首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We propose a modelling framework to study the relationship betweentwo paired longitudinally observed variables. The data for eachvariable are viewed as smooth curves measured at discrete time-pointsplus random errors. While the curves for each variable are summarizedusing a few important principal components, the associationof the two longitudinal variables is modelled through the associationof the principal component scores. We use penalized splinesto model the mean curves and the principal component curves,and cast the proposed model into a mixed-effects model frameworkfor model fitting, prediction and inference. The proposed methodcan be applied in the difficult case in which the measurementtimes are irregular and sparse and may differ widely acrossindividuals. Use of functional principal components enhancesmodel interpretation and improves statistical and numericalstability of the parameter estimates.  相似文献   

2.
This paper presents procedures for implementing the EM algorithm to compute REML estimates of variance covariance components in Gaussian mixed models for longitudinal data analysis. The class of models considered includes random coefficient factors, stationary time processes and measurement errors. The EM algorithm allows separation of the computations pertaining to parameters involved in the random coefficient factors from those pertaining to the time processes and errors. The procedures are illustrated with Pothoff and Roy''s data example on growth measurements taken on 11 girls and 16 boys at four ages. Several variants and extensions are discussed.  相似文献   

3.
Chen H  Wang Y 《Biometrics》2011,67(3):861-870
In this article, we propose penalized spline (P-spline)-based methods for functional mixed effects models with varying coefficients. We decompose longitudinal outcomes as a sum of several terms: a population mean function, covariates with time-varying coefficients, functional subject-specific random effects, and residual measurement error processes. Using P-splines, we propose nonparametric estimation of the population mean function, varying coefficient, random subject-specific curves, and the associated covariance function that represents between-subject variation and the variance function of the residual measurement errors which represents within-subject variation. Proposed methods offer flexible estimation of both the population- and subject-level curves. In addition, decomposing variability of the outcomes as a between- and within-subject source is useful in identifying the dominant variance component therefore optimally model a covariance function. We use a likelihood-based method to select multiple smoothing parameters. Furthermore, we study the asymptotics of the baseline P-spline estimator with longitudinal data. We conduct simulation studies to investigate performance of the proposed methods. The benefit of the between- and within-subject covariance decomposition is illustrated through an analysis of Berkeley growth data, where we identified clearly distinct patterns of the between- and within-subject covariance functions of children's heights. We also apply the proposed methods to estimate the effect of antihypertensive treatment from the Framingham Heart Study data.  相似文献   

4.
Shrinkage Estimators for Covariance Matrices   总被引:1,自引:0,他引:1  
Estimation of covariance matrices in small samples has been studied by many authors. Standard estimators, like the unstructured maximum likelihood estimator (ML) or restricted maximum likelihood (REML) estimator, can be very unstable with the smallest estimated eigenvalues being too small and the largest too big. A standard approach to more stably estimating the matrix in small samples is to compute the ML or REML estimator under some simple structure that involves estimation of fewer parameters, such as compound symmetry or independence. However, these estimators will not be consistent unless the hypothesized structure is correct. If interest focuses on estimation of regression coefficients with correlated (or longitudinal) data, a sandwich estimator of the covariance matrix may be used to provide standard errors for the estimated coefficients that are robust in the sense that they remain consistent under misspecification of the covariance structure. With large matrices, however, the inefficiency of the sandwich estimator becomes worrisome. We consider here two general shrinkage approaches to estimating the covariance matrix and regression coefficients. The first involves shrinking the eigenvalues of the unstructured ML or REML estimator. The second involves shrinking an unstructured estimator toward a structured estimator. For both cases, the data determine the amount of shrinkage. These estimators are consistent and give consistent and asymptotically efficient estimates for regression coefficients. Simulations show the improved operating characteristics of the shrinkage estimators of the covariance matrix and the regression coefficients in finite samples. The final estimator chosen includes a combination of both shrinkage approaches, i.e., shrinking the eigenvalues and then shrinking toward structure. We illustrate our approach on a sleep EEG study that requires estimation of a 24 x 24 covariance matrix and for which inferences on mean parameters critically depend on the covariance estimator chosen. We recommend making inference using a particular shrinkage estimator that provides a reasonable compromise between structured and unstructured estimators.  相似文献   

5.
Huang YH  Hwang WH  Chen FY 《Biometrics》2011,67(4):1471-1480
Measurement errors in covariates may result in biased estimates in regression analysis. Most methods to correct this bias assume nondifferential measurement errors-i.e., that measurement errors are independent of the response variable. However, in regression models for zero-truncated count data, the number of error-prone covariate measurements for a given observational unit can equal its response count, implying a situation of differential measurement errors. To address this challenge, we develop a modified conditional score approach to achieve consistent estimation. The proposed method represents a novel technique, with efficiency gains achieved by augmenting random errors, and performs well in a simulation study. The method is demonstrated in an ecology application.  相似文献   

6.
Müller HG  Zhang Y 《Biometrics》2005,61(4):1064-1075
A recurring objective in longitudinal studies on aging and longevity has been the investigation of the relationship between age-at-death and current values of a longitudinal covariate trajectory that quantifies reproductive or other behavioral activity. We propose a novel technique for predicting age-at-death distributions for situations where an entire covariate history is included in the predictor. The predictor trajectories up to current time are represented by time-varying functional principal component scores, which are continuously updated as time progresses and are considered to be time-varying predictor variables that are entered into a class of time-varying functional regression models that we propose. We demonstrate for biodemographic data how these methods can be applied to obtain predictions for age-at-death and estimates of remaining lifetime distributions, including estimates of quantiles and of prediction intervals for remaining lifetime. Estimates and predictions are obtained for individual subjects, based on their observed behavioral trajectories, and include a dimension-reduction step that is implemented by projecting on a single index. The proposed techniques are illustrated with data on longitudinal daily egg-laying for female medflies, predicting remaining lifetime and age-at-death distributions from individual event histories observed up to current time.  相似文献   

7.
Chenlin Zhang  Huazhen Lin  Li Liu  Jin Liu  Yi Li 《Biometrics》2023,79(3):2232-2245
Functional data analysis has emerged as a powerful tool in response to the ever-increasing resources and efforts devoted to collecting information about response curves or anything that varies over a continuum. However, limited progress has been made with regard to linking the covariance structures of response curves to external covariates, as most functional models assume a common covariance structure. We propose a new functional regression model with covariate-dependent mean and covariance structures. Particularly, by allowing variances of random scores to be covariate-dependent, we identify eigenfunctions for each individual from the set of eigenfunctions that govern the variation patterns across all individuals, resulting in high interpretability and prediction power. We further propose a new penalized quasi-likelihood procedure that combines regularization and B-spline smoothing for model selection and estimation and establish the convergence rate and asymptotic normality of the proposed estimators. The utility of the developed method is demonstrated via simulations, as well as an analysis of the Avon Longitudinal Study of Parents and Children concerning parental effects on the growth curves of their offspring, which yields biologically interesting results.  相似文献   

8.
H Gao  T Zhang  Y Wu  Y Wu  L Jiang  J Zhan  J Li  R Yang 《Heredity》2014,113(6):526-532
Given the drawbacks of implementing multivariate analysis for mapping multiple traits in genome-wide association study (GWAS), principal component analysis (PCA) has been widely used to generate independent ‘super traits'' from the original multivariate phenotypic traits for the univariate analysis. However, parameter estimates in this framework may not be the same as those from the joint analysis of all traits, leading to spurious linkage results. In this paper, we propose to perform the PCA for residual covariance matrix instead of the phenotypical covariance matrix, based on which multiple traits are transformed to a group of pseudo principal components. The PCA for residual covariance matrix allows analyzing each pseudo principal component separately. In addition, all parameter estimates are equivalent to those obtained from the joint multivariate analysis under a linear transformation. However, a fast least absolute shrinkage and selection operator (LASSO) for estimating the sparse oversaturated genetic model greatly reduces the computational costs of this procedure. Extensive simulations show statistical and computational efficiencies of the proposed method. We illustrate this method in a GWAS for 20 slaughtering traits and meat quality traits in beef cattle.  相似文献   

9.
Li E  Wang N  Wang NY 《Biometrics》2007,63(4):1068-1078
Summary .   Joint models are formulated to investigate the association between a primary endpoint and features of multiple longitudinal processes. In particular, the subject-specific random effects in a multivariate linear random-effects model for multiple longitudinal processes are predictors in a generalized linear model for primary endpoints. Li, Zhang, and Davidian (2004, Biometrics 60 , 1–7) proposed an estimation procedure that makes no distributional assumption on the random effects but assumes independent within-subject measurement errors in the longitudinal covariate process. Based on an asymptotic bias analysis, we found that their estimators can be biased when random effects do not fully explain the within-subject correlations among longitudinal covariate measurements. Specifically, the existing procedure is fairly sensitive to the independent measurement error assumption. To overcome this limitation, we propose new estimation procedures that require neither a distributional or covariance structural assumption on covariate random effects nor an independence assumption on within-subject measurement errors. These new procedures are more flexible, readily cover scenarios that have multivariate longitudinal covariate processes, and can be implemented using available software. Through simulations and an analysis of data from a hypertension study, we evaluate and illustrate the numerical performances of the new estimators.  相似文献   

10.
In clinical research and practice, landmark models are commonly used to predict the risk of an adverse future event, using patients' longitudinal biomarker data as predictors. However, these data are often observable only at intermittent visits, making their measurement times irregularly spaced and unsynchronized across different subjects. This poses challenges to conducting dynamic prediction at any post-baseline time. A simple solution is the last-value-carry-forward method, but this may result in bias for the risk model estimation and prediction. Another option is to jointly model the longitudinal and survival processes with a shared random effects model. However, when dealing with multiple biomarkers, this approach often results in high-dimensional integrals without a closed-form solution, and thus the computational burden limits its software development and practical use. In this article, we propose to process the longitudinal data by functional principal component analysis techniques, and then use the processed information as predictors in a class of flexible linear transformation models to predict the distribution of residual time-to-event occurrence. The measurement schemes for multiple biomarkers are allowed to be different within subject and across subjects. Dynamic prediction can be performed in a real-time fashion. The advantages of our proposed method are demonstrated by simulation studies. We apply our approach to the African American Study of Kidney Disease and Hypertension, predicting patients' risk of kidney failure or death by using four important longitudinal biomarkers for renal functions.  相似文献   

11.
Patterns that resemble strongly skewed size distributions are frequently observed in ecology. A typical example represents tree size distributions of stem diameters. Empirical tests of ecological theories predicting their parameters have been conducted, but the results are difficult to interpret because the statistical methods that are applied to fit such decaying size distributions vary. In addition, binning of field data as well as measurement errors might potentially bias parameter estimates. Here, we compare three different methods for parameter estimation – the common maximum likelihood estimation (MLE) and two modified types of MLE correcting for binning of observations or random measurement errors. We test whether three typical frequency distributions, namely the power-law, negative exponential and Weibull distribution can be precisely identified, and how parameter estimates are biased when observations are additionally either binned or contain measurement error. We show that uncorrected MLE already loses the ability to discern functional form and parameters at relatively small levels of uncertainties. The modified MLE methods that consider such uncertainties (either binning or measurement error) are comparatively much more robust. We conclude that it is important to reduce binning of observations, if possible, and to quantify observation accuracy in empirical studies for fitting strongly skewed size distributions. In general, modified MLE methods that correct binning or measurement errors can be applied to ensure reliable results.  相似文献   

12.
We study a linear mixed effects model for longitudinal data, where the response variable and covariates with fixed effects are subject to measurement error. We propose a method of moment estimation that does not require any assumption on the functional forms of the distributions of random effects and other random errors in the model. For a classical measurement error model we apply the instrumental variable approach to ensure identifiability of the parameters. Our methodology, without instrumental variables, can be applied to Berkson measurement errors. Using simulation studies, we investigate the finite sample performances of the estimators and show the impact of measurement error on the covariates and the response on the estimation procedure. The results show that our method performs quite satisfactory, especially for the fixed effects with measurement error (even under misspecification of measurement error model). This method is applied to a real data example of a large birth and child cohort study.  相似文献   

13.
Kirkpatrick M  Meyer K 《Genetics》2004,168(4):2295-2306
Estimating the genetic and environmental variances for multivariate and function-valued phenotypes poses problems for estimation and interpretation. Even when the phenotype of interest has a large number of dimensions, most variation is typically associated with a small number of principal components (eigen-vectors or eigenfunctions). We propose an approach that directly estimates these leading principal components; these then give estimates for the covariance matrices (or functions). Direct estimation of the principal components reduces the number of parameters to be estimated, uses the data efficiently, and provides the basis for new estimation algorithms. We develop these concepts for both multivariate and function-valued phenotypes and illustrate their application in the restricted maximum-likelihood framework.  相似文献   

14.
基于观测数据的陆地生态系统模型参数估计有助于提高模型的模拟和预测能力,降低模拟不确定性.在已有参数估计研究中,涡度相关技术测定的净生态系统碳交换量(NEE)数据的随机误差通常被假设为服从零均值的正态分布.然而近年来已有研究表明NEE数据的随机误差更服从双指数分布.为探讨NEE观测误差分布类型的不同选择对陆地生态系统机理模型参数估计以及碳通量模拟结果造成的差异,以长白山温带阔叶红松林为研究区域,采用马尔可夫链-蒙特卡罗方法,利用2003~2005年测定的NEE数据对陆地生态系统机理模型CEVSA2的敏感参数进行估计,对比分析了两种误差分布类型(正态分布和双指数分布)的参数估计结果以及碳通量模拟的差异.结果表明,基于正态观测误差模拟的总初级生产力和生态系统呼吸的年总量分别比基于双指数观测误差的模拟结果高61~86 g C m-2 a-1和107~116 g C m-2 a-1,导致前者模拟的NEE年总量较后者低29~47 g C m-2 a-1,特别在生长旺季期间有明显低估.在参数估计研究中,不能忽略观测误差的分布类型以及相应的目标函数的选择,它们的不合理设置可能对参数估计以及模拟结果产生较大影响.  相似文献   

15.
Robust estimation of multivariate covariance components   总被引:1,自引:0,他引:1  
Dueck A  Lohr S 《Biometrics》2005,61(1):162-169
In many settings, such as interlaboratory testing, small area estimation in sample surveys, and heritability studies, investigators are interested in estimating covariance components for multivariate measurements. However, the presence of outliers can seriously distort estimates obtained using standard procedures such as maximum likelihood. We propose a procedure based on M-estimation for robustly estimating multivariate covariance components in the presence of outliers; the procedure applies to balanced and unbalanced data. We present an algorithm for computing the robust estimates and examine the performance of the estimator through a simulation study. The estimator is used to find covariance components and identify outliers in a study of variability of egg length and breadth measurements of American coots.  相似文献   

16.
Accurate measurements of metabolic fluxes in living cells are central to metabolism research and metabolic engineering. The gold standard method is model-based metabolic flux analysis (MFA), where fluxes are estimated indirectly from mass isotopomer data with the use of a mathematical model of the metabolic network. A critical step in MFA is model selection: choosing what compartments, metabolites, and reactions to include in the metabolic network model. Model selection is often done informally during the modelling process, based on the same data that is used for model fitting (estimation data). This can lead to either overly complex models (overfitting) or too simple ones (underfitting), in both cases resulting in poor flux estimates. Here, we propose a method for model selection based on independent validation data. We demonstrate in simulation studies that this method consistently chooses the correct model in a way that is independent on errors in measurement uncertainty. This independence is beneficial, since estimating the true magnitude of these errors can be difficult. In contrast, commonly used model selection methods based on the χ2-test choose different model structures depending on the believed measurement uncertainty; this can lead to errors in flux estimates, especially when the magnitude of the error is substantially off. We present a new approach for quantification of prediction uncertainty of mass isotopomer distributions in other labelling experiments, to check for problems with too much or too little novelty in the validation data. Finally, in an isotope tracing study on human mammary epithelial cells, the validation-based model selection method identified pyruvate carboxylase as a key model component. Our results argue that validation-based model selection should be an integral part of MFA model development.  相似文献   

17.
Sparse sufficient dimension reduction   总被引:2,自引:0,他引:2  
Li  Lexin 《Biometrika》2007,94(3):603-613
Existing sufficient dimension reduction methods suffer fromthe fact that each dimension reduction component is a linearcombination of all the original predictors, so that it is difficultto interpret the resulting estimates. We propose a unified estimationstrategy, which combines a regression-type formulation of sufficientdimension reduction methods and shrinkage estimation, to producesparse and accurate solutions. The method can be applied tomost existing sufficient dimension reduction methods such assliced inverse regression, sliced average variance estimationand principal Hessian directions. We demonstrate the effectivenessof the proposed method by both simulations and real data analysis.  相似文献   

18.

Summary

We consider a functional linear Cox regression model for characterizing the association between time‐to‐event data and a set of functional and scalar predictors. The functional linear Cox regression model incorporates a functional principal component analysis for modeling the functional predictors and a high‐dimensional Cox regression model to characterize the joint effects of both functional and scalar predictors on the time‐to‐event data. We develop an algorithm to calculate the maximum approximate partial likelihood estimates of unknown finite and infinite dimensional parameters. We also systematically investigate the rate of convergence of the maximum approximate partial likelihood estimates and a score test statistic for testing the nullity of the slope function associated with the functional predictors. We demonstrate our estimation and testing procedures by using simulations and the analysis of the Alzheimer's Disease Neuroimaging Initiative (ADNI) data. Our real data analyses show that high‐dimensional hippocampus surface data may be an important marker for predicting time to conversion to Alzheimer's disease. Data used in the preparation of this article were obtained from the ADNI database ( adni.loni.usc.edu ).  相似文献   

19.
Serban N  Jiang H 《Biometrics》2012,68(3):805-814
Summary In this article, we investigate clustering methods for multilevel functional data, which consist of repeated random functions observed for a large number of units (e.g., genes) at multiple subunits (e.g., bacteria types). To describe the within- and between variability induced by the hierarchical structure in the data, we take a multilevel functional principal component analysis (MFPCA) approach. We develop and compare a hard clustering method applied to the scores derived from the MFPCA and a soft clustering method using an MFPCA decomposition. In a simulation study, we assess the estimation accuracy of the clustering membership and the cluster patterns under a series of settings: small versus moderate number of time points; various noise levels; and varying number of subunits per unit. We demonstrate the applicability of the clustering analysis to a real data set consisting of expression profiles from genes activated by immunity system cells. Prevalent response patterns are identified by clustering the expression profiles using our multilevel clustering analysis.  相似文献   

20.
We report new body mass estimates for the North American Eocene primate Omomys carteri. These estimates are based on postcranial measurements and a variety of analytical methods, including bivariate regression, multiple regression, and principal components analysis (PCA). All body mass estimation equations show high coefficients of determination (R2), and some equations exhibit low prediction errors in accuracy tests involving extant species of body size similar to O. carteri. Equations derived from PCA-summarized data and multiple regression generally perform better than those based on single variables. The consensus of estimates and their statistics suggests a body mass range of 170–290 g. This range is similar to previous estimates for this species based on first molar area (Gingerich, J Hum Evol 10:345–374, 1981; Conroy, Int J Primatol 8:115–137, 1987). Am J Phys Anthropol 109:41–52, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号