首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article describes the structure and assembly of bacteriophage PRD1, a lipid-containing virus able to infect Escherichia coli. This phage, with an approximate diameter of 65 nm, is composed of an outer protein shell surrounding a lipid-protein membrane which, in turn, encloses the nucleic acid. The phage genome consists of a single linear dsDNA molecule of about 15 kb that has a protein covalently linked to each of its 5′ ends. This protein is used as a primer in DNA replication. During assembly membrane proteins are inserted into the host cytoplasmic membrane while major capsid protein multimers are found in the cytoplasm. Capsid multimers, assisted by two nonstructural assembly factors, are capable of translocating the virus-specific membrane resulting in the formation of cytoplasmic empty particles. Subsequent DNA packaging leads to the formation of infectious virus.  相似文献   

2.
The M13 phage assembles in the inner membrane of Escherichia coli. During maturation, about 2,700 copies of the major coat protein move from the membrane onto a single-stranded phage DNA molecule that extrudes out of the cell. The major coat protein is synthesized as a precursor, termed procoat protein, and inserts into the membrane via a Sec-independent pathway. It is processed by a leader peptidase from its leader (signal) peptide before it is assembled onto the phage DNA. The transmembrane regions of the procoat protein play an important role in all these processes. Using cysteine mutants with mutations in the transmembrane regions of the procoat and coat proteins, we investigated which of the residues are involved in multimer formation, interaction with the leader peptidase, and formation of M13 progeny particles. We found that most single cysteine residues do not interfere with the membrane insertion, processing, and assembly of the phage. Treatment of the cells with copper phenanthroline showed that the cysteine residues were readily engaged in dimer and multimer formation. This suggests that the coat proteins assemble into multimers before they proceed onto the nascent phage particles. In addition, we found that when a cysteine is located in the leader peptide at the -6 position, processing of the mutant procoat protein and of other exported proteins is affected. This inhibition of the leader peptidase results in death of the cell and shows that there are distinct amino acid residues in the M13 procoat protein involved at specific steps of the phage assembly process.  相似文献   

3.
The filamentous phage protein pIV is required for assembly and secretion of the virus and possesses regions homologous to those found in a number of Gram-negative bacterial proteins that are essential components of a widely distributed extracellular protein-export system. These proteins form multimers that may constitute an outer membrane channel that allows phage/protein egress. Three sets of f1 gene IV mutants were isolated at positions that are absolutely (G355 and P375) or largely (F381) conserved amongst the 16 currently known family members. The G355 mutants were non-functional, interfered with assembly of plV+ phage, and made Escherichia coli highly sensitive to deoxycholate. The P375 mutants were non-functional and defective in multimerization. Many of the F381 mutants retained substantial function, and even those in which charged residues had been introduced supported some phage assembly. Some inferences about the roles of these conserved amino acids are made from the mutant phenotypes.  相似文献   

4.
Assembly and export of filamentous phage requires four non-capsid proteins: the outer membrane protein, pIV; the inner membrane proteins, pI and pXI; and a cytoplasmic host factor, thioredoxin. Chemical cross-linking of intact cells demonstrates a trans-membrane complex containing pI and pIV. Formation of the complex protects pI from proteolytic cleavage by an endogenous protease. This protection also requires pXI, which is identical to the C-terminal portion of pI. This indicates that pXI, which is required for phage assembly in its own right, is also part of the complex. This complex forms in the absence of any other phage proteins or the DNA substrate; hence, it represents the first preinitiation step of phage morphogenesis. On the basis of protease protection data, we propose that the preinitiation complex is converted to an initiation complex by binding phage DNA, thioredoxin and the initiating minor coat protein(s).  相似文献   

5.
The lipid-containing bacteriophage PRD1 infects a variety of gram-negative cells by injecting its linear double-stranded DNA genome into the host cell cytoplasm, while the protein capsid is left outside. The virus membrane and several structural proteins are involved in phage DNA entry. In this work we identified a new infectivity protein of PRD1. Disruption of gene XXXII resulted in a mutant phenotype defective in phage reproduction. The absence of the protein P32 did not compromise the particle assembly but led to a defect in phage DNA injection. In P32-deficient particles the phage membrane is unable to undergo a structural transformation from a spherical to a tubular form. Since P32(-) particles are able to increase the permeability of the host cell envelope to a degree comparable to that found with wild-type particles, we suggest that the tail-tube formation is needed to eject the DNA from the phage particle rather than to reach the host cell interior.  相似文献   

6.
7.
Filamentous bacteriophages are interesting paradigms in structural molecular biology, in part because of the unusual mechanism of filamentous phage assembly. During assembly, several thousand copies of an intracellular DNA-binding protein bind to each copy of the replicating phage DNA, and are then displaced by membrane-spanning phage coat proteins as the nascent phage is extruded through the bacterial plasma membrane. This complicated process takes place without killing the host bacterium.  相似文献   

8.
Nucleo cytoplasmic large DNA viruses (NCLDVs) are a group of double‐stranded DNA viruses that replicate their DNA partly or entirely in the cytoplasm in association with viral factories (VFs). They share about 50 genes suggesting that they are derived from a common ancestor. Using transmission electron microscopy (TEM) and electron tomography (ET) we showed that the NCLDV vaccinia virus (VACV) acquires its membrane from open membrane intermediates, derived from the ER. These open membranes contribute to the formation of a single open membrane of the immature virion, shaped into a sphere by the assembly of the viral scaffold protein on its convex side. We now compare VACV with the NCLDV Mimivirus by TEM and ET and show that the latter also acquires its membrane from open membrane intermediates that accumulate at the periphery of the cytoplasmic VF. In analogy to VACV this membrane is shaped by the assembly of a layer on the convexside of its membrane, likely representing the Mimivirus capsid protein. By quantitative ET we show for both viruses that the open membrane intermediates of assembly adopt an ‘open‐eight’ conformation with a characteristic diameter of 90 nm for Mimi‐ and 50 nm for VACV. We discuss these results with respect to the common ancestry of NCLDVs and propose a hypothesis on the possible origin of this unusual membrane biogenesis.  相似文献   

9.
The mechanisms underlying compartmentalization of prokaryotic DNA replication are largely unknown. In the case of the Bacillus subtilis phage 29, the viral protein p1 enhances the rate of in vivo viral DNA replication. Previous work showed that p1 generates highly ordered structures in vitro. We now show that protein p1, like integral membrane proteins, has an amphiphilic nature. Furthermore, immunoelectron microscopy studies reveal that p1 has a peripheral subcellular location. By combining in vivo chemical cross-linking and cell fractionation techniques, we also demonstrate that p1 assembles in infected cells into multimeric structures that are associated with the bacterial membrane. These structures exist both during viral DNA replication and when 29 DNA synthesis is blocked due to the lack of viral replisome components. In addition, protein p1 encoded by plasmid generates membrane-associated multimers and supports DNA replication of a p1-lacking mutant phage, suggesting that the pre-assembled structures are functional. We propose that a phage structure assembled on the cell membrane provides a specific site for 29 DNA replication.  相似文献   

10.
The DNA entrance vertex of the phage head is critical for prohead assembly and DNA packaging. A single structural protein comprises this dodecameric ring substructure of the prohead. Assembly of the phage T4 prohead occurs on the cytoplasmic membrane through a specific attachment at or near the gp20 DNA entrance vertex. An auxiliary head assembly gene product, gp40, was hypothesized to be involved in assembling the gp20 substructure. T4 genes 20, 40 and 20 + 40 were cloned into expression vectors under lambda pL promoter control. The corresponding T4 gene products were synthesized in high yield and were active as judged by their ability to complement the corresponding infecting T4 mutants in vivo. The cloned T4 gene 20 and gene 40 products were inserted into the cytoplasmic membrane as integral membrane proteins; however, gp20 was inserted into the membrane only when gp40 was also synthesized, whereas gp40 was inserted in the presence or absence of gp20. The gp20 insertion required a membrane potential, was not dependent upon the Escherichia coli groE gene, and assumed a defined membrane-spanning conformation, as judged by specific protease fragments protected by the membrane. The inserted gp20 structure could be probed by antibody binding and protein A-gold immunoelectron microscopy. The data suggest that a specific gp20-gp40-membrane insertion structure constitutes the T4 prohead assembly initiation complex.  相似文献   

11.
The filamentous phage-encoded gene IV protein is required at high levels for virus assembly, although it is not a constituent of the virion. It is an integral membrane protein that does not contain an extended hydrophobic region of the kind often required for stable integration in the inner membrane. Rather, like a number of Escherichia coli outer membrane proteins, pIV is rich in charged amino acid residues and is predicted to consist of extensive beta-sheet structures. In phage-producing cells, pIV is primarily detected in the outer membrane, while in cells that produce it from the cloned gene, pIV is found in both the inner and outer membranes. The protein is synthesized as a precursor. Following cleavage of the signal sequence and translocation into the periplasm, the mature form is initially found as a soluble species. Soluble pIV then integrates into the membrane with a half-time of one to two minutes. Neither phage assembly nor other phage proteins are needed for this membrane integration, and phage assembly does not require the presence of the soluble form. The gene IV protein may be part of the structure through which the assembling phage is extruded.  相似文献   

12.
Structure and assembly of filamentous bacterial viruses.   总被引:6,自引:0,他引:6  
Filamentous bacterial viruses are flexible nucleoprotein rods, about 6 nm in diameter by 1000-2000 nm in length (depending on the virus strain). A protein shell encloses a central core of single-stranded circular DNA. The coat protein subunits forming the shell are largely alpha-helix, elongated in an axial direction, and also sloping radially, so as to overlap each other and give an arrangement of subunits reminiscent of scales on a fish. This arrangement of alpha-helices is rather like some models of myosin filaments. An early step in assembly of the virion is the formation of a complex between the viral DNA and an intracellular packaging protein that is not found in completed virions. Newly synthesized coat protein becomes associated with the plasma membrane of the cell. During the final steps of assembly, the packaging protein is displaced from the DNA and replaced by coat protein as the virion passes out through the plasma membrane of the host cell.  相似文献   

13.
The bacterial phage shock protein (Psp) stress response system is activated by events affecting the cytoplasmic membrane. In response, Psp protein levels increase, including PspA, which has been implicated as the master effector of stress tolerance. Yersinia enterocolitica and related bacteria with a defective Psp system are highly sensitive to the mislocalization of pore-forming secretin proteins. However, why secretins are toxic to psp null strains, whereas some other Psp inducers are not, has not been explained. Furthermore, previous work has led to the confounding and disputable suggestion that PspA is not involved in mitigating secretin toxicity. Here we have established a correlation between the amount of secretin toxicity in a psp null strain and the extent of cytoplasmic membrane permeability to large molecules. This leads to a morphological change resembling cells undergoing plasmolysis. Furthermore, using novel strains with dis-regulated Psp proteins has allowed us to obtain unequivocal evidence that PspA is not required for secretin-stress tolerance. Together, our data suggest that the mechanism by which secretin multimers kill psp null cells is by causing a profound defect in the cytoplasmic membrane permeability barrier. This allows lethal molecular exchange with the environment, which the PspB and PspC proteins can prevent.  相似文献   

14.
The gene 3 coding for one minor coat protein (adsorption protein) of phage IKe was cloned into an expression plasmid and overproduced. The presence of a promoter for this gene could be demonstrated as well as the incorporation of the IKe gene 3 protein (g3p) into the cytoplasmic membrane of host cells. When 110 carboxy-terminal amino acids were deleted, the truncated protein was translocated across the cytoplasmic membrane into the periplasm. Thus the deleted amino acids bear a membrane anchor domain. In contrast to the partly homologous g3p of the Ff phages, IKe g3p did not alter the membrane properties of its host. IKe g3p was not incorporated into Ff phage particles in amounts detectable by our assays although the presence of IKe g3p may affect the efficiency of Ff phage production. The existence of a structural feature necessary for the specific recognition of the respective g3p during phage assembly is deduced.  相似文献   

15.
Crump CM  Yates C  Minson T 《Journal of virology》2007,81(14):7380-7387
The assembly and egress of herpesviruses are complex processes that require the budding of viral nucleocapsids into the lumen of cytoplasmic compartments to form mature infectious virus. This envelopment stage shares many characteristics with the formation of luminal vesicles in multivesicular endosomes. Through expression of dominant-negative Vps4, an enzyme that is essential for the formation of luminal vesicles in multivesicular endosomes, we now show that Vps4 function is required for the cytoplasmic envelopment of herpes simplex virus type 1. This is the first example of a large enveloped DNA virus engaging the multivesicular endosome sorting machinery to enable infectious virus production.  相似文献   

16.
The efficient release of many enveloped viruses from cells involves the coalescence of viral components at sites of budding on the plasma membrane of infected cells. This coalescence is believed to require interactions between the cytoplasmic tails of surface glycoproteins and the matrix (M) protein. For the paramyxovirus simian virus 5 (SV5), the cytoplasmic tail of the hemagglutinin-neuraminidase (HN) protein has been shown previously to be important for normal virus budding. To investigate a role for the cytoplasmic tail of the fusion (F) protein in virus assembly and budding, we generated a series of F cytoplasmic tail-truncated recombinant viruses. Analysis of these viruses in tissue culture indicated that the cytoplasmic tail of the F protein was dispensable for normal virus replication and budding. To investigate further the requirements for assembly and budding of SV5, we generated two double-mutant recombinant viruses that lack 8 amino acids of the predicted 17-amino-acid HN protein cytoplasmic tail in combination with truncation of either 10 or 18 amino acids from the predicted 20-amino-acid F protein cytoplasmic tail. Both of the double mutant recombinant viruses displayed a replication defect in tissue culture and a budding defect, the extent of which was dependent on the length of the remaining F cytoplasmic tail. Taken together, this work and our earlier data on virus-like particle formation (A. P. Schmitt, G. P. Leser, D. L. Waning, and R. A. Lamb, J. Virol. 76:3953-3964, 2002) suggest a redundant role for the cytoplasmic tails of the HN and F proteins in virus assembly and budding.  相似文献   

17.
The gene IV protein of filamentous bacteriophages is an integral membrane protein required for phage assembly and export. A series of gene IV::phoA fusion, gene IV deletion, and gene IV missense mutations have been isolated and characterized. The alkaline phosphatase activity of the fusion proteins suggests that pIV lacks a cytoplasmic domain. Cell fractionation studies indicate that the carboxy-terminal half of pIV mediates its assembly into the membrane, although there is no single, discrete membrane localization domain. The properties of gene IV missense and deletion mutants, combined with an analysis of the similarities between pIVs from various filamentous phage and related bacterial export-mediating proteins, suggest that the amino-terminal half of pIV consists of a periplasmic substrate-binding domain that confers specificity to the assembly-export system.  相似文献   

18.
Gp7 is a minor capsid protein of the Bacillus subtilis bacteriophage SPP1. Homologous proteins are found in numerous phages but their function remained unknown. Deletion of gene 7 from the SPP1 genome yielded a mutant phage (SPP1del7) with reduced burst-size. SPP1del7 infections led to normal assembly of virus particles whose morphology, DNA and protein composition was undistinguishable from wild-type virions. However, only approximately 25% of the viral particles that lack gp7 were infectious. SPP1del7 particles caused a reduced depolarization of the B. subtilis membrane in infection assays suggesting a defect in virus genome traffic to the host cell. A higher number of SPP1del7 DNA ejection events led to abortive release of DNA to the culture medium when compared with wild-type infections. DNA ejection in vitro showed that no detectable gp7 is co-ejected with the SPP1 genome and that its presence in the virion correlated with anchoring of released DNA to the phage particle. The release of DNA from wild-type phages was slower than that from SPP1del7 suggesting that gp7 controls DNA exit from the virion. This feature is proposed to play a central role in supporting correct routing of the phage genome from the virion to the cell cytoplasm.  相似文献   

19.
Human immunodeficiency virus Gag protein self-assembles into spherical particles, and recent reports suggest the formation of assembly intermediates during the process. To understand the nature of such assembly intermediates along with the mechanism of Gag assembly, we employed expression in Escherichia coli and an in vitro assembly reaction. When E. coli expression was performed at 37 degrees C, Gag predominantly assembled to a high order of multimer, apparently equivalent to the virus-like particles obtained following Gag expression in eukaryotic cells, through the formation of low orders of multimer characterized with a discreet sedimentation value of 60 S. Electron microscopy confirmed the presence of spherical particles in the E. coli cells. In contrast, expression at 30 degrees C resulted in the production of only the 60 S form of Gag multimer, and crescent-shaped structures or small patches with double electron-dense layers were accumulated, but no complete particles. In vitro assembly reactions using purified Gag protein, when performed at 37 degrees C, also produced the high order of Gag multimers with some 60 S multimers, whereas the 30 degrees C reaction produced only the 60 S multimers. However, when the 60 S multimers were cross-linked so as not to allow conformational changes, in vitro assembly reactions at 37 degrees C did not produce any higher order of multimers. ATP depletion did not halt Gag assembly in the E. coli cells, and the addition of GroEL-GroES to in vitro reactions did not facilitate Gag assembly, indicating that conformational changes rather than protein refolding by chaperonins, induced at 37 degrees C, were solely responsible for the Gag assembly observed here. We suggest that Gag assembles to a capsid through the formation of the 60 S multimer, possibly a key intermediate of the assembly process, accompanied with conformational changes in Gag.  相似文献   

20.
Infection of Escherichia coli by the filamentous bacteriophage f1 is initiated by interaction of the end of the phage particle containing the gene III protein with the tip of the F conjugative pilus. This is followed by the translocation of the phage DNA into the cytoplasm and the insertion of the major phage capsid protein, pVIII, into the cytoplasmic membrane. DNA transfer requires the chromosomally encoded TolA, TolQ, and TolR cytoplasmic membrane proteins. By using radiolabeled phages, it can be shown that no pVIII is inserted into the cytoplasmic membrane when the bacteria contain null mutations in tolQ, -R and -A. The rate of infection can be varied by using bacteria expressing various mutant TolA proteins. Analysis of the infection process in these strains demonstrates a direct correlation between the rate of infection and the incorporation of infecting bacteriophage pVIII into the cytoplasmic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号