首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The −1 ribosomal frameshifting requires the existence of an in cis RNA slippery sequence and is promoted by a downstream stimulator RNA. An atypical RNA pseudoknot with an extra stem formed by complementary sequences within loop 2 of an H-type pseudoknot is characterized in the severe acute respiratory syndrome coronavirus (SARS CoV) genome. This pseudoknot can serve as an efficient stimulator for −1 frameshifting in vitro. Mutational analysis of the extra stem suggests frameshift efficiency can be modulated via manipulation of the secondary structure within the loop 2 of an infectious bronchitis virus-type pseudoknot. More importantly, an upstream RNA sequence separated by a linker 5′ to the slippery site is also identified to be capable of modulating the −1 frameshift efficiency. RNA sequence containing this attenuation element can downregulate −1 frameshifting promoted by an atypical pseudoknot of SARS CoV and two other pseudoknot stimulators. Furthermore, frameshift efficiency can be reduced to half in the presence of the attenuation signal in vivo. Therefore, this in cis RNA attenuator represents a novel negative determinant of general importance for the regulation of −1 frameshift efficiency, and is thus a potential antiviral target.  相似文献   

2.
Guide RNAs (gRNAs), key components of the RNA editing reaction in Trypanosoma brucei, direct the insertion and deletion of uridylate (U) residues. Analyses of gRNAs reveal three functional elements. The 5′-end of the gRNA contains the anchor, which is responsible for selection and binding to the pre-edited mRNA. The second element (the guiding region) provides the information required for editing. At the 3′-end of the gRNA is a non-encoded U-tail, whose function remains unclear. However, the cleavage–ligation model for editing proposes that the U-tail binds to purine-rich regions upstream of editing sites, thereby strengthening the interaction and holding onto the 5′ cleavage product. Our previous studies demonstrated that the U-tail interacts with upstream sequences and may play roles in both stabilization and tethering. These studies also indicated that the U-tail interactions involved mRNA regions that were to be subsequently edited. This raised the question of what happens to the mRNA–U-tail interaction as editing proceeds in the 3′→5′ direction. We examined gCYb-558 and its U-tail interaction with 5′CYbUT and two partially edited 5′CYb substrates. Our results indicate that the 3′-end of the U-tail interacts with the same sequence in all three mRNAs. Predicted secondary structures using crosslinking data suggest that a similar structure is maintained as editing proceeds. These results indicate that the role of the U-tail may also involve maintenance of important secondary structure motifs.  相似文献   

3.
TbRGG2 is an essential kinetoplastid RNA editing accessory factor that acts specifically on pan-edited RNAs. To understand the mechanism of TbRGG2 action, we undertook an in-depth analysis of edited RNA populations in TbRGG2 knockdown cells and an in vitro examination of the biochemical activities of the protein. We demonstrate that TbRGG2 down-regulation more severely impacts editing at the 5′ ends of pan-edited RNAs than at their 3′ ends. The initiation of editing is reduced to some extent in TbRGG2 knockdown cells. In addition, TbRGG2 plays a post-initiation role as editing becomes stalled in TbRGG2-depleted cells, resulting in an overall decrease in the 3′ to 5′ progression of editing. Detailed analyses of edited RNAs from wild-type and TbRGG2-depleted cells reveal that TbRGG2 facilitates progression of editing past intrinsic pause sites that often correspond to the 3′ ends of cognate guide RNAs (gRNAs). In addition, noncanonically edited junction regions are either absent or significantly shortened in TbRGG2-depleted cells, consistent with impaired gRNA transitions. Sequence analysis further suggests that TbRGG2 facilitates complete utilization of certain gRNAs. In vitro RNA annealing and in vivo RNA unwinding assays demonstrate that TbRGG2 can modulate RNA–RNA interactions. Collectively, these data are consistent with a model in which TbRGG2 facilitates initiation and 3′ to 5′ progression of editing through its ability to affect gRNA utilization, both during the transition between specific gRNAs and during usage of certain gRNAs.  相似文献   

4.
Previous studies have identified a conserved AG dinucleotide at the 3′ splice site (3′SS) and a polypyrimidine (pPy) tract that are required for trans splicing of polycistronic pre-mRNAs in trypanosomatids. Furthermore, the pPy tract of the Trypanosoma brucei α-tubulin 3′SS region is required to specify accurate 3′-end formation of the upstream β-tubulin gene and trans splicing of the downstream α-tubulin gene. Here, we employed an in vivo cis competition assay to determine whether sequences other than those of the AG dinucleotide and the pPy tract were required for 3′SS identification. Our results indicate that a minimal α-tubulin 3′SS, from the putative branch site region to the AG dinucleotide, is not sufficient for recognition by the trans-splicing machinery and that polyadenylation is strictly dependent on downstream trans splicing. We show that efficient use of the α-tubulin 3′SS is dependent upon the presence of exon sequences. Furthermore, β-tubulin, but not actin exon sequences or unrelated plasmid sequences, can replace α-tubulin exon sequences for accurate trans-splice-site selection. Taken together, these results support a model in which the informational content required for efficient trans splicing of the α-tubulin pre-mRNA includes exon sequences which are involved in modulation of trans-splicing efficiency. Sequences that positively regulate trans splicing might be similar to cis-splicing enhancers described in other systems.  相似文献   

5.
RNAs in the mitochondria of Physarum polycephalum contain nonencoded nucleotides that are added during RNA synthesis. Essentially all steady-state RNAs are accurately and fully edited, yet the signals guiding these precise nucleotide insertions are presently unknown. To localize the regions of the template that are required for editing, we constructed a series of chimeric templates that substitute varying amounts of DNA either upstream of or downstream from C insertion sites. Remarkably, all sequences necessary for C addition are contained within ∼9 base pairs on either side of the insertion site. In addition, our data strongly suggest that sequences within this critical region affect different steps in the editing reaction. Template alterations upstream of an editing site influence nucleotide selection and/or insertion, while downstream changes affect editing site recognition and templated extension from the added, unpaired nucleotide. The data presented here provide the first evidence that individual regions of the DNA template play discrete mechanistic roles and represent a crucial initial step toward defining the source of the editing specificity in Physarum mitochondria. In addition, these findings have mechanistic implications regarding the potential involvement of the mitochondrial RNA polymerase in the editing reaction.  相似文献   

6.
Kim SR  Choi JL  Costa MA  An G 《Plant physiology》1992,99(2):627-631
The potato proteinase inhibitor II promoter was studied to identify cis-acting regulatory sequences involved in methyl jasmonate (MJ) response using transgenic tobacco plants carrying various lengths of the promoter fused to a chloramphenicol acetyltransferase reporter gene. An internal fragment between −625 and −520 was sufficient to confer a response to MJ, wounding, or sucrose when it was placed upstream of the nos promoter −101, which contains the CAAT-TATA region. Deletion of the proteinase inhibitor II promoter sequence upstream of −611 did not affect the MJ response, but a further deletion to −573 eliminated the response. The 3′-deletion study showed that the DNA sequence downstream from −520 is dispensable. However, 3′-deletion mutant −574 did not respond to the MJ treatment. These results indicated that an element essential for the MJ response is located at the −574/−573 region where the G-box sequence (CACGTGG) is located. The G-box sequence was not required for the sucrose enhancer effect, suggesting that the MJ response mechanism is different from that of sucrose.  相似文献   

7.
8.
The cis-acting genomic RNA requirements for the assembly of vesicular stomatitis virus (VSV) ribonucleocapsids into infectious particles were investigated. Using a biological assay based on particle infectivity, we demonstrated that subgenomic replicons that contained all four possible combinations of the natural genomic termini, the 3′ leader (Le) and 5′ trailer (Tr) regions, were replication competent; however, a 3′ copyback replicon (3′CB), containing the natural 3′ terminus but having the 5′ Tr replaced by a sequence complementary to the 3′ Le for 46 nucleotides, was unable to assemble infectious particles, despite efficient replication. When a copy of Tr was inserted 51 nucleotides from the 5′ end of 3′CB, infectious particles were produced. However, analysis of the replication products of these particles showed that the 51 nucleotides which corresponded to the Le complement sequences at the 5′ terminus were removed during RNA replication, thus restoring the wild-type 5′ Tr to the exact 5′ terminus. These data showed that a cis-acting signal was necessary for assembly of VSV RNAs into infectious particles and that this signal was supplied by Tr when located at the 5′ end. The regions within Tr required for assembly were analyzed by a series of deletions and exchanges for Le complement sequences, which demonstrated that the 5′ terminal 29 nucleotides of Tr allowed assembly of infectious particles but that the 5′ terminal 22 nucleotides functioned poorly. Deletions in Tr also altered the balance between negative- and positive-strand genomic RNA and affected levels of replication. RNAs that retained fewer than 45 but at least 22 nucleotides of the 5′ terminus could replicate but were impaired in RNA replication, and RNAs that retained only 14 nucleotides of the 5′ terminus were severely reduced in ability to replicate. These data define the VSV Tr as a position-dependent, cis-acting element for the assembly of RNAs into infectious particles, and they delineate RNA sequences that are essential for negative-strand RNA synthesis. These observations are consistent with, and offer an explanation for, the absence of 3′ copyback defective interfering particles in nature.  相似文献   

9.
1. Rhodesian copalwood (Guibourtia coleosperma) contains three diastereo-isomeric leuco-fisetinidins. These consist of the (−)-2,3-cis–3,4-cis (2R,3R,4R) and (−)-2,3-cis–3,4-trans (2R,3R,4S) 3′,4′,7-trihydroxyflavan-3,4-diols, and the third was shown to be a 2,3-trans–3,4-cis isomer by means of paper ionophoresis. 2. There occurrence in similar proportions as tannin precursors also in the tropical hardwoods G. tessmannii and G. demeusii implies a close taxonomic relationship between these, and with G. coleosperma. 3. Epimerization of the natural (−)-3′,4′,7- trihydroxy-2,3-trans-flavan-3,4-trans-diol affords a mixture from which the (−)-2,3-cis–3,4-cis isomer was separated readily, but the (−)-2,3-trans–3,4-cis isomer was obtained with difficulty. These were formed by epimerization of the (−)-2,3-trans–3,4-trans isomer at C-2 and C-4, and at C-4, respectively.  相似文献   

10.
11.
The 3′ noncoding region (NCR) of the negative-strand RNA [3′(−)NCR RNA] of the arterivirus simian hemorrhagic fever virus (SHFV) is 209 nucleotides (nt) in length. Since this 3′ region, designated 3′(−)209, is the site of initiation of full-length positive-strand RNA and is the template for the synthesis of the 5′ leader sequence, which is found on both full-length and subgenomic mRNAs, it is likely to contain cis-acting signals for RNA synthesis and to interact with cellular and viral proteins to form replication complexes. Gel mobility shift assays showed that cellular proteins in MA104 S100 cytoplasmic extracts formed two complexes with the SHFV 3′(−)209 RNA, and results from competition gel mobility shift assays demonstrated that these interactions were specific. Four proteins with molecular masses of 103, 86, 55, and 36 kDa were detected in UV-induced cross-linking assays, and three of these proteins (103, 55, and 36 kDa) were also detected by Northwestern blotting assays. Identical gel mobility shift and UV-induced cross-linking patterns were obtained with uninfected and SHFV-infected extracts, indicating that the four proteins detected are cellular, not viral, proteins. The binding sites for the four cellular proteins were mapped to the region between nt 117 and 184 (68-nt sequence) from the 3′ end of the SHFV negative-strand RNA. This 68-nt sequence was predicted to form two stem-loops, SL4 and SL5. The 3′(−)NCR RNA of another arterivirus, lactate dehydrogenase-elevating virus C (LDV-C), competed with the SHFV 3′(−)209 RNA in competition gel mobility shift assays. UV-induced cross-linking assays showed that four MA104 cellular proteins with the same molecular masses as those that bind to the SHFV 3′(−)209 RNA also bind to the LDV-C 3′(−)NCR RNA and equine arteritis virus 3′(−)NCR RNA. However, each of these viral RNAs also bound to an additional MA104 protein. The binding sites for the MA104 cellular proteins were shown to be located in similar positions in the LDV-C 3′(−)NCR and SHFV 3′(−)209 RNAs. These data suggest that the binding sites for a set of the cellular proteins are conserved in all arterivirus RNAs and that these cell proteins may be utilized as components of viral replication complexes.  相似文献   

12.
13.
The Trypanosoma brucei exoribonuclease, TbDSS-1, has been implicated in multiple aspects of mitochondrial RNA metabolism. Here, we investigate the role of TbDSS-1 in RNA processing and surveillance by analyzing 12S rRNA processing intermediates in TbDSS-1 RNAi cells. RNA fragments corresponding to leader sequence upstream of 12S rRNA accumulate upon TbDSS-1 depletion. The 5′ extremity of 12S rRNA is generated by endonucleolytic cleavage, and TbDSS-1 degrades resulting upstream maturation by-products. RNAs with 5′ ends at position −141 and 3′ ends adjacent to the mature 5′ end of 12S rRNA are common and invariably possess oligo(U) tails. 12S rRNAs with mature 3′ ends and unprocessed 5′ ends also accumulate in TbDSS-1 depleted cells, suggesting that these RNAs represent dead-end products normally destined for decay by TbDSS-1 in an RNA surveillance pathway. Together, these data indicate dual roles for TbDSS-1 in degradation of 12S rRNA maturation by-products and as part of a mitochondrial RNA surveillance pathway that eliminates stalled 12S processing intermediates. We further provide evidence that TbDSS-1 degrades RNAs originating upstream of the first gene on the minor strand of the mitochondrial maxicircle suggesting that TbDSS-1 also removes non-functional RNAs generated from other regions of the mitochondrial genome.  相似文献   

14.
The segmented double-stranded (ds) RNA genome of the rotaviruses is replicated asymmetrically, with viral mRNA serving as the template for the synthesis of minus-strand RNA. Previous studies with cell-free replication systems have shown that the highly conserved termini of rotavirus gene 8 and 9 mRNAs contain cis-acting signals that promote the synthesis of dsRNA. Based on the location of the cis-acting signals and computer modeling of their secondary structure, the ends of the gene 8 or 9 mRNAs are proposed to interact in cis to form a modified panhandle structure that promotes the synthesis of dsRNA. In this structure, the last 11 to 12 nucleotides of the RNA, including the cis-acting signal that is essential for RNA replication, extend as a single-stranded tail from the panhandled region, and the 5′ untranslated region folds to form a stem-loop motif. To understand the importance of the predicted secondary structure in minus-strand synthesis, mutations were introduced into viral RNAs which affected the 3′ tail and the 5′ stem-loop. Analysis of the RNAs with a cell-free replication system showed that, in contrast to mutations which altered the structure of the 5′ stem-loop, mutations which caused complete or near-complete complementarity between the 5′ end and the 3′ tail significantly inhibited (≥10-fold) minus-strand synthesis. Likewise, incubation of wild-type RNAs with oligonucleotides which were complementary to the 3′ tail inhibited replication. Despite their replication-defective phenotype, mutant RNAs with complementary 5′ and 3′ termini were shown to competitively interfere with the replication of wild-type mRNA and to bind the viral RNA polymerase VP1 as efficiently as wild-type RNA. These results indicate that the single-strand nature of the 3′ end of rotavirus mRNA is essential for efficient dsRNA synthesis and that the specific binding of the RNA polymerase to the mRNA template is required but not sufficient for the synthesis of minus-strand RNA.  相似文献   

15.
Mitochondrial tRNA (mt-tRNA) 5′-editing was first described more than 20 years ago; however, the first candidates for 5′-editing enzymes were only recently identified in a eukaryotic microbe (protist), the slime mold Dictyostelium discoideum. In this organism, eight of 18 mt-tRNAs are predicted to be edited based on the presence of genomically encoded mismatched nucleotides in their aminoacyl-acceptor stem sequences. Here, we demonstrate that mt-tRNA 5′-editing occurs at all predicted sites in D. discoideum as evidenced by changes in the sequences of isolated mt-tRNAs compared with the expected sequences encoded by the mitochondrial genome. We also identify two previously unpredicted editing events in which G-U base pairs are edited in the absence of any other genomically encoded mismatches. A comparison of 5′-editing in D. discoideum with 5′-editing in another slime mold, Polysphondylium pallidum, suggests organism-specific idiosyncrasies in the treatment of U-G/G-U pairs. In vitro activities of putative D. discoideum editing enzymes are consistent with the observed editing reactions and suggest an overall lack of tRNA substrate specificity exhibited by the repair component of the editing enzyme. Although the presence of terminal mismatches in mt-tRNA sequences is highly predictive of the occurrence of mt-tRNA 5′-editing, the variability in treatment of U-G/G-U base pairs observed here indicates that direct experimental evidence of 5′-editing must be obtained to understand the complete spectrum of mt-tRNA editing events in any species.  相似文献   

16.
17.
As central components of RNA silencing, small RNAs play diverse and important roles in many biological processes in eukaryotes. Aberrant reduction or elevation in the levels of small RNAs is associated with many developmental and physiological defects. The in vivo levels of small RNAs are precisely regulated through modulating the rates of their biogenesis and turnover. 2′-O-methylation on the 3′ terminal ribose is a major mechanism that increases the stability of small RNAs. The small RNA methyltransferase HUA ENHANCER1 (HEN1) and its homologs methylate microRNAs and small interfering RNAs (siRNAs) in plants, Piwi-interacting RNAs (piRNAs) in animals, and siRNAs in Drosophila. 3′ nucleotide addition, especially uridylation, and 3′-5′ exonucleolytic degradation are major mechanisms that turnover small RNAs. Other mechanisms impacting small RNA stability include complementary RNAs, cis-elements in small RNA sequences and RNA-binding proteins. Investigations are ongoing to further understand how small RNA stability impacts their accumulation in vivo in order to improve the utilization of RNA silencing in biotechnology and therapeutic applications.  相似文献   

18.
Adenosine deaminases that act on RNA (ADARs) are editing enzymes that convert adenosine to inosine in double-stranded RNA (dsRNA). ADARs sometimes target codons so that a single mRNA yields multiple protein isoforms. However, ADARs most often target noncoding regions of mRNAs, such as untranslated regions (UTRs). To understand the function of extensive double-stranded 3′ UTR structures, and the inosines within them, we monitored the fate of reporter and endogenous mRNAs that include structured 3′ UTRs in wild-type Caenorhabditis elegans and in strains with mutations in the ADAR genes. In general, we saw little effect of editing on stability or translatability of mRNA, although in one case an ADR-1 dependent effect was observed. Importantly, whereas previous studies indicate that inosine-containing RNAs are retained in the nucleus, we show that both C. elegans and Homo sapiens mRNAs with edited, structured 3′ UTRs are present on translating ribosomes.  相似文献   

19.
Translation of most eukaryotic mRNAs and many viral RNAs is enhanced by their poly(A) tails. Hepatitis C virus (HCV) contains a positive-stranded RNA genome which does not have a poly(A) tail but has a stretch of 98 nucleotides (X region) at the 3′-untranslated region (UTR), which assumes a highly conserved stem-loop structure. This X region binds a polypyrimidine tract-binding protein (PTB), which also binds to the internal ribosome entry site (IRES) in HCV 5′-UTR. These RNA-protein interactions may regulate its translation. We generated a set of HCV RNAs differing only in their 3′-UTRs and compared their translation efficiencies. HCV RNA containing the X region was translated three- to fivefold more than the corresponding RNAs without this region. Mutations that abolished PTB binding in the X region reduced, but did not completely abolish, enhancement in translation. The X region also enhanced translation from another unrelated IRES (from encephalomyocarditis virus RNA), but did not affect the 5′-end-dependent translation of globin mRNA in either monocistronic or bicistronic RNAs. It did not appear to affect RNA stability. The free X region added in trans, however, did not enhance translation, indicating that the translational enhancement by the X region occurs only in cis. These results demonstrate that the highly conserved 3′ end of HCV RNA provides a novel mechanism for enhancement of HCV translation and may offer a target for antiviral agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号