首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differentiation of the adult Leydig cell population in the postnatal testis   总被引:8,自引:0,他引:8  
Five main cell types are present in the Leydig cell lineage, namely the mesenchymal precursor cells, progenitor cells, newly formed adult Leydig cells, immature Leydig cells, and mature Leydig cells. Peritubular mesenchymal cells are the precursors to Leydig cells at the onset of Leydig cell differentiation in the prepubertal rat as well as in the adult rat during repopulation of the testis interstitium after ethane dimethane sulfonate (EDS) treatment. Leydig cell differentiation cannot be viewed as a simple process with two distinct phases as previously reported, simply because precursor cell differentiation and Leydig cell mitosis occur concurrently. During development, mesenchymal and Leydig cell numbers increase linearly with an approximate ratio of 1:2, respectively. The onset of precursor cell differentiation into progenitor cells is independent of LH; however, LH is essential for the later stages in the Leydig cell lineage to induce cell proliferation, hypertrophy, and establish the full organelle complement required for the steroidogenic function. Testosterone and estrogen are inhibitory to the onset of precursor cell differentiation, and these hormones produced by the mature Leydig cells may be of importance to inhibit further differentiation of precursor cells to Leydig cells in the adult testis to maintain a constant number of Leydig cells. Once the progenitor cells are formed, androgens are essential for the progenitor cells to differentiate into mature adult Leydig cells. Although early studies have suggested that FSH is required for the differentiation of Leydig cells, more recent studies have shown that FSH is not required in this process. Anti-Müllerian hormone has been suggested as a negative regulator in Leydig cell differentiation, and this concept needs to be further explored to confirm its validity. Insulin-like growth factor I (IGF-I) induces proliferation of immature Leydig cells and is associated with the promotion of the maturation of the immature Leydig cells into mature adult Leydig cells. Transforming growth factor alpha (TGFalpha) is a mitogen for mesenchymal precursor cells. Moreover, both TGFalpha and TGFbeta (to a lesser extent than TGFalpha) stimulate mitosis in Leydig cells in the presence of LH (or hCG). Platelet-derived growth factor-A is an essential factor for the differentiation of adult Leydig cells; however, details of its participation are still not known. Some cytokines secreted by the testicular macrophages are mitogenic to Leydig cells. Moreover, retarded or absence of Leydig cell development has been observed in experimental models with impaired macrophage function. Thyroid hormone is critical to trigger the onset of mesenchymal precursor cell differentiation into Leydig progenitor cells, proliferation of mesenchymal precursors, acceleration of the differentiation of mesenchymal cells into Leydig cell progenitors, and enhance the proliferation of newly formed Leydig cells in the neonatal and EDS-treated adult rat testes.  相似文献   

2.
The kinetics of differentiation and proliferation of clone cells (B24) of mouse myeloid leukemic Ml cells in vitro were studied by quantitative determination of cellular morphology. B24 cells were induced to differentiate into only macrophagelike cells by an inducer of differentiation in conditioned medium (CM) of embryo cells. During cell differentiation, the ratio of the area of the nucleus to that of the cell (N.C.R.) decreased from about 55% to 10%. Decrease in the N.C.R. was used as an index of cell differentiation in analysis of the kinetics of differentiation of cells treated with various concentrations of CM. The results showed that the process of differentiation was promoted by increasing the concentration of CM, and that the transition of the cells from the undifferentiated state to the differentiated state occurred in a stochastic manner. Comparison of these morphometric results with those of autoradiography showed that the labeling index of the cells decreases gradually in association with decrease in the N.C.R. of the cells from 50% to 30%. A stochastic model for the kinetics of proliferation and differentiation of the cells simulated the experimental observations on the production of differentiated cells.  相似文献   

3.
Multicellular differentiated organisms are composed of cells that begin by developing from a single pluripotent germ cell. In many organisms, a proportion of cells differentiate into specialized somatic cells. Whether these cells lose their pluripotency or are able to reverse their differentiated state has important consequences. Reversibly differentiated cells can potentially regenerate parts of an organism and allow reproduction through fragmentation. In many organisms, however, somatic differentiation is terminal, thereby restricting the developmental paths to reproduction. The reason why terminal differentiation is a common developmental strategy remains unexplored. To understand the conditions that affect the evolution of terminal versus reversible differentiation, we developed a computational model inspired by differentiating cyanobacteria. We simulated the evolution of a population of two cell types -nitrogen fixing or photosynthetic- that exchange resources. The traits that control differentiation rates between cell types are allowed to evolve in the model. Although the topology of cell interactions and differentiation costs play a role in the evolution of terminal and reversible differentiation, the most important factor is the difference in division rates between cell types. Faster dividing cells always evolve to become the germ line. Our results explain why most multicellular differentiated cyanobacteria have terminally differentiated cells, while some have reversibly differentiated cells. We further observed that symbioses involving two cooperating lineages can evolve under conditions where aggregate size, connectivity, and differentiation costs are high. This may explain why plants engage in symbiotic interactions with diazotrophic bacteria.  相似文献   

4.
5.
A mixed transplantation of bone marrow cells, and lymph nodes or thymic cells of mice CBA strain into lethally irradiated hybrid recipients (CBAXC57B1)F1 is accompanied with changes in the differentiation pattern from a mainly erythroid to a mainly granuloid way. Thymectomy of either donor of bone marrow cells or recipients, or both, destroys the stem cell differentiation in the direction of granulopoieseis. Intact syngeneic lymphocytes normalize differentiation of the stem cells, but in the presence of tissue antigens these provide for the stem cell differentiation mainly in the direction of granulopoiesis. The differentiation of stem haemopoietic cells is accomplished under the thymic and lymphocyte control. T-differentiating lymphocytes (Td) are the lymphocytes controlling the stem cell differentiation.  相似文献   

6.
Neurons in both vertebrate and invertebrate eyes are organized in regular arrays. Although much is known about the mechanisms involved in the formation of the regular arrays of neurons found in invertebrate eyes, much less is known about the mechanisms of formation of neuronal mosaics in the vertebrate eye. The purpose of these studies was to determine the cellular mechanisms that pattern the first neurons in vertebrate retina, the retinal ganglion cells. We have found that the ganglion cells in the chick retina develop as a patterned array that spreads from the central to peripheral retina as a wave front of differentiation. The onset of ganglion cell differentiation keeps pace with overall retinal growth; however, there is no clear cell cycle synchronization at the front of differentiation of the first ganglion cells. The differentiation of ganglion cells is not dependent on signals from previously formed ganglion cells, since isolation of the peripheral retina by as much as 400 microm from the front of ganglion cell differentiation does not prevent new ganglion cells from developing. Consistent with previous studies, blocking FGF receptor activation with a specific inhibitor to the FGFRs retards the movement of the front of ganglion cell differentiation, while application of exogenous FGF1 causes the precocious development of ganglion cells in peripheral retina. Our observations, taken together with those of previous studies, support a role for FGFs and FGF receptor activation in the initial development of retinal ganglion cells from the undifferentiated neuroepithelium peripheral to the expanding wave front of differentiation.  相似文献   

7.
M Arias  J M Villar 《Cytobios》1986,47(188):7-18
The behaviour and differentiation of cultured precardiac cells in the presence of neurogenic cells were studied by means of light and electron microscopy. Inhibition of the process of cardiac differentiation may be due to cellular contact or some specific factor elaborated in the process of differentiation by the neurogenic cells. Differentiation of cardiomyocytes in vitro may be compatible with the presence and contact of neurogenic cells, since both cell populations appear in the same reaggregate. Diffused substances in the medium of the culture through neurogenic cells do not appear to produce any modifications in cardiac differentiation. These processes were examined and are discussed.  相似文献   

8.
Previous study has suggested that distinct populations of myeloid cells exist in the anterior ventral blood islands (aVBI) and posterior ventral blood islands (pVBI) in Xenopus neurula embryo. However, details for differentiation programs of these two populations have not been elucidated. In the present study, we examined the role of Wnt, vascular endothelial growth factor (VEGF) and fibroblast growth factor signals in the regulation of myeloid cell differentiation in the dorsal marginal zone and ventral marginal zone explants that are the sources of myeloid cells in the aVBI and pVBI. We found that regulation of Wnt activity is essential for the differentiation of myeloid cells in the aVBI but is not required for the differentiation of myeloid cells in the pVBI. Endogenous activity of the VEGF signal is necessary for differentiation of myeloid cells in the pVBI but is not involved in the differentiation of myeloid cells in the aVBI. Overall results reveal that distinct mechanisms are involved in the myeloid, erythroid and endothelial cell differentiation in the aVBI and pVBI.  相似文献   

9.
10.
Summary To investigate the regulation of epithelial differentiation, normal human epidermal keratinocytes were cultured floating on the surface of culture medium without attachment to a solid substrate. Keratinocytes spread out on the surface of the medium, proliferated and differentiated either into several flat lacy sheets 1 to 3 cells thick (on medium containing 0.15 mM calcium) or formed one single aggregate of cells from 5 to 15 cells in thickness on medium containing 1.15 mM calcium. The cell aggregates demonstrated a pattern of ordered epithelial differentiation. Levels of progressive differentiation resembling the structure of normal human epidermis were identified by light microscopy, immunohistochemistry, and electron microscopy. Differentiation proceeded from cells at the air side toward cells at the medium side with basal appearing cells on the air side and keratinocytes expressing filaggrin and involucrin on the side toward the medium. These results demonstrate that organized epithelial differentiation can occur in the absence of extracellular matrix. In contrast with other air-liquid interface cultures, epithelial differentiation in the absence of extracellular matrix progresses from air towards medium.  相似文献   

11.
Homeostasis of tissues relies on the regulated differentiation of stem cells. In the epithelium of mouse seminiferous tubules, the differentiation process from undifferentiated spermatogonia (A(undiff)), which harbor the stem cell functions, to sperm occurs in a periodical manner, known as the "seminiferous epithelial cycle". To identify the mechanism underlying this periodic differentiation, we investigated the roles of Sertoli cells (the somatic supporting cells) and retinoic acid (RA) in the seminiferous epithelial cycle. Sertoli cells cyclically change their functions in a coordinated manner with germ cell differentiation and support the entire process of spermatogenesis. RA is known to play essential roles in this periodic differentiation, but its precise mode of action and its regulation remains largely obscure. We showed that an experimental increase in RA signaling was capable of both inducing A(undiff) differentiation and resetting the Sertoli cell cycle to the appropriate stage. However, these actions of exogenous RA signaling on A(undiff) and Sertoli cells were strongly interfered by the differentiating germ cells of intimate location. Based on the expression of RA metabolism-related genes among multiple cell types - including germ and Sertoli cells - and their regulation by RA signaling, we propose here that differentiating germ cells play a primary role in modulating the local RA metabolism, which results in the timed differentiation of A(undiff) and the appropriate cycling of Sertoli cells. Similar regulation by differentiating progeny through the modulation of local environment could also be involved in other stem cell systems.  相似文献   

12.
To understand the mechanism of sex differentiation in the protogynous Malabar grouper Epinephelus malabaricus, we performed an immunohistochemical investigation of the expression of three steroidogenic enzymes, cholesterol-side-chain-cleavage enzyme (CYP11a), aromatase (CYP19a1a), and cytochrome P45011beta-hydroxylase (CYP11b), in the gonads during ovarian differentiation. Strong positive immunoreactivity against CYP11a, the key enzyme of steroidogenesis, and CYP19a1a which is essential for estrogen (17beta-estradiol) production, appeared first in the somatic cells surrounding gonial germ cells in undifferentiated gonads and throughout ovarian differentiation. However, positive immunoreactivity against CYP11b, which is important for androgen (11-ketotestosterone) production, first appeared in the cluster of somatic cells in the ovary tunica near the dorsal blood vessel after differentiation. CYP19a1a and CYP11b did not co-localize in any cells. These results indicate that there are two types of steroid-producing cells, estrogen-producing cells and androgen-producing cells, in the gonads of this fish, and they are distributed differently, suggesting that these cells are derived from different somatic cells. Estrogen-producing cells appeared prior to ovarian differentiation, while androgen-producing cells were first detected after ovarian differentiation. These results suggest that endogenous estrogen is involved in ovarian differentiation.  相似文献   

13.
14.
Differentiation induction is currently considered as an alternative strategy for treating chronic myelogenous leukemia (CML). Our previous work has demonstrated that Sprouty-related EVH1 domainprotein2 (Spred2) was involved in imatinib mediated cytotoxicity in CML cells. However, its roles in growth and lineage differentiation of CML cells remain unknown. In this study, we found that CML CD34+ cells expressed lower level of Spred2 compared with normal hematopoietic progenitor cells, and adenovirus mediated restoration of Spred2 promoted the erythroid differentiation of CML cells. Imatinib could induce Spred2 expression and enhance erythroid differentiation in K562 cells. However, the imatinib induced erythroid differentiation could be blocked by Spred2 silence using lentiviral vector PLKO.1-shSpred2. Spred2 interference activated phosphorylated-ERK (p-ERK) and inhibited erythroid differentiation, while ERK inhibitor, PD98059, could restore the erythroid differentiation, suggesting Spred2 regulated the erythroid differentiation partly through ERK signaling. Furthermore, Spred2 interference partly restored p-ERK level leading to inhibition of erythroid differentiation in imatinib treated K562 cells. In conclusion, Spred2 was involved in erythroid differentiation of CML cells and participated in imatinib induced erythroid differentiation partly through ERK signaling.  相似文献   

15.
Neuroblastoma is an embryonic tumour of the sympathetic nervous system and is one of the most common cancers in childhood. A high differentiation stage has been associated with a favourable outcome; however, the mechanisms governing neuroblastoma cell differentiation are not completely understood. The MYCN gene is considered the hallmark of neuroblastoma. Even though it has been reported that MYCN has a role during embryonic development, it is needed its decrease so that differentiation can be completed. We aimed to better define the role of MYCN in the differentiation processes, particularly during the early stages. Considering the ability of MYCN to regulate non-coding RNAs, our hypothesis was that N-Myc protein might be necessary to activate differentiation (mimicking embryonic development events) by regulating miRNAs critical for this process. We show that MYCN expression increased in embryonic cortical neural precursor cells at an early stage after differentiation induction. To investigate our hypothesis, we used human neuroblastoma cell lines. In LAN-5 neuroblastoma cells, MYCN was upregulated after 2 days of differentiation induction before its expected downregulation. Positive modulation of various differentiation markers was associated with the increased MYCN expression. Similarly, MYCN silencing inhibited such differentiation, leading to negative modulation of various differentiation markers. Furthermore, MYCN gene overexpression in the poorly differentiating neuroblastoma cell line SK-N-AS restored the ability of such cells to differentiate. We identified three key miRNAs, which could regulate the onset of differentiation programme in the neuroblastoma cells in which we modulated MYCN. Interestingly, these effects were accompanied by changes in the apoptotic compartment evaluated both as expression of apoptosis-related genes and as fraction of apoptotic cells. Therefore, our idea is that MYCN is necessary during the activation of neuroblastoma differentiation to induce apoptosis in cells that are not committed to differentiate.  相似文献   

16.
Dysregulation of hematopoietic cellular differentiation contributes to leukemogenesis. Unfortunately, relatively little is known about how cell differentiation is regulated. JWA (AF070523) is a novel all-trans retinoic acid (ATRA) responsible gene that initially isolated from ATRA-treated primary human tracheal bronchial epithelial cells. For the notable performance achieved by ATRA in the differentiation induction therapy, we investigated the role of JWA in the induction of differentiation of human myeloid leukemia cells. Our results showed that JWA was not only regulated by ATRA but also by several other differentiation inducers such as phorbol-12-myristate-13-acetate (TPA), arabinoside (Ara-C), and hemin, involved in the mechanisms of differentiation along different lineages of myeloid leukemia cells arrested at different stages of development. Generally, JWA was up-regulated by these inducers in a time-dependent manner. Inhibition of JWA by RNA interference decreased the induced cellular differentiation. However, in NB4 cells treated with ATRA, dissimilar with others, the expression of JWA was down-regulated, and the induced cellular differentiation could be enhanced by silencing of JWA. Collectively, JWA works as a potential critical molecule, associated with multi-directional differentiation of human myeloid leukemia cells. In NB4 cells, JWA may function as a lineage-restricted gene during differentiation along the monocyte/macrophage-like or granulocytic pathway.  相似文献   

17.
DNase I sensitivity was used to investigate the chromatin conformation of the interferon beta gene during differentiation of the mouse teratocarcinoma cell line PC13 . These cells do not produce interferon upon viral induction in their undifferentiated state, but do so on differentiation from stem cells to endoderm. Only in induced differentiated cells were the interferon beta genes digested by DNase I. A similar effect was seen in a line of human cells ( MG63 ) upon induction. We conclude that it is induction of interferon production that brings about the change in the DNase I sensitivity of these genes, rather than differentiation.  相似文献   

18.
A model is developed and described for studying cytological differentiation of pigment epithelium cells of the human eye in vitro. It is shown that the differentiation pattern depends on the stage of embryogenesis.  相似文献   

19.
20.
细胞的转录组决定其生理状态,每个细胞的转录组都是唯一的。借助单细胞转录组测序可分析单个干细胞的转录组特征,通过进一步的运算方法可以根据转录组特征对细胞进行细胞状态测定以及系谱分化特征的重建,在干细胞及组织发育研究中发挥了强大的作用,推动了其快速发展,加速了对干细胞分化及组织发育的相关过程及调控路径的认识。尤其是在干细胞领域的应用,得益于新算法的发展,单细胞转录组测序分析可用来阐述干细胞的起源、异质性,尤其是对干细胞的分化过程进行连续观察。本文主要对应用于干细胞分化相关研究的单细胞转录组测序数据新的算法及其应用进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号