Differences in vocalization among families were investigated by comparing distress calls in air and underwater. High frequency broad-band pulsed sounds of similar duration were emitted during abduction of pectoral spines in all three families. Adduction sounds were similar to abduction signals in doradids, shorter and of lower sound pressure in mochokids, and totally lacking in pimelodids. Simultaneously or successively with pectoral sounds, low frequency harmonic drumming sounds were produced by representatives of two families. Drumming sounds were of similar intensity as stridulatory sounds in pimelodids, fainter in doradids, and not present in mochokids. Swimbladder sounds were frequency modulated and the fundamental frequency was similar in pimelodids and doradids. The ratio of stridulatory to drumming sound amplitude was higher in air than underwater in both doradids and one of the pimelodids. Also, overall duration of pectoral sounds, compared to swimbladder sounds, was longer in air than underwater in one doradid and pimelodid species. This first comparison of vocalization within one major teleost order demonstrates a wide variation in occurrence, duration, intensity and spectral content of sounds and indicates family- and species-specific as well as context- (receiver-) dependent patterns of vocalization.  相似文献   

17.
The past 30 years has seen a remarkable development in our understanding of how the auditory system--particularly the peripheral system--processes complex sounds. Perhaps the most significant has been our understanding of the mechanisms underlying auditory frequency selectivity and their importance for normal and impaired auditory processing. Physiologically vulnerable cochlear filtering can account for many aspects of our normal and impaired psychophysical frequency selectivity with important consequences for the perception of complex sounds. For normal hearing, remarkable mechanisms in the organ of Corti, involving enhancement of mechanical tuning (in mammals probably by feedback of electro-mechanically generated energy from the hair cells), produce exquisite tuning, reflected in the tuning properties of cochlear nerve fibres. Recent comparisons of physiological (cochlear nerve) and psychophysical frequency selectivity in the same species indicate that the ear's overall frequency selectivity can be accounted for by this cochlear filtering, at least in bandwidth terms. Because this cochlear filtering is physiologically vulnerable, it deteriorates in deleterious conditions of the cochlea--hypoxia, disease, drugs, noise overexposure, mechanical disturbance--and is reflected in impaired psychophysical frequency selectivity. This is a fundamental feature of sensorineural hearing loss of cochlear origin, and is of diagnostic value. This cochlear filtering, particularly as reflected in the temporal patterns of cochlear fibres to complex sounds, is remarkably robust over a wide range of stimulus levels. Furthermore, cochlear filtering properties are a prime determinant of the 'place' and 'time' coding of frequency at the cochlear nerve level, both of which appear to be involved in pitch perception. The problem of how the place and time coding of complex sounds is effected over the ear's remarkably wide dynamic range is briefly addressed. In the auditory brainstem, particularly the dorsal cochlear nucleus, are inhibitory mechanisms responsible for enhancing the spectral and temporal contrasts in complex sounds. These mechanisms are now being dissected neuropharmacologically. At the cortical level, mechanisms are evident that are capable of abstracting biologically relevant features of complex sounds. Fundamental studies of how the auditory system encodes and processes complex sounds are vital to promising recent applications in the diagnosis and rehabilitation of the hearing impaired.  相似文献   

18.
Mutations play a key role in the development of disease in an individual and the evolution of traits within species. Recent work in humans and other primates has clarified the origins and patterns of single-nucleotide variants, showing that most arise in the father’s germline during spermatogenesis. It remains unknown whether larger mutations, such as deletions and duplications of hundreds or thousands of nucleotides, follow similar patterns. Such mutations lead to copy-number variation (CNV) within and between species, and can have profound effects by deleting or duplicating genes. Here, we analyze patterns of CNV mutations in 32 rhesus macaque individuals from 14 parent–offspring trios. We find the rate of CNV mutations per generation is low (less than one per genome) and we observe no correlation between parental age and the number of CNVs that are passed on to offspring. We also examine segregating CNVs within the rhesus macaque sample and compare them to a similar data set from humans, finding that both species have far more segregating deletions than duplications. We contrast this with long-term patterns of gene copy-number evolution between 17 mammals, where the proportion of deletions that become fixed along the macaque lineage is much smaller than the proportion of segregating deletions. These results suggest purifying selection acting on deletions, such that the majority of them are removed from the population over time. Rhesus macaques are an important biomedical model organism, so these results will aid in our understanding of this species and the disease models it supports.  相似文献   

19.
The main aim of this study was to clarify the general morphology of the autonomic cardiac nervous system in macaque monkeys. A submacroscopic comparative anatomical study of the autonomic cardiac nervous system was performed by examining 22 sides of 11 bodies of four species of macaque monkeys, including some previously unreported species (pig-tailed and stump-tailed monkeys), under a surgical stereomicroscope. The following results were obtained. 1) The basic arrangement of the autonomic cardiac nervous system is constant in all examined macaques. 2) A superior cardiac nerve originating from the superior cervical ganglion was not observed, whereas the thoracic cardiac nerve originating from the sympathetic trunk/ganglia under the cervicothoracic ganglion was rarely observed in all the examined macaques. 3) The main cardiac nerve is the middle cardiac nerve originating from the middle cervical ganglion, similar to the situation in humans. 4) Although the superior, inferior, and thoracic cardiac branches of the vagus nerve were consistently observed, the left thoracic cardiac branch is rarely absent because of its lower origin to the heart. 5) The cranial autonomic nerves tend to distribute into the heart medially (arterial porta), and the caudal autonomic nerves tend to distribute into the heart laterally (venous porta). To comprehend the comparative morphological and evolutionary changes more completely, these results were compared with our previous studies and some references. Consequently, differences in the sympathetic cardiac nerves of macaques and humans are recognized, in spite of the similar morphologies of the vagal cardiac branches. These differences include the composition of the cervicothoracic ganglion, the lower positions of the middle cervical and cervicothoracic ganglia, and the narrow range for the origin of the cardiac nerves in macaques compared to that in humans.  相似文献   

20.
Alarm and estrous calls emitted by Japanese macaques were recorded and analyzed in the Arashiyama West and East groups. Their responses to natural calls as well as to synthesized versions varying in the acoustic parameters that defined the vocalizations were studied. The response patterns shown by Arashiyama West group members, which were subject to a distinct change with only a slight difference of a single parameter, appeared to reflect strict underlying perceptual boundaries. This was analogous to the categorical perception that humans show with speech sounds. In contrast, continuous perception was exhibited by Arashiyama East group individuals. When several sounds were played back in combination to the former group, following stimuli were recognized by quite different cues from those by which the first sound was perceived. The groups' differences in vocal perception are discussed in terms of the ecological differences of the environments they inhabit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号