首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maturation of vitelline coat-free (VCF) oocytes of the starfish, Asterina pectinifera , was studied. When the oocytes, the vitelline coats of which were elevated by adding the ionophorc A-23187, were forced through two sheets of copper mesh, the vitelline coats were completely removed from the oocytes. Although some of the VCF oocytes underwent germinal vesicle breakdown following this mechanical treatment, most of them retained the normal germinal vesicles. These VCF immature oocytes underwent breakdown of germinal vesicles after addition of 1-methyladenine (1-MA). Dose-response curves of VCF oocytes to 1-MA were similar to those of normal oocytes. These results indicate that 1-MA reacts with the plasma membrane and that the presence of the vitelline coat is not prerequisite for inducing oocyte maturation.  相似文献   

2.
In vitro fertilization (IVF) is being routinely used in humans and several domestic species, however, limited success has been achieved in the horse. Although immature equine oocytes are capable of completing meiosis in vitro, subsequent fertilization, and embryonic development of those oocytes are questionable. The lack of development of these oocytes could be attributed to an impaired cytoplasmic maturation. In the horse, the study of oocyte cytoplasmic maturation and post-fertilization development has been hindered by the lack of progress in IVF. In mammalian oocytes, migration of cortical granules (CG) has been used as an important criterion to evaluate cytoplasmic maturation. The aim of this study was to describe and quantify the CG distribution of equine oocytes during in vitro meiotic maturation and to assess activation of oocytes with calcium ionophore based upon fluorescein isothiocyanate (FITC)-labeled Lens culinaris agglutinin (LCA) and laser confocal microscopy. The results of this study indicate that CG are distributed throughout the cytoplasm of oocytes at the germinal vesicle (GV) stage (immature). As maturation proceeds, a progressive centripetal migration of CG to the oocyte cortex occurs with the formation of a monolayer adjacent to the plasma membrane starting by the end of a 30 hr incubation period and increasing significantly after 36 hr. After activation, significant reduction in the number of CG was observed (P < 0.001) suggesting that oocytes cultured under the present conditions possess the ability to release CG in response to the elevation of intracellular free calcium.  相似文献   

3.
Oocytes of LT/Sv mice have anomalous cytoplasmic and nuclear maturation. Here, we show that in contrast to the oocytes of wild-type mice, a significant fraction of LT/Sv oocytes remains arrested at the metaphase of the first meiotic division and is unable to undergo sperm-induced activation when fertilized 15 hours after the resumption of meiosis. We also show that LT/Sv oocytes experimentally induced to resume meiosis and to reach metaphase II are unable to undergo activation in response to sperm penetration. However, the ability for sperm-induced activation developed during prolonged in vitro culture. Both types of LT/Sv oocytes, i.e. metaphase I and those that were experimentally induced to reach metaphase II, underwent activation when they were fertilized 21 hours after germinal vesicle breakdown (GVBD). Thus, the ability of LT/Sv oocytes to become activated by sperm depends on cytoplasmic maturation rather than on nuclear maturation i.e. on the progression of meiotic division. We also show that sperm penetration induces fewer Ca(2+) transients in LT/Sv oocytes than in control wild-type oocytes. In addition, we found that the levels of mRNA encoding different isoforms of protein kinase C (alpha, delta and zeta), that are involved in meiotic maturation and signal transduction during fertilization, differed between metaphase I LT/Sv oocytes which cannot be activated by sperm, and those which are able to undergo activation after fertilization. However, no significant differences between these oocytes were found at the level of mRNA encoding IP(3) receptors which participate in calcium release during oocyte fertilization.  相似文献   

4.
Fertilization or activation by ionophore A 23187 induces a transient acid release in prophase-blocked and in maturing oocytes of Asterias rubens and Marthasterias glacialis. 1-Methyladenine-induced maturation is not accompanied by acid release. There is no significant difference in the kinetic and amount of acid release related to the nature of activation or the stage of oocytes in each species. The amount of acid released per oocyte volume is smaller than total "fertilization acid" of sea urchin eggs but comparable to its Na-insensitive component. Cortical reaction can be initiated without significant acid release in ammonia treated oocytes. A burst of sodium influx occurs at activation or fertilization of oocytes. Kinetic and amount of Na influx are comparable to acid release. Vitelline membrane elevation is impaired upon activation of oocytes in the absence of extracellular sodium but a significant although smaller release of acid occurs. This suggests that starfish oocytes release acid by a mechanism differing from the Na+-H+ exchange of sea urchin eggs.  相似文献   

5.
An increased phosphorylation of ribosomal protein S6 has been shown to be correlated with an increase of intracellular pH (pHi) and with stimulation of protein synthesis in many systems. In this research changes in ribosome phosphorylation following hormone-induced meiotic maturation and fertilization or activation by ionophore A23187 were investigated in starfish oocytes. The hormone was found to stimulate, even in the absence of external Na+, the phosphorylation on serine residues of an Mr 31,000 protein identified as S6, as well as that of an acidic Mr 47,000 protein, presumably S1, on threonine residues. Phosphorylation of ribosomes was an early consequence of hormonal stimulation and did not decrease after completion of meiotic maturation. Fertilization or activation by ionophore of prophase-arrested oocytes also stimulated ribosome phosphorylation. Only S6 was labeled in this case, but to a lesser extent than upon hormone-induced meiotic maturation. Changes in pHi were monitored with ion-specific microelectrodes throughout meiotic maturation and following either fertilization or activation. The pHi did not change before germinal vesicle breakdown (GVBD) following hormone addition, but it increased before first polar body emission. It also increased following fertilization or activation by ionophore or the microinjection of Ca-EGTA. In all cases, alkalinization did not depend on activation of an amiloride-sensitive Na+/H+ exchanger. Microinjection of an alkaline Hepes buffer or external application of ammonia, both of which increased pHi, prevented unfertilized oocytes from arresting after formation of the female pronucleus and induced chromosome cycling. Phosphorylation of S6 was still observed following fertilization or induction of maturation when pHi was decreased by external application of acetate, a treatment which suppressed the emission of polar bodies. Protein synthesis increased in prophase-arrested oocytes after fertilization or activation. It also increased after ammonia addition, although this treatment did not stimulate S6 phosphorylation.  相似文献   

6.
Sperm entry into the oocyte of the starfish, Asterina pectinifera, was prevented when the membrane potential of the oocyte was held more positive than −10 to −5 mV, and multiple sperm entries were induced when the potential was held more negative. Based on this potential-dependent fertilization block mechanism, it was demonstrated that an activation potential (AVP) which is induced immediately after the attachment of the first sperm to the egg surface plays the role of a fast polyspermy block. The AVP-mediated polyspermy block mechanism develops as the oocyte matures and deteriorates as it ages. AVPs of mature oocytes exceeded −5 mV (the critical potential level for fertilization block) within 1 sec, and the potential stayed at +12 mV even after the initiation of fertilization membrane elevation. Consequently, the entry of a second sperm is prevented. In contrast, AVPs of overripe oocytes took about 15 sec to attain −5 mV, or they did not attain −5 mV at all. In overripe oocytes multiple sperm entries were associated with “step depolarization(s)” in the rising phase of the AVPs before membrane elevation took place. Immature oocytes generated AVPs associated with sperm entries, but without membrane elevation. AVPs in immature oocytes were characterized by the step depolarization(s) in the rising phase, and an AVP could be evoked again by a second insemination 20 min after the first insemination. These findings indicate that immature oocytes lack both fast and slow polyspermy block mechanisms.  相似文献   

7.
The objectives of this study were 1) to compare the efficiency of intracytoplasmic sperm injection (ICSI) with and without additional artificial stimulation using frozen-thawed sperm and in vitro-matured porcine oocytes and 2) to determine the nuclear anomalies of ICSI oocytes that failed to fertilize or develop. In experiments 1 and 2, we evaluated the effects of additional activation treatments, e.g., electrical stimulus, Ca ionophore (A23187), and/or cycloheximide, on fertilization and development of ICSI porcine oocytes. Significantly higher fertilization, cleavage, and blastocyst rates were obtained for oocytes treated with a combination of ICSI and electrical activation (EA) (P < 0.05) than for those treated with ICSI alone. However, different combinations of electrical and chemical activation treatments did not further improve the rates of fertilization, cleavage, and blastocyst development for ICSI embryos. To elucidate the association between sperm head decondensation and oocyte activation and to investigate the cause of embryonic development failure, in experiment 3 we evaluated the nuclear morphology of oocytes 16-20 h after ICSI. Nearly 100% of oocytes showed female pronucleus formation after ICSI regardless of activation treatment. However, failure of male pronucleus formation with intact or swelling sperm heads was observed in some ICSI embryos, suggesting that these embryos underwent cell division with the female pronucleus only. Artificial activation (EA and A23187) had a beneficial effect on embryonic development, sperm decondensation was independent of the resumption of meiosis, and the failure of formation of a male pronucleus was the major cause for fertilization failure in porcine ICSI embryos.  相似文献   

8.
It has been known in amphibians and starfishes that a cytoplasmic factor called maturation-promoting factor (MPF), produced in maturing oocytes under the influence of the maturation-inducing hormones, can induce germinal vesicle breakdown (GVBD) and the subsequent process of meiotic maturation. The present study revealed that injection of cytoplasm of maturing starfish oocytes (starfish MPF) into immature sea cucumber oocytes brought about maturation of the recipients. Amphibian MPF obtained from mature oocytes of Xenopus laevis or Bufo bufo was found to induce maturation of starfish oocytes following injection. Cytoplasm taken from cleaving starfish blastomeres induced maturation when injected into immature starfish oocytes. The maturation-inducing activity of cytoplasm of starfish blastomeres changed along with the mitotic cell cycle during 1- to 4-cell stages so far tested and reached a peak just before cleaving. Furthermore, an extract of mammalian cultured cells, CHO or V-79, synchronized in M phase, induced GVBD in starfish oocytes following injection, whereas S phase extract had little activity. These facts suggest that MPF generally brings about nuclear membrane breakdown in both meiosis and mitosis, and that the nature of MPF is very similar among vertebrates and invertebrates.  相似文献   

9.
1-Methyladenine, which has been previously shown to be the hormone responsible for meiosis reinitiation in starfish oocytes, triggers parthenogenetic activation when applied to matured starfish oocytes after emission of the second polar body and formation of the pronucleus. In Marthasterias glacialis and Asterias rubens oocytes parthenogenetic activation includes elevation of a fertilization membrane, cleavage and the formation of normal bipinnaria larvae. Activation is likely to result from 1-methyladenine interaction with the category of stereospecific membrane receptors involved in meiosis reinitiation, since structural requirements of this compound are identical for both biological responses. Appearance of oocyte responsiveness to 1-MeAde after, but not before emission of the second polar body cannot be accounted for by their increased sensitivity to intracellular Ca2+ at that time, although it is shown that Ca2+ mediates hormone effect in inducing parthenogenetic activation. Pretreatment of immature oocytes with the free hormone in excess strongly inhibits the 1-methyladenine-induced parthenogenetic activation of the oocytes when they have completed maturation.It is suggested that reappearance of 1-MeAde sensitivity when oocytes form a pronucleus depends either upon recruitment or new receptor units or on the reactivation of pre-existing inactivated receptors at this stage of oocyte maturation.  相似文献   

10.
1-Methyladenine, which has been previously shown to be the hormone responsible for meiosis reinitiation in starfish oocytes, triggers parthenogenetic activation when applied to matured starfish oocytes after emission of the second polar body and formation of the pronucleus. In Marthasterias glacialis and Asterias rubens oocytes parthenogenetic activation includes elevation of a fertilization membrane, cleavage and the formation of normal bipinnaria larvae. Activation is likely to result from 1-methyladenine interaction with the category of stereospecific membrane receptors involved in meiosis reinitiation, since structural requirements of this compound are identical for both biological responses. Appearance of oocyte responsiveness to 1-MeAde after, but not before emission of the second polar body cannot be accounted for by their increased sensitivity to intracellular Ca2+ at that time, although it is shown that Ca2+ mediates hormone effect in inducing parthenogenetic activation. Pretreatment of immature oocytes with the free hormone in excess strongly inhibits the 1-methyladenine-induced parthenogenetic activation of the oocytes when they have completed maturation.It is suggested that reappearance of 1-MeAde sensitivity when oocytes form a pronucleus depends either upon recruitment or new receptor units or on the reactivation of pre-existing inactivated receptors at this stage of oocyte maturation.  相似文献   

11.
Microinjection of H-ras(val12) protein into fully grown Xenopus oocytes has been shown to induce meiotic maturation. In the present study, mRNA encoding the mutant ras protein was injected into both fully grown (stage 6) and growing (stage 4) oocytes. The mRNA induced nuclear breakdown in stage 6 oocytes, as expected. However, the mRNA induced neither nuclear breakdown nor maturation promoting factor when injected into stage 4 oocytes. Instead, the response in stage 4 oocytes included an activation pulse of calcium, cortical granule breakdown, elevation of the vitelline envelope, and abortive cleavage furrows, all of which are characteristics of the activation response in mature eggs. In addition, the injected mRNA led to increased rates of endogenous protein synthesis and the migration of subcortical organelles into the oocyte interior. These observations are discussed relative to the suggestion that oncogenic ras protein leads to an increase in both diacylglycerol and inositol trisphosphate, which then regulate the various cytoplasmic events described.  相似文献   

12.
31P-NMR has been used to monitor changes in intracellular pH following the sequential release of the block at first-meiotic prophase by hormones and the block at second-meiotic metaphase by fertilization in Rana eggs and oocytes. The broad phosphoprotein signal was eliminated by a combination of spin-echo and deconvolution techniques. pHi was determined from the pH-dependent separation of intracellular Pi and phosphocreatine resonances. Agents that release the prophase block (progesterone, insulin, D-600, La3+) increased pHi from 7.38 to 7.7-7.8 within 1-3 h. Noninducers such as 17 beta-estradiol were without effect. By second-metaphase arrest (ovulated, unfertilized) the pHi had fallen to 7.1-7.2. pHi underwent a transient increase to about 7.7 within the first 30 min at fertilization, with a slow 0.1-0.2 pH unit oscillation during early cleavage. The progesterone-induced elevation of intracellular pH is not blocked by amiloride and occurs in Na+-free medium. A transient rise in pHi occurs when the prophase-arrested oocyte is transferred to Ca2+-free medium or when ionophore A23187 is added to the Ca2+-containing medium. Agents that inhibit the resumption of the first meiotic division either block the rise in pHi (procaine, PMSF) or shorten the time-course of the rise in pHi (ionophore A23187). Conditions that elevate intracellular Ca2+ levels and/or increase Ca2+ exchange produce an increase in pHi, whereas those conditions that decrease intracellular Ca2+ levels and/or exchange produce a fall in pHi within 1 h. The time-course of the increase in pHi both following release of the prophase block and at fertilization coincide with a fall in intracellular cAMP and release of surface and/or intracellular Ca2+. These results suggest that: (1) pHi is a function of cytosolic free Ca2+ levels and/or Ca2+ exchange across the oocyte plasma membrane, and (2) meiotic agonists (progesterone, insulin, D-600) and mitogens (sperm, ionophore A23187) modulate intracellular and/or membrane Ca2+ with the resulting changes in pHi and cAMP and resumption of the meiotic divisions.  相似文献   

13.
All cells undergoing the transition from interphase to metaphase have been postulated to contain a "maturation-promoting factor" (MPF) capable of causing meiotic maturation when injected into immature oocytes. We have shown in an accompanying paper (A. Picard, M. C. Harricane, J. C. Labbe, and M. Doreé, 1988, Dev. Biol. 128, 121-128) that the basic oscillator driving the cell cycle still operates in maturing starfish oocytes and fertilized eggs in the absence of germinal vesicle (GV) material. Under such conditions of enucleation, we now show, however, that MPF activity cannot be detected after hormonal stimulation of prophase-arrested oocytes in Astropecten or after the normal time of second meiotic cleavage in Marthasterias. In contrast, cell cycles occur with the production of transferable MPF activity in embryos from which both pronuclei have been removed after fertilization. Reinjection of the entire contents of a GV after the normal time of second meiotic cleavage restores the ability of cytoplasm to induce meiotic maturation in immature recipient oocytes after transfer. Transduction of the hormonal stimulus at the level of the plasma membrane, stimulation of the phosphorylation of cytoplasmic proteins, and activation of a cycling Ca2+- and cyclic nucleotide-independent histone kinase still occur in the absence of GV material. Since previous studies have demonstrated that the presence of GV material in the recipient oocytes is absolutely required in starfish for the amplification of microinjected MPF (Kishimoto et al., 1981; Picard and Doree, 1984), we propose that some unidentified component of the GV is required, at least after the normal time of second meiotic cleavage in donor oocytes and at any time in recipient oocytes, for the successful transfer of MPF activity in starfish.  相似文献   

14.
Suzuki H  Ju JC  Yang X 《Cloning》2000,2(2):69-78
Oocyte activation is a critical component of the current animal cloning scheme. This study was designed to examine surface characteristics of bovine oocytes by scanning electron microscopy (SEM) after activation by calcium ionophore A23187 (A23187) and electric pulse combined with cycloheximide (CHX) or 6-dimethylaminopurine (6-DMAP) treatments. In vitro matured (IVM) oocytes were activated then harvested at 0 to 19 hours after the onset of treatments for SEM processing. The zona pellucida (ZP) of untreated IVM oocytes exhibited an open mesh structure. The ZP surface showed little changes after A23187 alone, but dramatically changed to a less porous surface 3 hours after combined treatments with CHX or 6-DMAP. The vitelline membrane of IVM oocytes was covered with well-developed microvilli (MV). The MV became shorter (0.83 vs. 1.35 microm, p < 0.01) 8 hours after A23187 treatment alone. The vitelline membrane was altered in all oocytes examined 3 hours after incubation with A23187 plus CHX or 6-DMAP. A 1.5-fold increase in the diameter of MV in the CHX group and a higher incidence of large cytoplasmic protrusions (more than 1 microm width) in the 6-DMAP group were observed. After removal of inhibitors, the surface morphologies of the ZP and vitelline membrane were returned nearly to those of untreated IVM oocytes in both groups. The present study clearly showed that surface characteristics of the bovine oocyte were more profoundly changed by a combination of agents for parthenogenetic stimulation, and that the ultrastructural effects were reversible.  相似文献   

15.
The divalent ionophores A23187 and X-537A induce parthenogenesis in sea urchin eggs. This results from their ability to mobilize intracellular Ca2+, which is implicated in both artificial parthenogenesis as well as the natural fertilization process. A23187 causes expulsion of cortical granules and elevation of the fertilization membrane within 0.5–9 min followed by an initiation of cell cleavage. The broader spectrum ionophore X-537A is less potent, but the production of cytoplasmic aberrations are more apparent. In contrast to the sperm-activated egg, the initial phase of ionophore induced activation is accompanied either by relatively insignificant changes in membrane resistance, or an increase.  相似文献   

16.
Immature oocytes of the starfish, Asterina pectinifera, are polyspermic. Spermatozoa can enter immature oocytes upon insemination, but the changes associated with the fertilization process in oocytes matured with 1-methyladenine (1-MeAde), such as the formation of aster and pronucleus, were not observed. After immature oocytes, previously inseminated, were matured with 1-MeAde, the formation of the sperm monaster was observed during germinal vesicle breakdown (GVBD). Amphiasters and pronuclei were formed after the formation of the second polar body. The acquisition by oocytes of the capacity to undergo the normal process of fertilization, therefore, occurs during the course of oocyte maturation. After injection of the cytoplasm of maturing oocytes into inseminated immature oocytes, the formation of aster and pronucleus was observed, suggesting that maturation-promoting factor (MPF) may be involved in establishing the cytoplasmic conditions (cytoplasmic maturity) necessary for the fertilization process to occur. In contrast, when enucleated, inseminated halves of immature oocytes were treated with 1-MeAde, only monasters were formed, while in the nucleated halves both amphiasters and sperm pronuclei were formed. Thus, germinal vesicle material is required for the formation of amphiaster and sperm pronucleus but not for the formation of monaster. It is possible that the amount of MPF produced in enucleated halves was sufficient only for the formation of the monaster but not for the formation of the amphiaster and pronucleus, since it has been previously established that germinal vesicle material is necessary for the amplification of MPF. The formation of the monaster in the enucleated halves at a time corresponding to GVBD in nucleated controls suggests that the amount of MPF needed for this event is rather small. For the induction of subsequent fertilization process, large amounts of MPF may be required to establish the necessary cytoplasmic conditions, although other possible role of nuclear material is not excluded.  相似文献   

17.
Ionomycin is a Ca(2+)-selective ionophore that is widely used to increase intracellular Ca(2+) levels in cell biology laboratories. It is also occasionally used to activate eggs in the clinics practicing in vitro fertilization. However, neither the precise molecular action of ionomycin nor its secondary effects on the eggs' structure and function is well known. In this communication we have studied the effects of ionomycin on starfish oocytes and zygotes. By use of confocal microscopy, calcium imaging, as well as light and transmission electron microscopy, we have demonstrated that immature oocytes exposed to ionomycin instantly increase intracellular Ca(2+) levels and undergo structural changes in the cortex. Surprisingly, when microinjected into the cells, ionomycin produced no Ca(2+) increase. The ionomycin-induced Ca(2+) rise was followed by fast alteration of the actin cytoskeleton displaying conspicuous depolymerization at the oocyte surface and in microvilli with concomitant polymerization in the cytoplasm. In addition, cortical granules were disrupted or fused with white vesicles few minutes after the addition of ionomycin. These structural changes prevented cortical maturation of the eggs despite the normal progression of nuclear envelope breakdown. At fertilization, the ionomycin-pretreated eggs displayed reduced Ca(2+) response, no elevation of the fertilization envelope, and the lack of orderly centripetal translocation of actin fibers. These alterations led to difficulties in cell cleavage in the monospermic zygotes and eventually to a higher rate of abnormal development. In conclusion, ionomycin has various deleterious impacts on egg activation and the subsequent embryonic development in starfish. Although direct comparison is difficult to make between our findings and the use of the ionophore in the in vitro fertilization clinics, our results call for more defining investigations on the issue of a potential risk in artificial egg activation.  相似文献   

18.
19.
The present study examined the effects of gonadotropins and ovarian steroids during in vitro meiotic maturation of rat oocytes on their ability to undergo in vitro fertilization. Fully grown oocytes were isolated from antral follicles of immature rats and cultured as oocyte-cumulus cell complexes (OCC) under conditions in which completion of meiotic maturation occurs spontaneously. They were then exposed to spermatozoa under conditions in which oocytes matured in vivo exhibit high fertilization rates. Compared with oocytes from pregnant mare's serum gonadotropin (PMSG) or follicle-stimulating hormone (FSH)-treated rats, a simiiar proportion of the oocytes (>80%) from untreated rats underwent germinal vesicle breakdown, but such oocytes had a lower rate of fertilization (70% vs. 20%). The presence of FSH during in vitro maturation restored the fertilization rate for oocytes from untreated rats, while a cytochrome P450 inhibitor, aminoglutethimide phosphate abolished this beneficial effect of FSH. The addition of progesterone during the in vitro maturation period duplicated the beneficial effect of FSH on fertilization rate of oocytes from untreated rats; oestradiol-17β was less effective in this regard, and 5α-dihydrotestosterone was ineffective. These findings indicate that FSH and progesterone, although having no apparent effect on nuclear maturation of the oocyte, play an important role during oocyte maturation in enabling normal fertilization to occur.  相似文献   

20.
Changes in the extent of protein phosphorylation and their possible correlation with changes in the activity of maturation-promoting (MPF) factor were investigated throughout meiotic maturation and following activation of amphibian and starfish oocytes. Despite several exceptions in the pattern of phosphorylation of individual proteins, high and low levels of protein phosphorylation were found to be correlated with high and low levels of MPF activity. Both the extent of protein phosphorylation and MPF activity were found to drop upon parthenogenetic activation and to cycle synchronously thereafter in the amphibian. In contrast no drop in MPF activity or in the extent of protein phosphorylation was observed following activation of starfish oocytes with ionophore A23187. This suggests that changes of protein phosphorylation and of MPF activity are rather related to the progression of the cell cycle than directly to Ca2+-dependent activation reaction. In amphibians global protein kinase activity in homogenates was found to drop with MPF activity following activation. Changes in the ratio of threonine vs serine phosphorylation were also investigated during the course of meiotic maturation and activation in both amphibian and starfish oocytes: changes in the activity of MPF were found to be better correlated with changes in threonine than serine phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号