首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The backbone dynamics of Fusarium solani pisi cutinase in complex with a phosphonate inhibitor has been studied by a variety of nuclear magnetic resonance experiments to probe internal motions on different time scales. The results have been compared with dynamical studies performed on free cutinase. In solution, the enzyme adopts its active conformation only upon binding the inhibitor. While the active site Ser120 is rigidly attached to the stable alpha/beta core of the protein, the remainder of the binding site is very flexible in the free enzyme. The other two active site residues Asp175 and His188 as well as the oxyanion hole residues Ser42 and Gln121 are only restrained into their proper positions upon binding of the substrate-like inhibitor. The flap helix, which opens and closes the binding site in the free molecule, is also fixed in the cutinase-inhibitor complex. Our results are in contrast with the X-ray analysis results, namely that in the protein crystal, free cutinase has a well-defined active site and a preformed oxyanion hole and that it does not need any rearrangements to bind its substrate. Our solution studies show that cutinase does need conformational rearrangements to bind its substrate, which may form the rate-limiting step in catalysis.  相似文献   

2.
Although enzymes are potential candidates for industrial catalysts, their industrial applications have been limited because they are easily deactivated under harsh operational conditions. In this study, a plasmid display system was used for the screening of stable cutinase in organic solvent (20% acetonitrile) and at high temperature. The fusion proteins were expressed and bound to specific DNA sequences on the encoding plasmids. Proteolysis resistance was used as a selection tool, where well-folded proteins are more resistant to the protease digestion than poorly-folded proteins. Stable mutants, identified to be I183T, I183F, and A56V, were screened in the organic solvent and at high temperature. The I183T and I183F mutants were more stable than the A56V mutant in 20% acetonitrile, while the A56V mutant was superior to the I183T and I183F mutants at high temperature. Molecular modeling was performed in order to investigate the residual characteristics of the stable mutants; secondary structure, residual solvation energy, residual ??-carbon flexibility, number of hydrogen bonds, number of neighboring amino acids, ratio of exposed/buried residue, and surface area. This analysis provided some guidelines for increased stability.  相似文献   

3.
4.
The application of cutinase from Fusarium solani pisi as a fat-stain removing ingredient in laundry washing is hampered by its lack of stability in the presence of anionic surfactants. We postulate that the stability of cutinase towards anionics can be improved by mutations increasing its temperature stability. Thermal unfolding as measured with DSC, appears to be irreversible, though the thermograms are more symmetric than predicted by a simple irreversible model. In the presence of taurodeoxycholate (TDOC), the unfolding temperature is lower and the unfolding is reversible. We conclude that an early reversible unfolding intermediate exists in which a number of additional hydrophobic patches are exposed to the solvent, or preferentially are covered with TDOC. Improvement of the stability of cutinase with respect to both surfactants and thermal denaturation, should thus be directed toward the prevention of exposure of hydrophobic patches in the early intermediate.  相似文献   

5.
Summary A Fusarium solani pisi recombinant cutinase solubilized in phosphatidylcholine/isooctane reversed micelles was used to catalyse the esterification reaction of butyric acid with 2-butanol at pH 10.7. The influence of temperature, Wo and substrates on lipase stability was evaluated. The enzyme displays a better stability, with a half-life over 125 days, at a temperature of 22°C and for a low water content (WO= 6.5). Butyric acid increased the cutinase deactivation (t1/2=0.56h), while 2-butanol led to a similar half-life (t1/2=14h) as without substrate.  相似文献   

6.
Recombinant cutinase from Fusarium solani pisi is expressed and excreted with very high yields in Escherichia coli cultures. Cutinase was crystallized at 20 degrees C using the vapour diffusion technique, with polyethylene glycol 6000 as precipitant. Best crystals were obtained at pH 7.0 with polyethylene glycol 6000 as precipitant. Best crystals were obtained at pH 7.0 with polyethylene glycol at 15 to 20%. They are monoclinic, with space group P2(1) and cell dimensions a = 35.1 A, b = 67.4 A, c = 37.05 A and beta = 94.0 degrees; they diffract beyond 1.5 A resolution. The asymmetric unit contains one molecule of 22,000 Da (Vm = 1.98 A3/Da; 38% water).  相似文献   

7.
Summary An aqueous two-phase system of polyethylene glycol (PEG) and potassium phosphate was developed for extraction of a cutinase from cell debris of a recombinant Escherichia coli strain. Basic studies to identify the primary factors which affect cutinase partition, namely the influence of polymer molecular weight, polymer concentration and pH were carried out using a purified preparation of the cutinase. The enzyme partition coefficient was enhanced with decreasing PEG molecular weight, increasing tie-line length and pH.  相似文献   

8.
Fusarium venenatum A3/5 was transformed using the Aspergillus niger expression plasmid, pIGF, in which the coding sequence for the F. solani f. sp. pisi cutinase gene had been inserted in frame, with a KEX2 cleavage site, with the truncated A. niger glucoamylase gene under control of the A. niger glucoamylase promoter. The transformant produced up to 21 U cutinase l−1 in minimal medium containing glucose or starch as the primary carbon source. Glucoamylase (165 U l−1 or 8 mg l−1) was also produced. Both the transformant and the parent strain produced cutinase in medium containing cutin.  相似文献   

9.
The regio and enantioselectivity of a recombinant cutinase from Fusarium solani pisi was tested on three racemic and one prochiral phenylalkanediols via irreversible transesterification with vinyl acetate. The optimization of the reaction conditions involved the screening of different organic solvents as well as the variation of the substrate concentrations. Thus, the enzymatic activity was checked by measuring initial reaction rates, overall yields, and enantiomeric excess of the reaction products. Only the smaller molecules were recognized by the enzyme, and a denaturing effect of the acyl donor was observed. Nevertheless, a stabilising effect on the enzyme caused by a pre-incubation with the diol was also noted.  相似文献   

10.
Genetic engineering was integrated with the production and purification of Fusarium solani pisi cutinases, in order to obtain the highest amount of enzyme activity units, after purification. An aqueous two-phase system (ATPS) of polyethylene glycol 3350, dipotassium phosphate and whole broth was used for the extraction of three extracellular cutinases expressed in Saccharomyces cerevisiae. The production/extraction process was evaluated regarding cutinases secretion in the medium, partition behaviour and extraction yields in the ATPS. The proteins studied were cutinase wild type and two fusion proteins of cutinase with the tryptophane-proline (WP) fusion tags, namely (WP)(2) and (WP)(4). The (WP)(4) fusion protein enabled a 300-fold increase of the cutinase partition coefficient when comparing to the wild type. However, the secretion of the fusion proteins was lower than of the wild type cutinase secretion. A batch extraction strategy was compared with a continuous extraction in a perforated rotating disc contactor (PRDC). The batch and continuous systems were loaded with as much as 60% (w/w) whole cultivation broth. The continuous extraction strategy provided a 2.5 higher separation capacity than the batch extraction strategy. Considering the integrated process, the cutinase-(WP)(2) proved to lead to the highest product activity, enabling five and six times more product activity than the wild type and the (WP)(4) fusion proteins, respectively.  相似文献   

11.
The Fusarium solani pisi lipase cutinase has been genetically engineered to investigate the influence of C-terminal peptide extensions on the partitioning of the enzyme in PEG-salt based aqueous two-phase bioseparation systems. Seven different cutinase lipase variants were constructed containing various C-terminal peptide extensions including tryptophan rich peptide tags ((WP)(2) and (WP)(4)), positively ((RP)(4)) and negatively ((DP)(4)) charged tags as well as combined tags with tryptophan together with either positively ((WPR)(4)) or negatively ((WPD)(4)) charged amino acids. The modified cutinase variants were stably produced in Escherichia coli as secreted to the periplasm from which they were efficiently purified by IgG-affinity chromatography employing an introduced N-terminal IgG-binding ZZ affinity fusion partner present in all variants. Partitioning experiments performed in a PEG 4000/sodium phosphate aqueous two-phase system showed that for variants containing either (WP)(2) or (WP)(4) peptide extensions, 10- to 70-fold increases in the partitioning to the PEG rich top-phase were obtained, when compared to the wild type enzyme. An increased partitioning was also seen for cutinase variants tagged with both tryptophans and charged amino acids, whereas the effect of solely charged peptide extensions was relatively small. In addition, when performing partitioning experiments from cell disintegrates, the (WP)(4)-tagged cutinase showed a similarly high PEG-phase partitioning, indicating that the effect from the peptide tag was unaffected by the background of the host proteins. Taken together, the results show that the partitioning of the recombinantly produced cutinase model enzyme could be significantly improved by relatively minor genetic engineering and that the effects observed for purified proteins are retained also in an authentic whole cell disintegrate system. The results presented should be of general interest also for the improvement of the partitioning properties of other industrially interesting proteins including bulk enzymes.  相似文献   

12.
The backbone dynamics of Fusarium solani pisi cutinase has been studied by a variety of nuclear magnetic resonance experiments to probe internal motions on different time scales. The core of cutinase appears to be highly rigid. The binding site, including the oxyanion hole, is mobile on the microsecond to millisecond time scale, in contrast to the well-defined active site and preformed oxyanion hole elucidated by X-ray crystallography [Martinez, C., de Geus, P., Lauwereys, M., Matthyssens, G., and Cambillau, C. (1992) Nature 356, 615-618]. In this crystal structure, cutinase has a rather open conformation, in which the hydrophobic binding site is exposed. The observed mobility in solution most likely represents the interconversion between open and more closed conformations, like in a true lipase. The opening and closing motions are on a time scale which corresponds with the kinetics of the hydrolysis reaction, i.e., the millisecond range, which suggests that these conformational rearrangements form the rate-limiting step in catalysis. We conclude that the crystal structure probably represents one of the multiple conformations present in solution, which fortuitously is the active conformation. The implications of our findings are discussed with particular reference to the explanation of the lack of interfacial activation as found for cutinase.  相似文献   

13.
Fusarium roseum culmorum, grown on apple cutin as the sole source of carbon, was shown to produce a cutin depolymerizing enzyme. From the extracellular fluid of these F. roseum cultures, a cutinase and a nonspecific esterase were isolated utilizing Sephadex G-100, QAE-Sephadex, and SP-Sephadex chromatography. The homogeneity of the cutinase was verified by polyacrylamide disc gel electrophoresis. The molecular weight of the cutinase was estimated to be 24,300 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Electrophoretic mobility of this enzyme was between that of Cutinases I and II from Fusarium solani pisi. The F. roseum cutinase hydrolyzed p-nitrophenyl butyrate and cutin, but not p-nitrophenyl palmitate, while the nonspecific esterase hydrolyzed the long-chain esters. Amino acid composition of F. roseum cutinase was found to be similar to that of F. solani pisi Cutinase I except for differences in the number of serine, valine, and cysteine residues. The time-course, protein concentration dependence, substrate concentration dependence, and pH optimum (10.0 for cutin hydrolysis) of the F. roseum cutinase was similar to the cutinases from F. solani pisi. The F. roseum cutinase was inhibited by diisopropylfluorophosphate and paraoxon, and the [3H]diisopropylphosphate group was covalently attached to the enzyme upon treatment with tritiated diisopropylfluorophosphate. Therefore, it is concluded that catalysis by cutinase involves an “active serine.” Immunochemical studies with a rabbit antibody prepared against F. solani pisi Cutinase I demonstrated that Cutinase II from this organism was immunologically very similar to, but not identical to, Cutinase I. On the other hand, the cutinase from F. roseum was immunologically quite different from the cutinases isolated from F. solani pisi in that it did not cross-react with anticutinase I. However, all three cutinases were virtually identical in their sensitivity to inhibition by anticutinase I, and all three enzymes were virtually completely inhibited by the anticutinase I.  相似文献   

14.
 A synthetic derivative of the cutinase cDNA of Fusarium solani pisi was expressed in Aspergillus awamori using the A. awamori endoxylanase II (exlA) promoter and terminator. The influence of the origin of the pre-sequence and the presence of a pro-sequence on the efficiency of extracellular cutinase production was analysed in single-copy transformants containing an expression cassette integrated at the pyrG locus. Transformants containing a construct encoding a direct, in-frame fusion of the xylanase pre-peptide to the mature cutinase showed a 2-fold higher cutinase production level compared to strains containing constructs with an additional cutinase pro-peptide. The effect of multicopy integration of the expression cassette on cutinase production was analysed in strains with different numbers of a cutinase construct containing its own pre-prosequence. The multicopy strains showed a 6- to 12-fold increased production of extracellular cutinase relative to the single-copy strains. No linear dose response relation to the number of expression cassettes present in the strains was observed. The amount of active enzyme produced by the strains correlated with the amount of cutinase-specific mRNA, suggesting that cutinase overproduction is not limited at the level of translation or secretion. Received: 3 August 1995/Received revision: 20 December 1995/Accepted: 8 January 1996  相似文献   

15.
An aqueous two-phase system composed by a thermoseparating random copolymer of ethylene oxide/propylene oxide 50/50 (%w/w), Breox, and hydroxypropyl starch – Reppal PES 100 was evaluated for the partitioning of Fusarium solani pisi recombinant cutinase. The effect of several additives on the partitioning of pure cutinase was evaluated. Micelles of sodium dodecanoate provided a ten-fold increase of the partitioning coefficient (K=9) and recovery yields of 60-75%. The phase diagrams of the systems composed of Breox, Reppal and sodium dodecanoate were determined and it was found that in systems with high surfactant concentrations, the binodal was moved to lower polymer concentrations, enabling a two-phase system with 6% (w/w) of each polymer.  相似文献   

16.
Fusarium solani isolate T-8 produces an extracellular enzyme, cutinase, which catalyzes the degradation of cutin in the plant cuticle. Cutinase activity can be measured by the hydrolysis of either the artifical substrate, p-nitrophenylbutyrate (PNB), or radioactive cutin containing [14C]palmitic acid. In the present study, the culture filtrate contained basal levels of cutinase when T-8 was grown on acetate as a sole source of carbon. After mutagenesis, a cutinase-defective mutant (PNB-1) was identified by screening acetate-grown colonies for a loss of PNBase activity. The mutant possessed an 80 to 90% reduction in cutinase activity when grown for 3 to 5 days on acetate- or cutin-containing medium. Induction of cutinase by cutin or hydrolyzed cutin after growth on glucose medium was similarly reduced. Kinetic analysis indicated that cutinase from the mutant possessed a near normal Km for PNB and a 92% reduction in Vmax. Fluorography and Western blotting of 15% sodium dodecyl sulfate-polyacrylamide gels of separated 35S-labeled proteins from cutin induction medium revealed that in the mutant the 22,000-molecular-weight band corresponding to cutinase was reduced approximately 85%. The virulence of the mutant in a pea stem bioassay was decreased by 55% and was restored to nearly the parental level by the addition of purified cutinase. The data suggest that the mutant synthesizes reduced quantities of a functional and immunoreactive cutinase enzyme and that cutinase plays a critical role in infection. The PNB1 mutation may be within a regulatory gene or a promoter for cutinase.  相似文献   

17.
Structural effects resulting from the interaction of the anionic surfactant sodium bis[2-ethylhexyl]ester sulfosuccinic acid (AOT) with a recombinant cutinase are studied and characterised by means of spectroscopic techniques. Levels of interaction are described in terms of surfactant to protein molar ratio (MR). Three major regions may be identified: MR=0–10, MR=10–30 and MR>30. The latter corresponds to co-operative binding of the surfactant to protein leading to overall denaturation as observed by far-UV circular dichroism (CD) and 8-anilino-1-naphtalene-sulfonic acid (1,8-ANS) fluorescence. For MR=10–30, steady-state fluorescence suggests slight conformational changes while near-UV CD shows almost complete loss of signal for the chromophore residues. Finally, the first level, MR=0–10, reveals two distinct effects of interaction. For very low MR (0–5), the protein seems to remain structurally intact. However, at MR=10, both near-UV CD and unfolding kinetics reveal a structurally disturbed protein contrary to steady-state fluorescence spectra. This suggests that AOT interacts specifically with cutinase at this level, through electrostatic interactions mostly. By promoting localised disruption or destabilisation of crucial native electrostatic interactions, the surfactant initiates conformational loss of tertiary structure, leading to higher denaturation as MR increases.  相似文献   

18.
Summary A dual-enzyme electrode flow injection system that can simultaneously determine glucose and maltose is used for an on-line study of starch hydrolyses catalysed by amylases. With the working system, determinations can be made every 2 minutes. A 10 L sample size with recycled back-flow minimises any loss of the reaction medium. The production, growth and decay of glucose and maltose concentrations during starch hydrolysis under various enzymatic conditions can thus be closely monitored, making it useful for the study of the catalytic kinetics of amylases and in screening and analysing enzyme systems.  相似文献   

19.
20.
A transesterification process is analyzed in its multiple kinetic components that include the determination of the kinetic constants for both substrates, butyl acetate (BAc) and hexanol (H), involved in the alcoholysis reaction and for the products formed (hexyl acetate (HAc) and butanol (B)), participating into the reverse reaction. The order of magnitude of these constants is discussed in relation with the AOT/isooctane reverse micellar system under study. The values of the equilibrium conversion (X(e)) and constant (K(eq)) were also determined. Diffusional limitations were detected for H concentrations lower than 450 mM and the correspondent effectiveness factors were calculated. Above 450 mM H the reaction is kinetically controlled. The operation of a batch stirred tank reactor (BSTR) was modeled considering the integrated rate equation for reversible kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号