首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our laboratory showed that bikunin, a Kunitz-type protease inhibitor, suppresses 4beta-phorbol 12-myristate 13-acetate (PMA)- or tumor necrosis factor-alpha (TNFalpha)-induced urokinase-type plasminogen activator (uPA) expression in different cell types. In addition to its effects on protease inhibition, bikunin could be modulating other cellular events associated with the metastatic cascade. To test this hypothesis, we examined whether bikunin was able to suppress the expression of uPA receptor (uPAR) mRNA and protein in a human chondrosarcoma cell line, HCS-2/8, and two human ovarian cancer cell lines, HOC-I and HRA. The present study showed that (a) bikunin suppresses the expression of constitutive and PMA-induced uPAR mRNA and protein in a variety of cell types; (b) an extracellular signal-regulated kinase (ERK) activation system is necessary for the PMA-induced increase in uPAR expression, as PD098059 and U0126, which prevent the activation of MEK1, reduce the uPAR expression; (c) bikunin markedly suppresses PMA-induced phosphorylation of ERK1/2 at the concentration that prevents uPAR expression, but does not reduce total ERK1/2 antigen level; (d) bikunin has no ability to inhibit overexpression of uPAR in cells treated with sodium vanadate; and (e) we further studied the inhibition of uPAR expression by stable transfection of HRA cells with bikunin gene, demonstrating that bikunin secretion is necessary for inhibition of uPAR expression. We conclude that bikunin downregulates constitutive and PMA-stimulated uPAR mRNA and protein possibly through suppression of upstream targets of the ERK-dependent cascade, independent of whether cells were treated with exogenous bikunin or transfected with bikunin gene.  相似文献   

2.
The 180- and 190-kDa isoforms of CD45 are preferentially expressed on the helper inducer (memory) subset of CD4 cells. In order to generate monoclonal antibodies against the extracellular domains of these isoforms and determine whether they could regulate the function and activation of these cells, we developed a mAb, anti-4H2D, by immunizing Balb/c mice with an isogenic mouse pre-B cell line expressing the human 190-kDa CD45 isoform. Anti-4H2D reacts with approximately 60% of T cells, 70% of CD4 cells, and 60% of CD8 cells. The CD4 cell population defined by this mAb corresponds functionally and phenotypically to that defined by the CD45RO+CD29+ subset. Western blotting demonstrated that anti-4H2D reacts primarily with the 190-kDa isoform of CD45 and to a minor extent, the 205- and 180-kDa CD45 isoforms. Interestingly, this mAb reacted with only a subpopulation of mature thymocytes and peripheral T cells, despite the fact that the 190-kDa CD45 isoform, as well as CD45RO and CD29, is more widely distributed on cells of hematopoietic origin. The 4H2D epitope was neuraminidase sensitive, indicating that anti-4H2D reacts with a carbohydrate epitope which is present on only a subset of the T cells containing the 190-kDa CD45 isoform epitopes. Functional studies showed that soluble anti-4H2D augmented T cell proliferation induced by the CD2 and CD3 pathways, and treatment of T cells with this mAb up-regulated [Ca2+]i flux induced by both anti-CD2 and anti-CD3 mAbs. These results suggest that the 190-kDa CD45 isoform on human CD4 cells is heterogeneous and that the 190-kDa isoform recognized by anti-4H2D regulates the function and activation of CD4 helper T cells.  相似文献   

3.
We previously found that bikunin (bik), a Kunitz-type protease inhibitor, suppresses transforming growth factor-beta1 (TGF-beta1)-stimulated expression of urokinase-type plasminogen activator (uPA) in human ovarian cancer cells that lack endogenous bik. In the present study, we tried to elucidate the mechanism by which bik also inhibits plasminogen activator inhibitor type-1 (PAI-1) and collagen synthesis using human ovarian cancer cells. Here, we show that (a) there was an enhanced production of both uPA and PAI-1 in HRA cells in response to TGF-beta1; (b) the overexpression of bik in the cells or exogenous bik results in the inhibition of TGF-beta1 signaling as measured by phosphorylation of the downstream signaling effector Smad2, nuclear translocation of Smad3, and production of PAI-1 and collagen; (c) bik neither decreased expression of TGF-beta receptors (TbetaRI and TbetaRII) in either cell types nor altered the specific binding of 125I TGF-beta1 to the cells, indicating that the effects of bik in these cells are not mediated by ligand sequestration; (d) TbetaRI and TbetaRII present on the same cells exclusively form aggregates in TGF-beta1-stimulated cells; (e) co-treatment of TGF-beta1-stimulated cells with bik suppresses TGF-beta1-induced complex formation of TbetaRI and TbetaRII; and (f) a chondroitin-4-sulfate side chain-deleted bik (deglycosylated bik) does not inhibit TGF-beta1 signaling or association of type I/type II receptor. We conclude that glycosylated bik attenuates TGF-beta1-elicited signaling cascades in cells possibly by abrogating the coupling between TbetaRI and TbetaRII and that this probably provides the mechanism for the suppression of uPA and PAI-1 expression.  相似文献   

4.
5.
H Kobayashi 《Human cell》2001,14(3):233-236
Bikunin (bik, also known as urinary trypsin inhibitor [UTI]), a Kunitz-type protease inhibitor, interacts with cells as a negative modulator of the invasive cells. Human ovarian cancer cell line, HRA, was treated with phorbol ester (PMA) in order to evaluate the effect on expression of urokinase-type plasminogen activator (uPA). Preincubation of the cells with bik reduced the ability of PMA to trigger the uPA expression at the gene level and at the protein level. We next asked whether the mechanism of inhibition of uPA expression by bik is due to interference with MAP kinase, since PMA could also activate a signaling pathway involving MEK/ERK/c-Jun-dependent uPA expression. When cells were preincubated with bik, we could detect suppression of phosphorylation of these proteins, demonstrating that bik markedly suppresses the cell motility possibly through negative regulation of MEK/ERK/c-Jun-dependent mechanisms, and that these changes in behavior are correlated with a coordinated down-regulation of uPA which is likely to contribute to the cell invasion processes. To clarify the role of bik on tumor metastasis, HRA cells were transfected with an expression vector harboring a cDNA encoding for human bik. Transfection of HRA with the bik cDNA resulted in five variants stably expressing functional bik and significantly reduced invasion, but not proliferation, adhesion, or migration relative to the parental cells. Animals with bik* transfectants induced reduced peritoneal dissemination and long term survival. These results suggest that transfection with the bik gene induces the suppression of tumor cell invasion and peritoneal dissemination, and can prolong survival. This pre-clinical animal model offers the possibility to explore gene therapy as a new treatment modality for ovarian cancer.  相似文献   

6.
CD44 is a family of glycoproteins involved in cell-cell and cell-matrix interactions. In addition to the major 90-kD form present on most hematopoietic cells, larger 140-230 kD forms are found on keratinocytes and carcinoma cell lines. These bigger isoforms of CD44 arise by alternative splicing that results in insertion of one or more of the "variant" exons into the extracellular part of the 90-kD constant form of the molecule. In rat, v6 (variant exon v6) containing form of CD44 confers metastatic potential to carcinoma cells, and therefore, it is of interest to study the distribution of this isoform in humans. We raised antibodies against a synthetic peptide containing a sequence encoded by the exon v6. A mAb thus obtained (designated Var3.1) strongly reacted with the plasma membranes of squamous cells in upper layers of skin and tonsil surface epithelia. Weaker staining was seen in germinal centers, vascular endothelia and enterocytes. Exon v6 containing forms of CD44 (CD44v6) were absent from tissue leukocytes and connective tissue components. In comparison, Hermes-3 epitope (on the constant part) containing forms of CD44 were preferentially localized in basal layers of epithelia, present on the surface on most leukocytes and connective tissue cells, and undetectable on the luminal surface of high endothelial venules. In benign neoplasms, epithelial cells stained with mAb Var3.1 like in normal tissues. In contrast, immunostaining of 30 squamous carcinoma specimens (both primary and metastatic lesions) revealed that malignant transformation resulted in downregulation or disappearance of Var3.1 epitope, but in majority of cases, not in diminished synthesis of the Hermes-3 epitope. Biochemical analyses showed that mAb Var3.1 recognized two major forms of CD44 (220 and 300 kD). In conclusion, epitopes on exon v6 and constant part of CD44 are differentially synthesized and regulated during normal and malignant growth of cells in man.  相似文献   

7.
Protein kinase C activating phorbol esters downregulated membrane CD4 by endocytosis in U-937 and human T-cells. Half-time for internalization (approximately 15 min at 50 ng/ml PMA) was determined by FACS. CD4-bound 125I-labeled anti-CD4 mAb was rapidly degraded in PMA-activated cells, whereas degradation was low in resting cells. Endocytosis and/or degradation of anti-CD4 mAb was suppressed by H7, and by inhibitors of membrane traffic (Monensin) and lysosome function (methylamine, chloroquine). Immunocytochemistry localized CD4 to the surface of unstimulated T-cells. Upon PMA stimulation occasional labeling was seen in endosomes but whole cell CD4 decreased dramatically. However, methylamine-treated PMA blasts showed accumulation of CD4 in lysosomes and accordingly, pulse-chase experiments in biolabeled cell cultures suggested a manifest reduction of CD4 half-life in response to PMA. Despite their low surface CD4 density, PMA blasts exhibited uptake and accelerated degradation of anti-CD4 mAb. Also, inhibitors of protein synthesis enhanced the PMA-induced downregulation, and membrane CD4 reappeared on fully activated as well as unstimulated cells treated with trypsin. Ongoing CD4 synthesis in activated cells was further evidenced by metabolic labeling and Northern blot analysis demonstrating unaltered or slightly increased CD4 protein and mRNA levels resulting from PMA. Our findings demonstrate that phorbol esters downregulate the cellular CD4 pool by endocytosis and subsequent lysosomal degradation of membrane CD4. Transport of CD4 to the cell surface and CD4 synthesis is unaffected by activation.  相似文献   

8.
There is growing evidence that one of the central common characteristics of tumor and inflammatory cells is their resistance to programmed cell death. This feature results in the accumulation of harmful cells, which are mostly refractory to Fas (FAS, APO-1)-mediated apoptosis. A molecule found on these cells is the transmembrane receptor CD44 with its variant isoforms (CD44v). The establishment of transfectants expressing different CD44v isoforms allowed us to demonstrate that the CD44v6 and CD44v9 isoforms exhibit an antiapoptotic effect and can block Fas-mediated apoptosis. Moreover, we observed that CD44v6 and CD44v9 colocalize and interact with Fas. Importantly, an anti-CD44v6 antibody can abolish the antiapoptotic effect of CD44v6. These results are the first to show that CD44v isoforms interfere with Fas signaling. Our findings improve the understanding of the pathogenesis of cancer and autoimmunity and open new strategies to treat such disorders.  相似文献   

9.
10.
The regulation of IL-2 gene expression during T cell activation and proliferation has been investigated in primary cultures of purified human peripheral blood T cells. Prior results indicated that stimulation of T cells by anti-CD28 mAb plus PMA could induce IL-2 expression and T cell proliferation that was entirely resistant to cyclosporine. The present studies examined whether CD28 augments IL-2 expression by a unique pathway or merely acts at a point common to CD3-induced proliferation but distal to the effects of cyclosporine. The induction of maximal IL-2 gene expression required three signals provided by phorbol ester, calcium ionophore, and anti-CD28 mAb. Stimulation of cells by optimal amounts of calcium ionophore and PMA induced IL-2 mRNA that was completely suppressed by cyclosporine. The addition of anti-CD28 to T cells stimulated with PMA plus calcium ionophore induced a 5- to 100-fold increase in IL-2 gene expression and secretion that was resistant to cyclosporine. The CD28 signal was able to increase steady state IL-2 mRNA levels even in cells treated with maximally tolerated amounts of calcium ionophore and PMA. The three-signal requirement did not reflect differential regulation of lymphokine gene expression between the CD4 and CD8 T cell subsets or differences in the kinetics of IL-2 mRNA expression. The signal provided by CD28 is distinct from that of CD3 because although anti-CD28 plus PMA-induced proliferation is resistant to cyclosporine, anti-CD3 or anti-CD3 plus PMA-induced IL-2 expression is sensitive. Thus, these studies show that three biochemically distinct signals are required for maximal IL-2 gene expression. Furthermore, these studies suggest that lymphokine production in T cells is not controlled by an "on/off" switch, but rather, that CD28 regulates a distinct intracellular pathway which modulates the level of IL-2 production on a per cell basis. The observation that CD28 stimulation results in IL-2 concentrations that exceed 1000 U/m1 in tissue culture supernatants suggests that a role in vivo for CD28 might be to amplify immune responses initiated by the CD3/T cell receptor complex. Finally, the observation that CD28 interacts with the signals provided by PMA and calcium ionophore shows that the function of CD28 is not merely to act as a scaffold to stabilize or enhance signalling through the CD3/TCR complex.  相似文献   

11.
Urinary trypsin inhibitor (UTI), a Kunitz-type protease inhibitor, interacts with cells as a negative modulator of the invasive cells. Human ovarian cancer cell line, HRA, was treated with phorbol ester (PMA) to evaluate the effect on expression of urokinase-type plasminogen activator (uPA), since the action of uPA has been implicated in matrix degradation and cell motility. Preincubation of the cells with UTI reduced the ability of PMA to trigger the uPA expression at the gene level and at the protein level. UTI-induced down-regulation of PMA-stimulated uPA expression is irreversible and is independent of a cytotoxic effect. Down-regulation of uPA by UTI is mediated by its binding to the cells. We next asked whether the mechanism of inhibition of uPA expression by UTI was due to interference with the protein kinase C second messenger system. An assay for PKC activity demonstrated that UTI does not directly inhibit the catalytic activity of PKC and that PMA translocation of PKC from cytosol to membrane was inhibited by UTI, indicating that UTI inhibits the activation cascade of PKC. PMA could also activate a signaling pathway involving MEK1/ERK2/c-Jun-dependent uPA expression. When cells were preincubated with UTI, we could detect suppression of phosphorylation of these proteins. Like several types of PKC inhibitor, UTI inhibited PMA-stimulated invasiveness. We conclude that UTI markedly suppresses the cell motility possibly through negative regulation of PKC- and MEK/ERK/c-Jun-dependent mechanisms, and that these changes in behavior are correlated with a coordinated down-regulation of uPA which is likely to contribute to the cell invasion processes.  相似文献   

12.
The CD4R has been shown to exert variable effects on T cell activation responses. Depending on the manner of ligation, the CD4R has been demonstrated to have positive as well as negative effects on the generation of [Ca2+]i flux by the CD3R. Coaggregation of CD3 with CD4 enhanced Ca2+ flux while their independent ligation and aggregation diminished this response. To further elucidate these paradoxical CD4 effects, we studied induction of a microtubule-associated protein 2 kinase (MAP-2K) activity during ligation of the CD3R. Lymphoid MAP-2K activation by CD3 is an evanescent event that is dependent on phosphorylation of 43-kDa MAP-2K via a pathway that involves protein kinase C. Coaggregation of CD4 and CD3 with cross-linking antibodies and avidin enhanced the CD3-mediated MAP-2K response almost twofold. In contrast, independent ligation and cross-linking of CD4 reduced the CD3-induced MAP-2K response by approximately 50%. An important requirement for this inhibitory effect was that CD4 be ligated before stimulation with anti-CD3. The negative effect of anti-CD4 mAb was specific as other mAb failed to simulate this event. The PMA-induced MAP-2K response was not inhibited by anti-CD4. Intact 32P-labeled Jurkat and normal human T cells demonstrated the appearance of a single 43-kDa tyrosine phosphoprotein during stimulation with PMA and anti-CD3. When these crude cellular extracts were extensively fractionated across DEAE- and hydrophobic columns, MAP-2K was resolved into two peaks of activity, each containing a single tyrosine phosphoprotein around 43 kDa. In addition to tyrosine-specific labeling, mitogenic stimulation of normal human T cells also induced threonine-specific labeling of MAP-2K. These results imply that activation of lymphoid MAP-2K is a dual process requiring at least two independent kinases for optimal activity. Inasmuch as CD3 activates protein kinase C and CD4 is associated with a tyrosine kinase, pp56lck, we suggest that their coaggregation may create the conditions whereby MAP-2K may be activated by dual phosphorylation. Independent aggregation of these receptors may lead to physical separation and breakdown of this interactive mechanism.  相似文献   

13.
Myoepithelial cells surround incipient ductal carcinomas of the breast and exert anti-invasive and antiangiogenic effects in vitro through the elaboration of suppressor molecules. This study examines one putative molecule, solubilized CD44 produced by myoepithelial shedding of membrane CD44. Studies with different human myoepithelial cell lines demonstrate that myoepithelial cells express and shed both the 85-kDa standard (CD44s) and the 130-kDa epithelial (CD44v8-10) isoforms, findings further confirmed by the use of isoform-specific antibodies. PMA pretreatment enhances CD44 shedding detected by two different methods at different time points: a reduction in surface CD44 at 2 h by flow cytometry and a marked decrease in both total cellular CD44 and plasma membrane CD44 at 12 h by Western blot. This shedding is both specific for CD44 and specific for myoepithelial cells. This shedding is inhibited by the chymotrypsin inhibitors chymostatin and alpha(1)-antichymotrypsin but not by general metallo-, cysteine, or other serine proteinase inhibitors. Myoepithelial-cell-conditioned medium and affinity-purified solubilized CD44 from this conditioned medium block hyaluronan adhesion and migration of both human carcinoma cell lines and human umbilical vein endothelial cells.  相似文献   

14.
The tumor promoter PMA has been shown to induce the expression of a 28-kDa/32-kDa early activation Ag, termed EA 1, on resting T cells. Under nonreducing conditions, EA 1 was detected by SDS-PAGE as a diffuse band in the 60-kDa region. In this study, this diffuse band was resolved into 56-kDa and 60-kDa bands. Endoglycosidase F treatment of EA 1 resulted in the appearance of a single band with a Mr of 48 kDa. Upon reduction, the 48-kDa band was shown to be composed of 24-kDa peptides. Diagonal gel electrophoresis showed that the major band of EA 1 was composed of a series of disulfide-linked homodimers with subunits of the same 24-kDa core protein that were differentially glycosylated. This analysis also revealed in a minor population of the EA 1 molecules, the presence of proteins of different Mr associated with the core protein. The signal requirements for the induction of EA 1 were investigated. The putative cellular action of PMA is the activation of protein kinase C (PKC). To further investigate the role of PKC activation in the expression of EA 1, the synthetic diacylglycerol, 1,2-sn-dioctanoylglycerol (diOG) was examined for its ability to substitute for PMA. DiOG induced EA 1 expression in a dose dependent manner. H-7, a relatively selective inhibitor of PKC, blocked diOG and PMA induced EA 1 expression. HA1004, a selective inhibitor of cAMP- and cGMP-dependent protein kinases, had no effect. In kinetic studies, EA 1 expression was seen as early as 1 h in diOG- and PMA-activated T cells. However, diOG did not completely mimic PMA-induced EA 1 expression. By 18 h, diOG-induced EA 1 expression was markedly reduced, whereas PMA-induced EA 1 expression was persistent. The role of calcium in EA 1 expression was investigated. mAb against CD3 potentiated diOG-induced EA 1 expression. This potentiation appeared to correlate with the ability of the anti-CD3 mAb to induce rises in intracellular calcium. Addition of EGTA to the media blocked the potentiation of diOG induced EA 1 expression by these mAb. The role of calcium in EA 1 expression was further demonstrated by the ability of ionomycin to potentiate EA 1 expression. These results demonstrate that PKC activation is the primary pathway for the induction of EA 1. However, calcium-dependent pathways appear to have a secondary role.  相似文献   

15.
Two signaling pathways, the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK)-dependent pathway and the nuclear factor-kappaB (NF-kappaB)-dependent pathway, have been known to mediate megakaryocytic differentiation of K562 cells induced by phorbol 12-myristate 13-acetate (PMA). In this study, we examined whether 90-kDa ribosomal S6 kinase (RSK), known as a substrate of ERK/MAPK and a signal-inducible IkappaBalpha kinase, would link two pathways during the differentiation. RSK1 was activated in a time- and dose-dependent manner during the PMA-induced differentiation. Overexpression of wild-type or dominant inhibitory mutant (D205N) of RSK1 enhanced or suppressed PMA-stimulated NF-kappaB activation and megakaryocytic differentiation as shown by morphology, nonspecific esterase activity, and expression of the CD41 megakaryocytic marker, respectively. In addition, overexpression of the dominant inhibitory mutant (S32A/S36A) of IkappaBalpha inhibited PMA-stimulated and RSK1-enhanced megakaryocytic differentiation, indicating that NF-kappaB mediates a signal for megakaryocytic differentiation downstream of RSK1. PMA-stimulated activation of ERK/MAPK, RSK1, and NF-kappaB and the PMA-induced megakaryocytic differentiation were prevented by pretreatment with PD98059, a specific inhibitor of the mitogen-activated ERK kinase (MEK). Therefore, these results demonstrate that the sequential ERK/RSK1/NF-kappaB pathway mediates PMA-stimulated megakaryocytic differentiation of K562 cells.  相似文献   

16.
The processes of ovarian cancer dissemination are characterized by altered local proteolysis, cellular proliferation, cell attachment, and invasion, suggesting that the urokinase-type plasminogen activator (uPA) and its specific inhibitor (plasminogen activator inhibitor type-1 (PAI-1)) could be involved in the pathogenesis of peritoneal dissemination. We showed previously that expression of uPA and PAI-1 in the human ovarian cancer cell line HRA can be down-regulated by exogenous bikunin (bik), a Kunitz-type protease inhibitor, via suppression of transforming growth factor-beta1 (TGF-beta1) up-regulation and that overexpression of the bik gene can specifically suppress the in vivo growth and peritoneal dissemination of HRA cells in an animal model. We hypothesize that the plasminogen activator system in mesothelial cells can be modulated by HRA cells. To test this hypothesis, we used complementary techniques in mesothelial cells to determine whether uPA and PAI-1 expression are altered by exposure to culture media conditioned by HRA cells. Here we show the following: 1) that expression of PAI-1, but not uPA, was markedly induced by culture media conditioned by wild-type HRA cells but not by bik transfected clones; 2) that by antibody neutralization the effect appeared to be mediated by HRA cell-derived TGF-beta1; 3) that exogenous TGF-beta1 specifically enhanced PAI-1 up-regulation at the mRNA and protein level in mesothelial cells in a time- and concentration-dependent manner, mainly through MAPK-dependent activation mechanism; and 4) that mesothelial cell-derived PAI-1 may promote tumor invasion possibly by enhancing cell-cell interaction. This represents a novel pathway by which tumor cells can regulate the plasminogen activator system-dependent cellular responses in mesothelial cells that may contribute to formation of peritoneal dissemination of ovarian cancer.  相似文献   

17.
Mechanism of peripheral T cell activation by coengagement of CD44 and CD2.   总被引:4,自引:0,他引:4  
A number of CD44 antibodies are known to augment peripheral T cell proliferation stimulated with suboptimal concentrations of activating pairs of CD2 mAb. These findings have implicated the CD44 adhesion receptor in the activation of peripheral T cells via CD2. We have investigated early events after CD44 and CD2 coengagement on peripheral T cells. CD44 and CD2 coengagement resulted in enhanced [Ca2+]i mobilization. However, the increase in [Ca2+]i mobilization did not occur until at least 3 min after CD2 and CD44 coengagement, suggesting that other events precede the elevation in [Ca2+]i. Using a T cell/fibroblast adhesion assay, we could demonstrate a dramatic increase in T cell adhesiveness after about 1 min after CD44 and CD2 coengagement. The increase in T cell adhesiveness was comparable to that induced by PMA. In the absence of antibodies or treatment with mAb directed to other T cell surface Ag, there was little if any adhesion between unstimulated peripheral T cells and fibroblasts. Enhancement of T cell adhesiveness through CD44 engagement was not mediated by a direct effect on lymphocyte-function associated Ag-3, the known ligand of CD2. However, cross-linking of CD44 resulted in epitopic modulation of CD2 as demonstrated by the increased expression of the T11(3) activation epitope. Furthermore, anti-CD44 could substitute for anti-T11(2) in the activation of peripheral T cells via CD2. These results suggest that CD44 ligation has profound effects on CD2-mediated events by inducing epitopic modulation of CD2.  相似文献   

18.
CD44 is a transmembrane glycoprotein that regulates a variety of genes related to cell-adhesion, migration, proliferation, differentiation, and survival. A large number of alternative splicing isoforms of CD44, containing various combinations of alternative exons, have been reported. CD44 standard (CD44s), which lacks variant exons, is widely expressed on the surface of most tissues and all hematopoietic cells. In contrast, CD44 variant isoforms show tissue-specific expression patterns and have been extensively studied as both prognostic markers and therapeutic targets in cancer and other diseases. In this study, we immunized mice with CHO-K1 cell lines overexpressing CD44v3-10 to obtain novel anti-CD44 mAbs. One of the clones, C44Mab-5 (IgG1, kappa), recognized both CD44s and CD44v3-10. C44Mab-5 also reacted with oral cancer cells such as Ca9-22, HO-1-u-1, SAS, HSC-2, HSC-3, and HSC-4 using flow cytometry. Moreover, immunohistochemical analysis revealed that C44Mab-5 detected 166/182 (91.2%) of oral cancers. These results suggest that the C44Mab-5 antibody may be useful for investigating the expression and function of CD44 in various cancers.  相似文献   

19.
Thrombospondin-1 (TSP-1), an extracellular matrix protein, has a multimodular structure and each domain specifies a distinct biological function through interaction with a specific ligand. In this study we found that exogenously added TSP-1 inhibits phorbol myristate acetate (PMA)/LPS-induced homotypic aggregation of human monocytic U937 cells, whereas the 70-kDa fragment of TSP-1 generated by the proteolytic cleavage of the intact molecule promotes the homotypic aggregation. The aggregation was also inhibited by anti-CD47 mAb or the 4N1K peptide, of which sequence is derived from the CD47-binding site of TSP-1 and absent in the 70-kDa fragment. In contrast, the augmented cell aggregation by the 70-kDa fragment was hampered by anti-CD36 mAb or antibody against the CD36-binding site of TSP-1. The cell aggregation of U937 cells was completely blocked, even in the presence of the 70-kDa fragment, by mAb against leukocyte function associated antigen-1 (LFA-1) or intercellular adhesion molecule-1 (ICAM-1). We therefore propose that TSP-1 may regulate LFA-1/ICAM-1-mediated cell adhesion of monocytes/macrophages by either the inhibitory effect through CD47 or the promoting effect through CD36 depending on which domain/fragment is functional in a given biological setting.  相似文献   

20.
Previous studies reported that L-selectin (CD62L) on human peripheral blood neutrophils serves as an E-selectin ligand. This study shows that CD62L acquired E-selectin-binding activity following phorbol ester (PMA) treatment of the Jurkat T cell line and anti-CD3/IL-2-driven proliferation of human T lymphocytes in vitro. The recombinant porcine E-selectin/human Ig chimera P11.4 showed neuraminidase-sensitive and calcium-dependent attachment to PMA-stimulated human Jurkat T cells in a flow cytometry assay. The anti-CD62L mAb (DREG 56) blocked this binding interaction by approximately 60% and P11.4 precipitated CD62L from detergent lysates of PMA-activated Jurkat cells. In contrast, P11.4 precipitated minimal amounts of CD62L from detergent lysates of nonactivated human PBL. As reported previously, P-selectin glycoprotein ligand 1 and a distinct 130-kDa glycoprotein were the major species in these precipitates. However, T cell activation on plate-immobilized anti-CD3 and growth in low-dose IL-2 increased the percentage of CD62L molecules with E-selectin-binding activity. After two cycles of activation and culture, approximately 60-70% of the CD62L was precipitated with the P11.4 chimera. These cultured T lymphoblasts rolled avidly on both E-selectin and P-selectin at physiologic levels of linear shear stress. The DREG 56 Ab partially blocked rolling on the E-selectin substrate, whereas no effect was seen on P-selectin. Thus, CD62L on human cultured T lymphoblasts is one of several glycoproteins that interacts directly with E-selectin and contributes to rolling under flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号