首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Triggering receptors expressed on myeloid cell (TREM) proteins are a family of cell surface receptors that participate in diverse cellular processes such as inflammation, coagulation, and bone homeostasis. TREM-1, in particular, is expressed on neutrophils and monocytes and is a potent amplifier of inflammatory responses. LPS and other microbial products induce up-regulation of cell surface-localized TREM-1 and the release of its soluble form, sTREM-1. Two hypotheses have been advanced to explain the origin of sTREM-1: alternative splicing of TREM-1 mRNA and proteolytic cleavage(s) of mature, membrane-anchored TREM-1. In this report, we present conclusive evidence in favor of the proteolytic mechanism of sTREM-1 generation. No alternative splicing forms of TREM-1 were detected in monocytes/macrophages. Besides, metalloproteinase inhibitors increased the stability of TREM-1 at the cell surface while significantly reducing sTREM-1 release in cultures of LPS-challenged human monocytes and neutrophils. We conclude that metalloproteinases are responsible for shedding of the TREM-1 ectodomain through proteolytic cleavage of its long juxtamembrane linker.  相似文献   

2.
Endometritis, which is usually caused by bacterial infection, is characterized by high levels of pro-inflammatory cytokines and a high infertility rate. Triggering receptor expressed on myeloid cells-1 (TREM-1) has been recognized as a potent amplifier of inflammatory reactions. Studies have demonstrated reduced inflammatory responses and mortality rates of animals with bacterial infection due to the blocking of TREM-1 expression. However, whether TREM-1 deficiency could alleviate the inflammatory reaction in bacterial endometritis is still unclear. Here, TREM-1 knock-out (Trem-1−/−) mice were used to inhibit TREM-1 signalling to evaluate its role in inflammatory reactions after a highly pathogenic LPS infection in mice uteri. The results demonstrated that TREM-1 deficiency attenuated the inflammation in mice uteri; markedly reduced the number of polymorphonuclear neutrophils; and suppressed interleukin-1β (IL-1β), IL-6, and tumour necrosis factor-α (TNF-α) concentrations in serum as well as their production in inflamed uteri after LPS stimulation. Our results illustrate an anticipated pathogenic impact of TREM-1 on endometritis during LPS infection and indicate that blocking of TREM-1 in LPS-induced endometritis holds considerable promise for blunting excessive inflammation.  相似文献   

3.
TREM-1 (triggering receptor expressed on myeloid cells-1) is an orphan immunoreceptor expressed on monocytes, macrophages, and neutrophils. TREM-1 associates with and signals via the adapter protein DAP12/TYROBP, which contains an ITAM. TREM-1 activation by receptor cross-linking has been shown to be proinflammatory and to amplify some cellular responses to TLR ligands such as bacterial LPS. To investigate the cellular consequences of TREM-1 activation, we have characterized global gene expression changes in human monocytes in response to TREM-1 cross-linking in comparison to and combined with LPS. Both TREM-1 activation and LPS up-regulate chemokines, cytokines, matrix metalloproteases, and PTGS/COX2, consistent with a core inflammatory response. However, other immunomodulatory factors are selectively induced, including SPP1 and CSF1 (i.e., M-CSF) by TREM-1 activation and IL-23 and CSF3 (i.e., G-CSF) by LPS. Additionally, cross-talk between TREM-1 activation and LPS occurs on multiple levels. Although synergy in GM-CSF protein production is reflected in commensurate mRNA abundance, comparable synergy in IL-1beta protein production is not. TREM-1 activation also attenuates the induction of some LPS target genes, including those that encode IL-12 cytokine family subunits. Where tested, positive TREM-1 outputs are greatly reduced by the PI3K inhibitor wortmannin, whereas this attenuation is largely PI3K independent. These experiments provide a detailed analysis of the cellular consequences of TREM-1 activation and highlight the complexity in signal integration between ITAM- and TLR-mediated signaling.  相似文献   

4.
ObjectiveTriggering receptor expressed on myeloid cells-1 (TREM-1) was reported to play a key roll in amplification of production of inflammatory cytokines. TREM-1 is suggested to be a specific biomarker for sepsis for this reason, but the clinical significance of TREM-1 has not been elucidated. We investigated TREM-1 expression on the cell-surface, and plasma levels of soluble TREM-1 (sTREM-1) in patients with non-infectious systemic inflammatory response syndrome (SIRS) and sepsis admitted to the ICU.MethodsThirty-five patients with SIRS and 21 patients with sepsis admitted to ICU were subjected to the study. TREM-1 expressions on the surfaces of monocytes and neutrophils were measured by flow cytometry. Plasma sTREM-1 level and serum interleukin (IL)-6 level were measured.ResultsSeptic patients had decreased TREM-1 expression, clearly on neutrophils or to a lesser extent on monocyte compared to SIRS patients on ICU admission (neutrophils p < 0.001, monocyte p < 0.05). TREM-1 expression on neutrophils had a significant inverse correlation with serum IL-6 level (r = ?0.64, p < 0.0001). Plasma sTREM-1 level in septic patients was significantly higher than that in SIRS patients (p < 0.05). Plasma sTREM-1 level positively correlated with severity score and non-survivors had increased plasma sTREM-1 level compared to survivors in all SIRS/sepsis patients (p < 0.05).ConclusionsPatients with sepsis had increased soluble TREM-1 and decreased TREM-1 expression on neutrophil compared to SIRS patients. sTREM-1 may be useful to evaluate disease severity and outcome of patients with SIRS or sepsis.  相似文献   

5.
Triggering receptor expressed on myeloid cells 1 (TREM-1) is a recently discovered molecule that is expressed on the cell surface of monocytes and neutrophils. Engagement of TREM-1 triggers synthesis of proinflammatory cytokines in response to microbes, but the extent and mechanism by which TREM-1 modulates the inflammatory response is poorly defined. In the present study, we investigated the functional effects of blocking TREM-1 on the Toll-like receptor (TLR)4-mediated signaling pathway in macrophages. By transfecting cells with small hairpin interfering RNA molecules to TREM-1 (shRNA), we confirmed that TREM-1 mRNA and protein expression was greatly attenuated in RAW cells in response to treatment with LPS. PCR array for genes related to or activated by the TLR pathway revealed that although the expression of TLR4 itself was not significantly altered by silencing of TREM-1, expression of several genes, including MyD88, CD14, IkappaBalpha, IL-1beta, MCP-1, and IL-10 was significantly attenuated in the TREM-1 knockdown cells in response to treatment with LPS. These data indicate that expression of TREM-1 modulates the TLR signaling in macrophages by altering the expression of both adaptor and effector proteins that are critical to the endotoxin response.  相似文献   

6.
The triggering receptor expressed on myeloid cells 2 (TREM-2) delivers intracellular signals through the adaptor DAP12 to regulate myeloid cell function both within and outside the immune system. The role of TREM-2 in immunity has been obscured by the failure to detect expression of the TREM-2 protein in vivo. In this study, we show that TREM-2 is expressed on macrophages infiltrating the tissues from the circulation and that alternative activation with IL-4 can induce TREM-2. TREM-2 expression is abrogated by macrophage maturation with LPS of IFN-gamma. Using TREM-2(-/-) mice, we find that TREM-2 functions to inhibit cytokine production by macrophages in response to the TLR ligands LPS, zymosan, and CpG. Furthermore, we find that TREM-2 completely accounts for the increased cytokine production previously reported by DAP12(-/-) macrophages. Taken together, these data show that TREM-2 is expressed on newly differentiated and alternatively activated macrophages and functions to restrain macrophage activation.  相似文献   

7.
Triggering receptor expressed on myeloid cells-1 (TREM-1) exists in two forms: a transmembrane form and a soluble form (sTREM-1). The levels of sTREM-1 are elevated in supernatants of activated HSCs. However, the role of sTREM-1 in HSC activation and liver fibrosis remains undefined. Previous studies have primarily focused on the transmembrane form of TREM-1; we innovatively observed the function of sTREM-1 as a ligand in liver fibrosis and screened its receptor. Here, recombinant sTREM-1 was used as a stimulator which induced HSC activation and further aggravated liver fibrosis. Then, screening for sTREM-1 interacting membrane receptors was performed using pull-down assay followed by mass spectrometry, and the membrane receptor roundabout guidance receptor 2 (Robo2) was identified as a candidate receptor for sTREM-1. The interaction between sTREM-1 and Robo2 was verified by pull-down and immunofluorescence. The role of Robo2 on sTREM-1-induced HSC activation and its downstream signal pathways was assessed by knockdown of Robo2 in LX-2 cells. Furthermore, HSC-specific knockdown of Robo2 was achieved in a mouse model of liver fibrosis by using a recombinant adeno-associated virus (AAV) vector to confirm the role of the receptor, and we proved that Robo2 knockdown inhibited the activation of HSC and liver fibrosis, which also led to the inactivation of Smad2/3 and PI3K/Akt pathways in sTREM-1-induced HSC activation and liver fibrosis. In conclusion, sTREM-1 acts as a new ligand of Robo2; the binding of sTREM-1 to Robo2 initiates the activation of the downstream Smad2/3 and PI3K/Akt signalling pathways, thereby promoting HSC activation and liver fibrosis.  相似文献   

8.
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a recently identified molecule involved in the amplification of inflammation. To determine the regulation of TREM-1, we studied TREM-1 expression and soluble TREM-1 plasma levels upon i.v. LPS challenge in healthy humans in vivo and in vitro. Granulocyte TREM-1 expression was high at baseline and immediately down-regulated upon LPS exposure along with an increase in soluble TREM-1. Monocytes displayed a gradual up-regulation of TREM-1 upon LPS in vivo and in vitro. In vitro studies extended these findings to highly purified lipoteichoic acid and Streptococcus pneumoniae. Nonbacterial TLR ligands such as polyinosine-polycytidylic acid and imidazoquinoline, as well as the TLR9 ligand CpG, did not impact TREM-1 expression. The LPS-induced alterations in TREM-1 surface expression were not a result of increased TNF-alpha or IL-10. Inhibitor studies disclosed a PI3K-dependent pathway in LPS-induced up-regulation of TREM-1 on monocytes, whereas MAPK played a limited role.  相似文献   

9.
《Biomarkers》2013,18(7):600-604
Context: Soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) participates in the inflammatory process.

Purpose: To describe changes of sTREM-1 in the serum after hemiarthroplasty (HA) and total hip arthroplasty (THA).

Methods: Serial blood samples were drawn from 122 patients with hip fracture. Interleukin-6 (IL-6), sTREM-1, and C-reactive protein (CRP) were measured.

Results: IL-6 and CRP were similarly increased after both HA and THA. sTREM-1 was increased early in HA and late after THA. The only parameter that was higher among patients who developed systemic inflammatory response syndrome was IL-6.

Conclusions: Kinetics of sTREM-1 differs among patients undergoing HA of the hip and those undergoing THA.  相似文献   

10.

Introduction

Ventilator-associated pneumonia (VAP) increases mortality in critical illness. However, clinical diagnostic uncertainty persists. We hypothesised that measuring cell-surface and soluble inflammatory markers, incorporating Triggering Receptor Expressed by Myeloid cells (TREM)-1, would improve diagnostic accuracy.

Methods

A single centre prospective observational study, set in a University Hospital medical-surgical intensive Care unit, recruited 91 patients into 3 groups: 27 patients with VAP, 33 ventilated controls without evidence of pulmonary sepsis (non-VAP), and 31 non-ventilated controls (NVC), without clinical infection, attending for bronchoscopy. Paired samples of Bronchiolo-alveolar lavage fluid (BALF) and blood from each subject were analysed for putative biomarkers of infection: Cellular (TREM-1, CD11b and CD62L) and soluble (IL-1β, IL-6, IL-8, sTREM-1, Procalcitonin). Expression of cellular markers on monocytes and neutrophils were measured by flow cytometry. Soluble inflammatory markers were determined by ELISA. A biomarker panel (‘Bioscore’), was constructed, tested and validated, using Fisher’s discriminant function analysis, to assess its value in distinguishing VAP from non VAP.

Results

The expression of TREM-1 on monocytes (mTREM-1) and neutrophils (nTREM-1) and concentrations of IL-1β, IL-8, and sTREM-1 in BALF were significantly higher in VAP compared with non-VAP and NVC (p<0.001). The BALF/blood mTREM-1 was significantly higher in VAP patients compared to non-VAP and NVC (0.8 v 0.4 v 0.3 p<0.001). A seven marker Bioscore (BALF/blood ratio mTREM-1 and mCD11b, BALF sTREM-1, IL-8 and IL-1β, and serum CRP and IL-6) correctly identified 88.9% of VAP cases and 100% of non-VAP cases.

Conclusion

A 7-marker bioscore, incorporating cellular and soluble TREM-1, accurately discriminates VAP from non-pulmonary infection.  相似文献   

11.
Vasoactive intestinal peptide (VIP) is one of the most plentiful neuropeptides in the lung and it has anti-inflammatory effects in the respiratory system. Triggering receptors expressed on myeloid cells-1 (TREM-1) and triggering receptors expressed on myeloid cells-2 (TREM-2) regulate immune responses to lipopolysaccharide (LPS). In the present study, we tested the expressions of TREM-1 and TREM-2 in various pulmonary cell lines and/or tissue using an animal model of LPS-induced acute lung injury (ALI), and determined the effects of VIP on expression of the TREM-1 and TREM-2 in lung tissues and cells from ALI mice. We found 1) expression of the TREM-1 mRNA from lung tissues of ALI was significantly increased, whereas the expression of TREM-2 mRNA was decreased in these tissues; 2) TREM-1 mRNA was only expressed in macrophages, while TREM-2 mRNA was detected in HBECs, lung fibroblasts, lung adenocarcinoma cells and macrophages; 3) the ratio of TREM-1 mRNA to TREM-2 mRNA was increased in LPS-induced lung tissues and macrophages; 4) VIP inhibited expression of the TREM-1 mRNA in a time- and dose-dependent manner in lung cells from LPS-induced ALI mice; however, it increased expression of the TREM-2 mRNA. As a result of these effects, VIP normalized the ratio of TREM-1 to TREM-2 mRNA in these cells. Our results suggest that VIP might exert its anti-inflammatory effect through a mechanism involved in regulation of expression of the TREM-1 and TREM-2 in LPS-induced ALI.  相似文献   

12.
It is widely believed that the alveolar epithelium is unresponsive to LPS, in the absence of serum, due to low expression of TLR4 and CD14. Furthermore, the responsiveness of the epithelium to TLR-2 ligands is also poorly understood. We hypothesised that human alveolar type I (ATI) and type II (ATII) epithelial cells were responsive to TLR2 and TLR4 ligands (MALP-2 and LPS respectively), expressed the necessary TLRs and co-receptors (CD14 and MD2) and released distinct profiles of cytokines via differential activation of MAP kinases. Primary ATII cells and alveolar macrophages and an immortalised ATI cell line (TT1) elicited CD14 and MD2-dependent responses to LPS which did not require the addition of exogenous soluble CD14. TT1 and primary ATII cells expressed CD14 whereas A549 cells did not, as confirmed by flow cytometry. Following LPS and MALP-2 exposure, macrophages and ATII cells released significant amounts of TNFα, IL-8 and MCP-1 whereas TT1 cells only released IL-8 and MCP-1. P38, ERK and JNK were involved in MALP-2 and LPS-induced cytokine release from all three cell types. However, ERK and JNK were significantly more important than p38 in cytokine release from macrophages whereas all three were similarly involved in LPS-induced mediator release from TT1 cells. In ATII cells, JNK was significantly more important than p38 and ERK in LPS-induced MCP-1 release. MALP-2 and LPS exposure stimulated TLR4 protein expression in all three cell types; significantly more so in ATII cells than macrophages and TT1 cells. In conclusion, this is the first study describing the expression of CD14 on, and TLR2 and 4 signalling in, primary human ATII cells and ATI cells; suggesting that differential activation of MAP kinases, cytokine secretion and TLR4 expression by the alveolar epithelium and macrophages is important in orchestrating a co-ordinated response to inhaled pathogens.  相似文献   

13.
Wang F  Liu S  Wu S  Zhu Q  Ou G  Liu C  Wang Y  Liao Y  Sun Z 《Cellular immunology》2012,272(2):251-258
TREM-1 is a recently discovered receptor expressed on neutrophils and macrophages. Blocking of TREM-1 signaling improves the survival of mice with bacterial sepsis. However, the precise mechanism by which TREM-1 modulates the inflammatory responses is poorly defined. In this study, we investigated the role of TREM-1 in Pseudomonas aeruginosa-induced peritonitis. Our results showed that TREM-1 was not expressed on lymphocytes but emerged on the cell surface of neutrophils and peritoneal macrophages. Blockade of TREM-1 signaling significantly prolonged survival of mice with P. aeruginosa-induced peritonitis. However, blocking TREM-1 signaling had no effect on macrophage phagocytosis in vitro. Interestingly, the expression of the costimulatory molecules CD40 and CD86 on macrophages was significantly decreased after blocking TREM-1 signaling. Furthermore, interfering with TREM-1 engagement led to significant reduction of pro-inflammatory mediators such as IL-1, TNF-α, MCP-1 and IFN-γ. Therefore, our results showed that TREM-1 could be a potential therapeutic target for bacterial sepsis.  相似文献   

14.
15.
Quantitative nitric oxide production by rat, bovine and porcine macrophages   总被引:1,自引:0,他引:1  
The aim of this work was to compare in vitro nitric oxide (NO) production by rat, bovine and porcine macrophages. NO production was induced by lipopolysaccharide (LPS) or by phorbol 12-myristate 13-acetate (PMA) with ionomycin or recombinant interferon gamma (rIFN-γ) and was assessed by Griess reaction. NO synthase type II (NOS II) expression was quantified by immunocytochemistry, Western blot and real-time polymerase chain reaction (RT-PCR). There were differences in NO production by pulmonary alveolar macrophages (PAM) in all species tested. The largest amounts of NO were produced by rat PAM. Less NO was produced by bovine PAM. Moreover, PAM in rats and cows differed in their abilities to respond to various stimulators. Neither porcine PAM nor Kupffer cells produced NO. Stimulation of porcine PAM with alternative concentrations of LPS did not lead to inducing NO production. Stimulation of porcine PAM with rIFN-γ together with LPS led to a significant increase in the expression of NOS II mRNA, albeit without detectable NO production or NOS II expression on the protein level.  相似文献   

16.
Phagocytosis and inflammation within the lungs is crucial for host defense during bacterial pneumonia. Triggering receptor expressed on myeloid cells (TREM)-2 was proposed to negatively regulate TLR-mediated responses and enhance phagocytosis by macrophages, but the role of TREM-2 in respiratory tract infections is unknown. Here, we established the presence of TREM-2 on alveolar macrophages (AM) and explored the function of TREM-2 in the innate immune response to pneumococcal infection in vivo. Unexpectedly, we found Trem-2 −/− AM to display augmented bacterial phagocytosis in vitro and in vivo compared to WT AM. Mechanistically, we detected that in the absence of TREM-2, pulmonary macrophages selectively produced elevated complement component 1q (C1q) levels. We found that these increased C1q levels depended on peroxisome proliferator-activated receptor-δ (PPAR-δ) activity and were responsible for the enhanced phagocytosis of bacteria. Upon infection with S. pneumoniae, Trem-2 −/− mice exhibited an augmented bacterial clearance from lungs, decreased bacteremia and improved survival compared to their WT counterparts. This work is the first to disclose a role for TREM-2 in clinically relevant respiratory tract infections and demonstrates a previously unknown link between TREM-2 and opsonin production within the lungs.  相似文献   

17.
Bacterial colonization is a secondary feature of many lung disorders associated with elevated cytokine levels and increased leukocyte recruitment. We hypothesized that, alongside macrophages, the epithelium would be an important source of these mediators. We investigated the effect of LPS (0, 10, 100, and 1000 ng/ml LPS, up to 24 h) on primary human lung macrophages and alveolar type II epithelial cells (ATII; isolated from resected lung tissue). Although macrophages produced higher levels of the cytokines TNF-alpha and IL-1beta (p < 0.0001), ATII cells produced higher levels of chemokines MCP-1, IL-8, and growth-related oncogene alpha (p < 0.001), in a time- and concentration-dependent manner. Macrophage (but not ATII cell) responses to LPS required activation of ERK1/2 and p38 MAPK signaling cascades; phosphorylated ERK1/2 was constitutively up-regulated in ATII cells. Blocking Abs to TNF-alpha and IL-1beta during LPS exposure showed that ATII cell (not macrophage) MCP-1 release depended on the autocrine effects of IL-1beta and TNF-alpha (p < 0.003, 24 h). ATII cell release of IL-6 depended on autocrine effects of TNF-alpha (p < 0.006, 24 h). Macrophage IL-6 release was most effectively inhibited when both TNF-alpha and IL-1beta were blocked (p < 0.03, 24 h). Conditioned media from ATII cells stimulated more leukocyte migration in vitro than conditioned media from macrophages (p < 0.0002). These results show differential activation of cytokine and chemokine release by ATII cells and macrophages following LPS exposure. Activated alveolar epithelium is an important source of chemokines that orchestrate leukocyte migration to the peripheral lung; early release of TNF-alpha and IL-1beta by stimulated macrophages may contribute to alveolar epithelial cell activation and chemokine production.  相似文献   

18.
The goals of this study were to characterize the changes in chondroitin sulfate proteoglycans and hyaluronan in lungs in acute response to gram-negative bacterial infection and to identify cellular components responsible for these changes. Mice were treated with intratracheal (IT) live Escherichia coli, E. coli lipopolysaccharide (LPS), or PBS. Both E. coli and LPS caused rapid selective increases in mRNA expression of versican and hyaluronan synthase (Has) isoforms 1 and 2 associated with increased immunohistochemical and histochemical staining for versican and hyaluronan in the lungs. Versican was associated with a subset of alveolar macrophages. To examine whether macrophages contribute to versican and hyaluronan accumulation, in vitro studies with primary cultures of bone marrow-derived and alveolar macrophages were performed. Unstimulated macrophages expressed very low levels of versican and hyaluronan synthase mRNA, with no detectible versican protein or hyaluronan product. Stimulation with LPS caused rapid increases in versican mRNA and protein, a rapid increase in Has1 mRNA, and concomitant inhibition of hyaluronidases 1 and 2, the major hyaluronan degrading enzymes. Hyaluronan could be detected following chloroquine pre-treatment, indicating rapid turnover and degradation of hyaluronan by macrophages. In addition, the effects of LPS, the M1 macrophage classical activation agonist, were compared to those of IL-4/IL-13 or IL-10, the M2a and M2c alternative activation agonists, respectively. Versican and Has1 increased only in response to M1 activation. Finally, the up-regulation of versican and Has1 in the whole lungs of wild-type mice following IT LPS was completely abrogated in TLR-4−/− mice. These findings suggest that versican and hyaluronan synthesis may play an important role in the innate immune response to gram-negative lung infection.  相似文献   

19.
The goals of this study were to characterize the changes in chondroitin sulfate proteoglycans and hyaluronan in lungs in acute response to gram-negative bacterial infection and to identify cellular components responsible for these changes. Mice were treated with intratracheal (IT) live Escherichia coli, E. coli lipopolysaccharide (LPS), or PBS. Both E. coli and LPS caused rapid selective increases in mRNA expression of versican and hyaluronan synthase (Has) isoforms 1 and 2 associated with increased immunohistochemical and histochemical staining for versican and hyaluronan in the lungs. Versican was associated with a subset of alveolar macrophages. To examine whether macrophages contribute to versican and hyaluronan accumulation, in vitro studies with primary cultures of bone marrow-derived and alveolar macrophages were performed. Unstimulated macrophages expressed very low levels of versican and hyaluronan synthase mRNA, with no detectible versican protein or hyaluronan product. Stimulation with LPS caused rapid increases in versican mRNA and protein, a rapid increase in Has1 mRNA, and concomitant inhibition of hyaluronidases 1 and 2, the major hyaluronan degrading enzymes. Hyaluronan could be detected following chloroquine pre-treatment, indicating rapid turnover and degradation of hyaluronan by macrophages. In addition, the effects of LPS, the M1 macrophage classical activation agonist, were compared to those of IL-4/IL-13 or IL-10, the M2a and M2c alternative activation agonists, respectively. Versican and Has1 increased only in response to M1 activation. Finally, the up-regulation of versican and Has1 in the whole lungs of wild-type mice following IT LPS was completely abrogated in TLR-4−/− mice. These findings suggest that versican and hyaluronan synthesis may play an important role in the innate immune response to gram-negative lung infection.  相似文献   

20.
Trichinella spiralis represents an effective treatment for autoimmune and inflammatory diseases. The effects of recombinant T. spiralis (TS) 53-kDa protein (rTsP53) on acute lung injury (ALI) remain unclear. Here, mice were divided randomly into a control group, LPS group, and rTsP53 + LPS group. ALI was induced in BALB/c mice by LPS (10 mg/kg) injected via the tail vein. rTsP53 (200 µl; 0.4 μg/μl) was injected subcutaneously three times at an interval of 5 d before inducing ALI in the rTsP53+LPS group. Lung pathological score, the ratio and markers of classic activated macrophages (M1) and alternatively activated macrophages (M2), cytokine profiles in alveolar lavage fluid, and pyroptosis protein expression in lung tissue were investigated. RTsP53 decreased lung pathological score. Furthermore, rTsP53 suppressed inflammation by increasing IL-4, IL-10, and IL-13. There was an increase in alveolar M2 macrophage numbers, with an increase in CD206 and arginase-1-positive cells and a decrease in alveolar M1 markers such as CD197 and iNOS. In addition, the polarization of M2 macrophages induced by rTsP53 treatment could alleviate ALI by suppressing lung pyroptosis. RTsP53 was identified as a potential agent for treating LPS-induced ALI via alleviating lung pyroptosis by promoting M2 macrophage polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号