首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Process design and economics are considered for conversion of paper sludge to ethanol. A particular site, a bleached kraft mill operated in Gorham, NH by Fraser Papers (15 tons dry sludge processed per day), is considered. In addition, profitability is examined for a larger plant (50 dry tons per day) and sensitivity analysis is carried out with respect to capacity, tipping fee, and ethanol price. Conversion based on simultaneous saccharification and fermentation with intermittent feeding is examined, with ethanol recovery provided by distillation and molecular sieve adsorption. It was found that the Fraser plant achieves positive cash flow with or without xylose conversion and mineral recovery. Sensitivity analysis indicates economics are very sensitive to ethanol selling price and scale; significant but less sensitive to the tipping fee, and rather insensitive to the prices of cellulase and power. Internal rates of return exceeding 15% are projected for larger plants at most combinations of scale, tipping fee, and ethanol price. Our analysis lends support to the proposition that paper sludge is a leading point-of-entry and proving ground for emergent industrial processes featuring enzymatic hydrolysis of cellulosic biomass.  相似文献   

2.
Utilization of microbial oil for biodiesel production has gained growing interest due to the increase in prices and the shortage of the oils and fats traditionally used in biodiesel production. However, it is still in the laboratory study stage due to the high cost of production. Employing organic wastes as raw materials to grow heterotrophic oleaginous microorganisms for further lipid production to produce biodiesel has been predicted to be a promising method for reducing costs. However, there are many obstacles including the low biodegradability of organic wastes, low lipid accumulation capacity of heterotrophic oleaginous microorganisms while using organic wastes, a great dependence on a high-energy consumption approach for biomass harvesting, utilization of toxic organic solvents for lipid extraction, and large amount of methanol required in trans-esterification and in-situ trans-esterifications. Ultra-sonication as a green technology has been extensively utilized to enhance bio-product production from organic wastes. In this article, ultra-sonication applications in biodiesel production steps with heterotrophic oleaginous microorganisms have been reviewed, and its impact, potential, and limitations on the process have been discussed.  相似文献   

3.
Integrated production of biodegradable plastic, sugar and ethanol   总被引:4,自引:0,他引:4  
Poly 3-hydroxybutyric acid (PHB) and related copolymers can be advantageously produced when integrated into a sugarcane mill. In this favorable scenario, the energy necessary for the production process is provided by biomass. Carbon dioxide emissions to the environment are photosynthetically assimilated by the sugarcane crop and wastes are recycled to the cane fields. The polymer can be produced at low cost considering the availability of a low-price carbon source and energy.  相似文献   

4.
North-west Russia, located between Ladoga and Onega Lakes and theBarents Sea, is remarkable for its high hydrological differentiation andabundance of water. The rivers and their tributaries are largely natural incharacter and with little disturbance by human activity. However, the situationis starting to change, so a biomonitoring approach has been developed to assessthe influence of land-use patterns on the structure of periphyton in thisregion. The periphyton communities in relatively pristine streams and in onesinfluenced by domestic sewage, agricultural, fish breeding farms, mineralisedmining mill wastes and other sources were analyzed in terms of speciesrichness,species diversity, species ecology values, biomass and chlorophyllconcentration.  相似文献   

5.
Forest plantations support several ecosystem services including biodiversity conservation. Establishment of a forest biomass‐based industry could significantly change the age structure of forest plantations located in its vicinity and thus, could lead to a possible loss of biodiversity. Therefore, this study assesses spatiotemporal impacts of a forest biomass‐based power plant on the age structure of surrounding forest plantations at landscape level. A cellular automata approach was adopted and interactions between economic objectives of forest landowners and a power plant owner punctuated by forest growth and management characteristics were considered. These spatiotemporal impacts were jointly assessed for four separate scenarios and four different power plant capacities using appropriate landscape‐level indices. Slash pine (Pinus elliotti L.) was selected as a representative species. Results indicate that the age structure of surrounding forest plantations continuously fluctuates with respect to each year of power plant operation. However, the age structure, once disturbed, never becomes comparable to the original age structure. We also found that the mature plantations were harvested during early years of power plant operation and were never observed again for the remaining years of power plant operation. This was particularly true for high capacity power plants. Similarly, high value of selected spatial index at the end of power plant life for a high capacity power plant relative to the original low value of the same index indicates aggregation of remaining plantation ages at landscape level. Establishment of low capacity forest biomass‐based power plants and adoption of an integrated regional level planning approach could help in maintaining original age structure characteristics of surrounding forest plantations to a large extent. This might help in sustaining various ecosystem services including biodiversity conservation obtained from forest plantations in a long run.  相似文献   

6.
Lignocellulosic biomass such as agricultural and forestry residues and dedicated crops provides a low-cost and uniquely sustainable resource for production of many organic fuels and chemicals that can reduce greenhouse gas emissions, enhance energy security, improve the economy, dispose of problematic solid wastes, and improve air quality. A technoeconomic analysis of biologically processing lignocellulosics to ethanol is adapted to project the cost of making sugar intermediates for producing a range of such products, and sugar costs are predicted to drop with plant size as a result of economies of scale that outweigh increased biomass transport costs for facilities processing less than about 10,000 dry tons per day. Criteria are then reviewed for identifying promising chemicals in addition to fuel ethanol to make from these low cost cellulosic sugars. It is found that the large market for ethanol makes it possible to achieve economies of scale that reduce sugar costs, and coproducing chemicals promises greater profit margins or lower production costs for a given return on investment. Additionally, power can be sold at low prices without a significant impact on the selling price of sugars. However, manufacture of multiple products introduces additional technical, marketing, risk, scale-up, and other challenges that must be considered in refining of lignocellulosics.  相似文献   

7.
The targets of limiting global warming levels below 2°C or even 1.5°C set by Paris Agreement heavily rely on bioenergy with carbon capture and storage (BECCS), which can remove carbon dioxide in the atmosphere and achieve net zero greenhouse gas (GHG) emission. Biomass and coal co‐firing with CCS is one of BECCS technologies, as well as a pathway to achieve low carbon transformation and upgrading through retrofitting coal power plants. However, few studies have considered co‐firing ratio of biomass to coal based on each specific coal power plant's characteristic information such as location, installed capacity, resources allocation, and logistic transportation. Therefore, there is a need to understand whether it is worth retrofitting any individual coal power plant for the benefit of GHG emission reduction. It is also important to understand which power plant is suitable for retrofit and the associated co‐firing ratio. In order to fulfill this gap, this paper develops a framework to solve these questions, which mainly include three steps. First, biomass resources are assessed at 1 km spatial resolution with the help of the Geography Information Science method. Second, by setting biomass collection points and linear program model, resource allocation and supply chain for each power plants are complete. Third, is by assessing the life‐cycle emission for each power plant. In this study, Hubei Province in China is taken as the research area and study case. The main conclusions are as follows: (a) biomass co‐firing ratio for each CCS coal power plant to achieve carbon neutral is between 40% and 50%; (b) lower co‐firing ratio sometimes may obtain better carbon emission reduction benefits; (c) even the same installed capacity power plants should consider differentiated retrofit strategy according to their own characteristic. Based on the results and analysis above, retrofit suggestions for each power plant are made in the discussion.  相似文献   

8.
Biomass has been recognised as a promising resource for future energy and fuels. The biomass, originated from plants, is renewable and application of its derived energy and fuels is close to carbon-neutral by considering that the growing plants absorb CO2 for photosynthesis. However, the complex physical structure and chemical composition of the biomass significantly hinder its conversion to gaseous and liquid fuels.This paper reviews recent advances in biomass thermochemical conversion technologies for energy, liquid fuels and chemicals. Combustion process produces heat or heat and power from the biomass through oxidation reactions; however, this is a mature technology and has been successfully applied in industry. Therefore, this review will focus on the remaining three thermochemical processes, namely biomass pyrolysis, biomass thermal liquefaction and biomass gasification. For biomass pyrolysis, biomass pretreatment and application of catalysts can simplify the bio-oil composition and retain high yield. In biomass liquefaction, application of appropriate solvents and catalysts improves the liquid product quality and yield. Gaseous product from biomass gasification is relatively simple and can be further processed for useful products. Dual fluidised bed (DFB) gasification technology using steam as gasification agent provides an opportunity for achieving high hydrogen content and CO2 capture with application of appropriate catalytic bed materials. In addition, multi-staged gasification technology, and integrated biomass pyrolysis and gasification as well as gasification for poly-generation have attracted increasing attention.  相似文献   

9.
Goal, Scope and Background This paper describes the modelling of two emerging electricity systems based on renewable energy: photovoltaic (PV) and wind power. The paper shows the approach used in the ecoinvent database for multi-output processes.Methods Twelve different, grid-connected photovoltaic systems were studied for the situation in Switzerland. They are manufactured as panels or laminates, from mono- or polycrystalline silicon, installed on facades, slanted or flat roofs, and have a 3kWp capacity. The process data include quartz reduction, silicon purification, wafer, panel and laminate production, supporting structure and dismantling. The assumed operational lifetime is 30 years. Country-specific electricity mixes have been considered in the LCI in order to reflect the present situation for individual production stages. The assessment of wind power includes four different wind turbines with power rates between 30 kW and 800 kW operating in Switzerland and two wind turbines assumed representative for European conditions – 800 kW onshore and 2 MW offshore. The inventory takes into account the construction of the plants including the connection to the electric grid and the actual wind conditions at each site in Switzerland. Average European capacity factors have been assumed for the European plants. Eventually necessary backup electricity systems are not included in the analysis.Results and Discussion The life cycle inventory analysis for photovoltaic power shows that each production stage may be important for specific elementary flows. A life cycle impact assessment (LCIA) shows that there are important environmental impacts not directly related to the energy use (e.g. process emissions of NOx from wafer etching). The assumption for the used supply energy mixes is important for the overall LCIA results of different production stages. The allocation of the inventory for silicon purification to different products is discussed here to illustrate how allocation has been implemented in ecoinvent. Material consumption for the main parts of the wind turbines gives the dominant contributions to the cumulative results for electricity production. The complex installation of offshore turbines, with high requirements of concrete for the foundation and the assumption of a shorter lifetime compared to onshore foundations, compensate the advantage of increased offshore wind speeds.Conclusion The life cycle inventories for photovoltaic power plants are representative for newly constructed plants and for the average photovoltaic mix in Switzerland in the year 2000. A scenario for a future technology helps to assess the relative influence of technology improvements for some processes in the near future (2005-2010). The differences for environmental burdens of wind power basically depend upon the capacity factor of the plants, the lifetime of the infrastructure, and the rated power. The higher these factors, the more reduced the environmental burdens are. Thus, both systems are quite dependent on meteorological conditions and the materials used for the infrastructure.Recommendation and Perspective Many production processes for photovoltaic power are still under development. Future updates of the LCI should verify the energy uses and emissions with available data from industrial processes in operation. For the modelling of a specific power plant or power plant mixes outside of Switzerland, one has to consider the annual yield (kWh/kWp) and if possible also the size of the plant. Considering the steady growth of the size of wind turbines in Europe, the development of new designs, and the exploitation of offshore location with deeper waters than analysed in this study, the inventory for wind power plants may need to be updated in the future.  相似文献   

10.
《Process Biochemistry》2010,45(8):1214-1225
Methane derived from anaerobic treatment of organic wastes has a great potential to be an alternative fuel. Abundant biomass from various industries could be a source for biomethane production where combination of waste treatment and energy production would be an advantage. This article summarizes the importance of the microbial population, with a focus on the methanogenic archaea, on the anaerobic fermentative biomethane production from biomass. Types of major wastewaters that could be the source for biomethane generation such as brewery wastewater, palm oil mill effluent, dairy wastes, cheese whey and dairy wastewater, pulp and paper wastewaters and olive oil mill wastewaters in relevance to their dominant methanogenic population are fully discussed in this article.  相似文献   

11.
Moon JH  Lee JW  Lee UD 《Bioresource technology》2011,102(20):9550-9557
An economic analysis of biomass power generation was conducted. Two key technologies--direct combustion with a steam turbine and gasification with a syngas engine--were mainly examined. In view of the present domestic biomass infrastructure of Korea, a small and distributed power generation system ranging from 0.5 to 5 MW(e) was considered. It was found that gasification with a syngas engine becomes more economically feasible as the plant size decreases. Changes in the economic feasibilities with and without RPS or heat sales were also investigated. A sensitivity analysis of each system was conducted for representative parameters. Regarding the cost of electricity generation, electrical efficiency and fuel cost significantly affect both direct combustion and gasification systems. Regarding the internal rate of return (IRR), the heat sales price becomes important for obtaining a higher IRR, followed by power generation capacity and electrical efficiency.  相似文献   

12.
As an alternative fuel biodiesel has become increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fueled engines. Recently, research interest has focused on the production of biofuel from microalgae. Cyanobacteria appeared to be suitable candidates for cultivation in wastes and wastewaters because they produce biomass in satisfactory quantity and can be harvested relatively easily due to their size and structure. In addition, their biomass composition can be manipulated by several environmental and operational factors to produce biomass with concrete characteristics. Herein, we review the culture of cyanobacteria in wastewaters and also the potential resources that can be transformed into biodiesel successfully for meeting the ever-increasing demand for biodiesel production.  相似文献   

13.
Finland considers energy production from woody biomass as an efficient energy planning strategy to increase the domestic renewable energy production in order to substitute fossil fuel consumption and reduce greenhouse gas emissions. Consequently, a number of developmental activities are implemented in the country, and one of them is the installation of second generation liquid biofuel demonstration plants. In this study, two gasification-based biomass conversion technologies, methanol and combined heat and power (CHP) production, are assessed for commercialization. Spatial information on forest resources, sawmill residues, existing biomass-based industries, energy demand regions, possible plant locations, and a transport network of Eastern Finland is fed into a geographically explicit Mixed Integer Programming model to minimize the costs of the entire supply chain which includes the biomass supply, biomass and biofuel transportation, biomass conversion, energy distribution, and emissions. The model generates a solution by determining the optimal number, locations, and technology mix of bioenergy production plants. Scenarios were created with a focus on biomass and energy demand, plant characteristics, and cost variations. The model results state that the biomass supply and high energy demand are found to have a profound influence on the potential bioenergy production plant locations. The results show that methanol can be produced in Eastern Finland under current market conditions at an average cost of 0.22??/l with heat sales (0.34??/l without heat sales). The introduction of energy policy tools, like cost for carbon, showed a significant influence on the choice of technology and CO2 emission reductions. The results revealed that the methanol technology was preferred over the CHP technology at higher carbon dioxide cost (>145??/tCO2). The results indicate that two methanol plants (360?MWbiomass) are needed to be built to meet the transport fuel demand of Eastern Finland.  相似文献   

14.
The cost analysis of a real facility for the production of high value microalgae biomass is presented. The facility is based on ten 3 m3 tubular photobioreactors operated in continuous mode for 2 years, data of Scenedesmus almeriensis productivity but also of nutrients and power consumption from this facility being used. The yield of the facility was close to maximum expected for the location of Almería, the annual production capacity being 3.8 t/year (90 t/ha·year) and the photosynthetic efficiency being 3.6%. The production cost was 69 €/kg. Economic analysis shows that labor and depreciation are the major factors contributing to this cost. Simplification of the technology and scale-up to a production capacity of 200 t/year allows to reduce the production cost up to 12.6 €/kg. Moreover, to reduce the microalgae production cost to approaches the energy or commodities markets it is necessary to reduce the photobioreactor cost (by simplifying its design or materials used), use waste water and flue gases, and reduce the power consumption and labor required for the production step. It can be concluded that although it has been reported that production of biofuels from microalgae is relatively close to being economically feasible, data here reported demonstrated that to achieve it by using the current production technologies, it is necessary to substantially reduce their costs and to operate them near their optimum values.  相似文献   

15.
Lengthy straw/stalk of biomass may not be directly fed into grinders such as hammer mills and disc refiners. Hence, biomass needs to be preprocessed using coarse grinders like a knife mill to allow for efficient feeding in refiner mills without bridging and choking. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented knife mill. Direct power inputs were determined for different knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. Overall accuracy of power measurement was calculated to be ±0.003 kW. Total specific energy (kWh/Mg) was defined as size reduction energy to operate mill with biomass. Effective specific energy was defined as the energy that can be assumed to reach the biomass. The difference is parasitic or no-load energy of mill. Total specific energy for switchgrass, wheat straw, and corn stover chopping increased with knife mill speed, whereas, effective specific energy decreased marginally for switchgrass and increased for wheat straw and corn stover. Total and effective specific energy decreased with an increase in screen size for all the crops studied. Total specific energy decreased with increase in mass feed rate, but effective specific energy increased for switchgrass and wheat straw, and decreased for corn stover at increased feed rate. For knife mill screen size of 25.4 mm and optimum speed of 250 rpm, optimum feed rates were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively, and the corresponding total specific energies were 7.57, 10.53, and 8.87 kWh/Mg and effective specific energies were 1.27, 1.50, and 0.24 kWh/Mg for switchgrass, wheat straw, and corn stover, respectively. Energy utilization ratios were calculated as 16.8%, 14.3%, and 2.8% for switchgrass, wheat straw, and corn stover, respectively. These data will be useful for preparing the feed material for subsequent fine grinding operations and designing new mills.  相似文献   

16.
High-throughput DNA extraction from forest trees   总被引:2,自引:1,他引:1  
It is difficult to extract pure high-quality DNA from trees, which may not be amenable to advances in extraction methods suitable for other plants. A new commercial high-throughput DNA extraction system, using a silica binding matrix for purification and a multisample mixer mill for tissue disruption, was evaluated for its suitability withEucalyptus spp.,Pinus spp., andAraucaria cunninghamii (hoop pine). DNA suitable for a range of molecular biology applications was successfully extracted from all genera. The method was highly reliable when tested in more than 500 preparations and could be adapted to different tree species with relatively minor modifications.  相似文献   

17.
Life cycle inventory for electricity generation in China   总被引:6,自引:2,他引:4  
Background, Goal and Scope The objective of this study was to produce detailed a life cycle inventory (LCI) for the provision of 1 kWh of electricity to consumers in China in 2002 in order to identify areas of improvement in the industry. The system boundaries were processes in power stations, and the construction and operation of infrastructure were not included. The scope of this study was the consumption of fossil fuels and the emissions of air pollutants, water pollutants and solid wastes, which are listed as follows: (1) consumption of fossil fuels, including general fuels, such as raw coal, crude oil and natural gas, and the uranium used for nuclear power; (2) emissions of air pollutants from thermal power, hydropower and nuclear power plants; (3) emissions of water pollutants, including general water waste from fuel electric plants and radioactive waste fluid from nuclear power plants; (4) emissions of solid wastes, including fly ash and slag from thermal power plants and radioactive solid wastes from nuclear power plants. Methods Data were collected regarding the amount of fuel, properties of fuel and the technical parameters of the power plants. The emissions of CO2, SO2, NOx, CH4, CO, non-methane volatile organic compound (NMVOC), dust and heavy metals (As, Cd, Cr, Hg, Ni, Pb, V, Zn) from thermal power plants as well as fuel production and distribution were estimated. The emissions of CO2 and CH4 from hydropower plants and radioactive emissions from nuclear power plants were also investigated. Finally, the life cycle inventory for China’s electricity industry was calculated and analyzed. Results Related to 1 kWh of usable electricity in China in 2002, the consumption of coal, oil, gas and enriched uranium were 4.57E-01, 8.88E-03, 7.95E-03 and 9.03E-08 kg; the emissions of CO2, SO2, NOx, CO, CH4, NMVOC, dust, As, Cd, Cr, Hg, Ni, Pb, V, and Zn were 8.77E-01, 8.04E-03, 5.23E-03, 1.25E-03, 2.65E-03, 3.95E-04, 1.63E-02, 1.62E-06, 1.03E-08, 1.37E-07, 7.11E-08, 2.03E-07, 1.42E-06, 2.33E-06, and 1.94E-06 kg; the emissions of waste water, COD, coal fly ash, and slag were 1.31, 6.02E-05, 8.34E-02, and 1.87E-02 kg; and the emissions of inactive gas, halogen and gasoloid, tritium, non-tritium, and radioactive solid waste were 3.74E+01 Bq, 1.61E-01 Bq, 4.22E+01 Bq, 4.06E-02 Bq, and 2.68E-10 m3 respectively. Conclusions The comparison result between the LCI data of China’s electricity industry and that of Japan showed that most emission intensities of China’s electricity industry were higher than that of Japan except for NMVOC. Compared with emission intensities of the electricity industry in Japan, the emission intensities of CO2 and Ni in China were about double; the emission intensities of NOx, Cd, CO, Cr, Hg and SO2 in China were more than 10 times that of Japan; and the emission intensities of CH4, V, Pb, Zn, As and dust were more than 20 times. The reasons for such disparities were also analyzed. Recommendations and Perspectives To get better LCI for the electricity industry in China, it is important to estimate the life cycle emissions during fuel production and transportation for China. Another future improvement could be the development of LCIs for construction and operation of infrastructure such as factory buildings and dams. It would also be important to add the information about land use for hydropower.  相似文献   

18.
Aims We explore the possible role of leaf size/number trade-offs for the interpretation of leaf size dimorphism in dioecious plant species.Methods Total above-ground biomass (both male and female) for three herbaceous dioecious species and individual shoots (from both male and female plants) for three woody dioecious species were sampled to record individual leaf dry mass, number of leaves, dry mass of residual above-ground tissue (all remaining non-leaf biomass), number of flowers/inflorescences (for herbaceous species) and number of branches.Important findings For two out of three woody species and two out of three herbaceous species examined, male plants produced smaller leaves but with higher leafing intensity—i.e. more leaves per unit of supporting (residual) shoot tissue or plant body mass—compared with females. Male and female plants, however, did not differ in shoot or plant body mass or branching intensity. We interpret these results as possible evidence for a dimorphic leaf deployment strategy that promotes both male and female function, respectively. In male plants, capacity as a pollen donor may be favored by selection for a broadly spaced floral display, hence favoring relatively high leafing intensity because this provides more numerous axillary meristems that can be deployed for flowering, thus requiring a relatively small leaf as a trade-off. In one herbaceous species, higher leafing intensity in males was associated with greater flower production than in females. In contrast, in female plants, selection favors a relatively large leaf, we propose, because this promotes greater capacity for localized photosynthate production, thus supporting the locally high energetic cost of axillary fruit and seed development, which in turn requires a relatively low leafing intensity as a trade-off.  相似文献   

19.
The nematicidal action of three seed mill wastes from cress (Eruca sativa Mill.), castor (Ricinus communis L.) and linseed (Linum usitatissimum L.) as soil additives were tested at three rates (on base lower rate, recommended rate and higher rate), under field conditions at the research and production station of the National Research Centre, El-Nubaria district, El-Beheira governorate, Western Nile Delta region, Egypt, to study the physiological influence of these substances on potato yield, their role against Meloidogyne arenaria infection and the alkaloidal content. All the evaluated treatments significantly (p???0.05 and/or 0.01) reduced the numbers of juveniles in soil and in roots, number of galls, egg masses, gall and egg mass indices and consequently rate of nematode build-up as compared to untreated plants(control). Statistical differences in the nematode stages were found within and between treatments. The percentage of reduction in the nematode stages was comparatively more with using of Linseed mill wastes followed by castor seed mill wastes, then cress seed mill wastes. Regarding to the potato yield, all the evaluated amendments achieved significantly (p???0.05 and/or 0.01) increased, total contents of alkaloidal content as compared to untreated plants. On the other hand, all the evaluated amendments achieved significantly (p???0.05 and/or 0.01) decreased the solanine values as compared to untreated plants. These results indicate that some natural compounds may be used as natural nematicides in controlling M. arenaria nematode and improving the quality and yield of potato plants.  相似文献   

20.
An integrated system trade-off model has been developed to assess costs and pollution associated with transportation in the coke-making supply chain in Shanxi Province, China. A transportation-flow, cost-minimization solver is combined with models for calculating coke-making plant costs, estimating transportation costs from a geographic information system road and rail database, and aggregating coke-making capacity among plants. Model outputs of economic cost, nitrogen oxides (NOx) emissions, and transport distributions are visualized using an Internet-based graphic user interface. Data for the model were collected on survey trips to Shanxi Province as well as from secondary references and proxies. The modularity and extensibility of the system trade-off model facilitate introduction of new data sets in order to examine various planning scenarios.
Scenarios of coke-making plant aggregation, rail infrastructure improvement, and technology transfer were evaluated using the model. Costs and pollution emissions can be reduced by enlarging coke-making plants near the rail stations and closing down other plants. Preferential minimization of transportation costs gives a lower total cost than simply minimizing plant costs. Therefore, policy makers should consider transportation costs when planning the reallocation of coke-making capacity in Shanxi Province. Increasing rail-transport capacity is less effective than aggregating plant capacity. On the other hand, transfer of low-pollution truck technology results in a large emission reduction, however, reflecting the importance of truck transportation in the Shanxi Province coke-making industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号