首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
S H Seo  L Wang  R Smith    E W Collisson 《Journal of virology》1997,71(10):7889-7894
Specific cytotoxic T-lymphocyte (CTL) responses to nucleocapsid of infectious bronchitis virus (IBV) were identified by using target cells infected with a Semliki Forest virus (SFV) vector. Effector cells for CTL assays were collected from chickens infected with the Gray strain of IBV or inoculated with a DNA plasmid encoding nucleocapsid proteins. IBV-specific CTL epitopes were mapped within the carboxyl-terminal 120 amino acids of the nucleocapsid protein. CTL lysis of target cells infected with SFV encoding nucleocapsid was major histocompatibility complex restricted and mediated by CD8+ T cells. In addition, splenic T cells collected from chickens inoculated in the breast muscle with a DNA plasmid encoding this CTL epitope(s) recognized target cells infected with wild-type virus or an SFV vector encoding nucleocapsid proteins. CTL activity of splenic T cells collected from chicks immunized with a DNA plasmid encoding CTL epitopes was cross-reactive, in that lysis of target cells infected with serologically distinct strains of IBV was dose responsive in a manner similar to that for lysis of target cells infected with the homologous strain of IBV. Furthermore, chickens immunized with a DNA plasmid encoding a CTL epitope(s) were protected from acute viral infection.  相似文献   

5.
The coronavirus (CoV) E protein plays an important role in virus assembly. The E protein is made in excess during infection and has been shown to have ion channel activity in planar lipid bilayers. However, a role in infection for the unincorporated E or its ion channel activity has not been described. To further investigate the function of the infectious bronchitis virus (IBV) E protein, we developed a recombinant version of IBV in which the E protein was replaced by a mutant containing a heterologous hydrophobic domain. The mutant virus, IBV-EG3, was defective in release of infectious virus particles. Further characterization of IBV-EG3 revealed that damaged particles appeared to accumulate intracellularly. The phenotype of IBV-EG3 suggested that the hydrophobic domain of IBV E may be important for the forward trafficking of cargo, so we determined whether IBV E facilitated the delivery of cargo to the plasma membrane. Surprisingly, we found that IBV E, but not EG3, dramatically reduced the delivery of cargo to the plasma membrane by impeding movement through the Golgi complex. Furthermore, we observed that overexpression of IBV E, but not EG3, induced the disassembly of the Golgi complex. Finally, we determined that the delivery of IBV S to the plasma membrane was reduced in cells infected with wild-type-IBV compared to those infected with IBV-EG3. Our results indicated that the hydrophobic domain of IBV E alters the host secretory pathway to the apparent advantage of the virus.  相似文献   

6.
Little information is available on persistent infection of severe acute respiratory syndrome (SARS) coronavirus (CoV). In this study, we established persistent infection of SARS-CoV in the Vero E6 cell line. Acute infection of Vero E6 with SARS-CoV produced a lytic infection with characteristic rounding cytopathic effects (CPE) and the production of a large number of infectious particles in the culture fluid within 3 days post-infection. Upon subsequent culturing of the remaining adherent cells, the cells gradually proliferated and recovered normal morphology similar to that of the parental cells, and continued to produce large numbers of infectious viral particles during the observation period of 5 months. Among a total of 87 cell clones obtained from the persistently infected Vero E6, only four cell clones (named #13, #18, #21, and #34) were positive for viral RNA. Clones #13, #18, and #34 shifted to viral RNA-negative during subsequent cultures, while #21 continuously produced infectious particles at a high rate. The SARS-CoV receptor, angiotensin-converting enzyme 2, was almost completely down regulated from the cell surface of persistently infected cells. Western blot analysis as well as electron microscopy indicated that the ratios of spike to nucleocapsid protein in clone #21 as well as its parental persistently infected cells were lower than that in the cells in the acute phase of infection. These Vero E6 cells persistently infected with SARS-CoV may be useful for clarifying the mechanism of the persistent infection and also for elucidating the possible pathophysiologic significance of such long-term maintenance of this virus.  相似文献   

7.
Infectious bronchitis (IB), caused by infectious bronchitis virus (IBV), is a highly contagious chicken disease, and can lead to serious economic losses in poultry enterprises. The continual introduction of new IBV serotypes requires alternative strategies for the production of timely and safe vaccines against the emergence of variants. Modification of the IBV genome using reverse genetics is one way to generate recombinant IBVs as the candidates of new IBV vaccines. In this study, the recombinant IBV is developed by replacing the ectodomain region of the S1 gene of the IBV Beaudette strain with the corresponding fragment from H120 strain, designated as rBeau-H120(S1e). In Vero cells, the virus proliferates as its parental virus and can cause syncytium formation. The peak titer would reach 105.9 50 % (median) tissue culture infective dose/mL at 24 h post-infection. After inoculation of chickens with the recombinant virus, it demonstrated that rBeau-H120(S1e) remained nonpathogenic and was restricted in its replication in vivo. Protection studies showed that vaccination with rBeau-H120 (S1e) at 7-day after hatch provided 80 % rate of immune protection against challenge with 103 50 % embryos infection dose of the virulent IBV M41 strain. These results indicate that rBeau-H120 (S1e) has the potential to be an alternative vaccine against IBV based on excellent propagation property and immunogenicity. This finding might help in providing further information that replacement of the ectodomain fragment of the IBV Beaudette S1 gene with that from a present field strain is promising for IBV vaccine development.  相似文献   

8.
E S Abernathy  C Y Wang    T K Frey 《Journal of virology》1990,64(10):5183-5187
A Vero cell line with a long-term rubella virus persistent infection was maintained for 45 weeks in the presence of anti-rubella virus antibody of sufficient titer to completely neutralize the virus in the culture fluid to determine the effect of the presence of antibody on the maintenance of the persistent infection. Prior to antibody treatment, virus was continuously detected as plaque-forming units in the persistently infected culture fluid. Virus clones that were plaque purified from the persistently infected culture fluid were temperature sensitive and exhibited a reduced efficiency of replication and ability to induce cytopathic effects in Vero cells at the persistently infected culture temperature compared with the standard virus used to initiate the persistently infected culture. Defective interfering RNAs were the major intracellular virus-specific RNA species present in the persistently infected cells. Treatment with antibody failed to cure the persistently infected culture of virus, and the cells retained the ability to release virus after antibody treatment was discontinued. Interestingly, the presence of antibody led to the selection of a population of virus which was markedly less cytopathic for Vero cells than the virus population which was selected during persistent infection in the absence of antibody.  相似文献   

9.
《Autophagy》2013,9(4):496-509
Autophagy is a highly conserved cellular response to starvation that leads to the degradation of organelles and long-lived proteins in lysosomes and is important for cellular homeostasis, tissue development and as a defense against aggregated proteins, damaged organelles and infectious agents. Although autophagy has been studied in many animal species, reagents to study autophagy in avian systems are lacking. Microtubule-associated protein 1 light chain 3 (MAP1LC3/LC3) is an important marker for autophagy and is used to follow autophagosome formation. Here we report the cloning of avian LC3 paralogs A, B and C from the domestic chicken, Gallus gallus domesticus, and the production of replication-deficient, recombinant adenovirus vectors expressing these avian LC3s tagged with EGFP and FLAG-mCherry. An additional recombinant adenovirus expressing EGFP-tagged LC3B containing a G120A mutation was also generated. These vectors can be used as tools to visualize autophagosome formation and fusion with endosomes/lysosomes in avian cells and provide a valuable resource for studying autophagy in avian cells. We have used them to study autophagy during replication of infectious bronchitis virus (IBV). IBV induced autophagic signaling in mammalian Vero cells but not primary avian chick kidney cells or the avian DF1 cell line. Furthermore, induction or inhibition of autophagy did not affect IBV replication, suggesting that classical autophagy may not be important for virus replication. However, expression of IBV nonstructural protein 6 alone did induce autophagic signaling in avian cells, as seen previously in mammalian cells. This may suggest that IBV can inhibit or control autophagy in avian cells, although IBV did not appear to inhibit autophagy induced by starvation or rapamycin treatment.  相似文献   

10.
Tan YW  Fang S  Fan H  Lescar J  Liu DX 《Nucleic acids research》2006,34(17):4816-4825
The N-terminal domain of the coronavirus nucleocapsid (N) protein adopts a fold resembling a right hand with a flexible, positively charged β-hairpin and a hydrophobic palm. This domain was shown to interact with the genomic RNA for coronavirus infectious bronchitis virus (IBV) and severe acute respiratory syndrome coronavirus (SARS-CoV). Based on its 3D structure, we used site-directed mutagenesis to identify residues essential for the RNA-binding activity of the IBV N protein and viral infectivity. Alanine substitution of either Arg-76 or Tyr-94 in the N-terminal domain of IBV N protein led to a significant decrease in its RNA-binding activity and a total loss of the infectivity of the viral RNA to Vero cells. In contrast, mutation of amino acid Gln-74 to an alanine, which does not affect the binding activity of the N-terminal domain, showed minimal, if any, detrimental effect on the infectivity of IBV. This study thus identifies residues critical for RNA binding on the nucleocapsid surface, and presents biochemical and genetic evidence that directly links the RNA binding capacity of the coronavirus N protein to the viral infectivity in cultured cells. This information would be useful in development of preventive and treatment approaches against coronavirus infection.  相似文献   

11.
12.
Perturbation of cell cycle regulation is a characteristic feature of infection by many DNA and RNA viruses, including Coronavirus infectious bronchitis virus (IBV). IBV infection was shown to induce cell cycle arrest at both S and G(2)/M phases for the enhancement of viral replication and progeny production. However, the underlying mechanisms are not well explored. In this study we show that activation of cellular DNA damage response is one of the mechanisms exploited by Coronavirus to induce cell cycle arrest. An ATR-dependent cellular DNA damage response was shown to be activated by IBV infection. Suppression of the ATR kinase activity by chemical inhibitors and siRNA-mediated knockdown of ATR reduced the IBV-induced ATR signaling and inhibited the replication of IBV. Furthermore, yeast two-hybrid screens and subsequent biochemical and functional studies demonstrated that interaction between Coronavirus nsp13 and DNA polymerase δ induced DNA replication stress in IBV-infected cells. These findings indicate that the ATR signaling activated by IBV replication contributes to the IBV-induced S-phase arrest and is required for efficient IBV replication and progeny production.  相似文献   

13.
The coronavirus E protein is a poorly characterized small envelope protein present in low levels in virions. We are interested in the role of E in the intracellular targeting of infectious bronchitis virus (IBV) membrane proteins. We generated a cDNA clone of IBV E and antibodies to the E protein to study its cell biological properties in the absence of virus infection. We show that IBV E is an integral membrane protein when expressed in cells from cDNA. Epitope-specific antibodies revealed that the C terminus of IBV E is cytoplasmic and the N terminus is translocated. The short luminal N terminus of IBV E contains a consensus site for N-linked glycosylation, but the site is not used. When expressed using recombinant vaccinia virus, the IBV E protein is released from cells at low levels in sedimentable particles that have a density similar to that of coronavirus virions. The IBV M protein is incorporated into these particles when present. Indirect immunofluorescence microscopy showed that E is localized to the Golgi complex in cells transiently expressing IBV E. When coexpressed with IBV M, both from cDNA and in IBV infection, the two proteins are colocalized in Golgi membranes, near the coronavirus budding site. Thus, even though IBV E is present at low levels in virions, it is apparently expressed at high levels in infected cells near the site of virus assembly.  相似文献   

14.
Coronavirus spike (S) proteins are responsible for binding and fusion with target cells and thus play an essential role in virus infection. Recently, we identified a dilysine endoplasmic reticulum (ER) retrieval signal and a tyrosine-based endocytosis signal in the cytoplasmic tail of the S protein of infectious bronchitis virus (IBV). Here, an infectious cDNA clone of IBV was used to address the importance of the S protein trafficking signals to virus infection. We constructed infectious cDNA clones lacking the ER retrieval signal, the endocytosis signal, or both. The virus lacking the ER retrieval signal was viable. However, this virus had a growth defect at late times postinfection and produced larger plaques than IBV. Further analysis confirmed that the mutant S protein trafficked though the secretory pathway faster than wild-type S protein. A more dramatic phenotype was obtained when the endocytosis signal was mutated. Recombinant viruses lacking the endocytosis signal (in combination with a mutated dilysine signal or alone) could not be recovered, even though transient syncytia were formed in transfected cells. Our results suggest that the endocytosis signal of IBV S is essential for productive virus infection.  相似文献   

15.
Porcine epidemic diarrhea virus (PEDV), a causative agent of pig diarrhea, requires a protease(s) for multicycle replication in cultured cells. However, the potential role of proteases in the infection process remains unclear. In order to explore this, we used two different approaches: we infected either Vero cells in the presence of trypsin or Vero cells that constitutively express the membrane-associated protease TMPRSS2 (Vero/TMPRSS2 cells). We found that PEDV infection was enhanced, and viruses were efficiently released into the culture fluid, from Vero cells infected in the presence of protease, while in cells without protease, the virus grew, but its release into the culture fluid was strongly hampered. Cell-to-cell fusion of PEDV-infected cells and cleavage of the spike (S) protein were observed in cells with protease. When infected Vero cells were cultured for 3 days in the absence of trypsin but were then treated transiently with trypsin, infectious viruses were immediately released from infected cells. In addition, treatment of infected Vero/TMPRSS2 cells with the protease inhibitor leupeptin strongly blocked the release of virus into the culture fluid. Under electron microscopy, PEDV-infected Vero cells, as well as PEDV-infected Vero/TMPRSS2 cells treated with leupeptin, retained huge clusters of virions on their surfaces, while such clusters were rarely seen in the presence of trypsin and the absence of leupeptin in Vero and Vero/TMPRSS2 cells, respectively. Thus, the present study indicates that proteases play an important role in the release of PEDV virions clustered on cells after replication occurs. This unique observation in coronavirus infection suggests that the actions of proteases are reminiscent of that of the influenza virus neuraminidase protein.  相似文献   

16.
《Seminars in Virology》1998,8(6):481-489
Sindbis virus causes acute encephalitis in mice and serves as a useful model for encephalitic alphaviruses that infect humans. The outcome of infection is determined by whether infected neurons are resistant to virus-induced programmed cell death or activate their apoptotic pathway. The host immune response may also cause death of infected neurons. Determinants of neuronal apoptosis include the maturity of the neuron, the virulence of the infecting virus and the cellular immune response to infection. In many situations viral and cellular factors that decrease virus replication also decrease apoptosis. Antiviral antibody can downregulate virus replication in surviving neurons without affecting cell viability. Other innate and induced host immune responses can alter the outcome of infection without a change in virus production. Failure to induce apoptosis in infected neurons leads to long-term persistence of small amounts of viral RNA in the nervous system of infected mice despite the clearance of infectious virus. The molecular mechanisms that govern these pathogenesis factors are beginning to be elucidated.  相似文献   

17.
By the aid of freezing and thawing, cell-free infectious virions were detected from an apparently nonproductive Vero cell line infected with Niigata-1 strain of subacute sclerosing panencephalitis virus. The production of infectious virions was limited in amount and such virions were detectable only during a limited period after cell subculture. The infectious virions were filtrable through a 0.65 mu membrane filter and neutralized completely by an antiserum against measles virus. The virions were banded at the density of 1.132, while Edmonston strain of measles virus banded at 1.164 in potassium tartrate density gradients. Infectious virions were also released from infected Vero cells by treatment of the cells in a hypotonic solution to an amount comparable to that obtained by freezing and thawing. Infection of normal culture of Vero cells with the infectious virions readily established a virus-cell interaction identical to that in the original infected culture from which the virions were recovered.  相似文献   

18.
Coronavirus nucleoproteins (N proteins) localize to the cytoplasm and the nucleolus, a subnuclear structure, in both virus-infected primary cells and in cells transfected with plasmids that express N protein. The nucleolus is the site of ribosome biogenesis and sequesters cell cycle regulatory complexes. Two of the major components of the nucleolus are fibrillarin and nucleolin. These proteins are involved in nucleolar assembly and ribosome biogenesis and act as chaperones for the import of proteins into the nucleolus. We have found that fibrillarin is reorganized in primary cells infected with the avian coronavirus infectious bronchitis virus (IBV) and in continuous cell lines that express either IBV or mouse hepatitis virus N protein. Both N protein and a fibrillarin-green fluorescent protein fusion protein colocalized to the perinuclear region and the nucleolus. Pull-down assays demonstrated that IBV N protein interacted with nucleolin and therefore provided a possible explanation as to how coronavirus N proteins localize to the nucleolus. Nucleoli, and proteins that localize to the nucleolus, have been implicated in cell growth-cell cycle regulation. Comparison of cells expressing IBV N protein with controls indicated that cells expressing N protein had delayed cellular growth. This result could not to be attributed to apoptosis. Morphological analysis of these cells indicated that cytokinesis was disrupted, an observation subsequently found in primary cells infected with IBV. Coronaviruses might therefore delay the cell cycle in interphase, where maximum translation of viral mRNAs can occur.  相似文献   

19.
The nucleolus is a dynamic subnuclear compartment involved in ribosome subunit biogenesis, regulation of cell stress and modulation of cellular growth and the cell cycle, among other functions. The nucleolus is composed of complex protein/protein and protein/RNA interactions. It is a target of virus infection with many viral proteins being shown to localize to the nucleolus during infection. Perturbations to the structure of the nucleolus and its proteome have been predicted to play a role in both cellular and infectious disease. Stable isotope labeling with amino acids in cell culture coupled to LC‐MS/MS with bioinformatic analysis using Ingenuity Pathway Analysis was used to investigate whether the nucleolar proteome altered in virus‐infected cells. In this study, the avian nucleolar proteome was defined in the absence and presence of virus, in this case the positive strand RNA virus, avian coronavirus infectious bronchitis virus. Data sets, potential protein changes and the functional consequences of virus infection were validated using independent assays. These demonstrated that specific rather than generic changes occurred in the nucleolar proteome in infectious bronchitis virus‐infected cells.  相似文献   

20.
Zhang  Xinheng  Chen  Tong  Chen  Sheng  Nie  Yu  Xie  Zi  Feng  Keyu  Zhang  Huanmin  Xie  Qingmei 《中国病毒学》2021,36(6):1431-1442
Virologica Sinica - Infectious bronchitis (IB) is a highly contagious avian disease caused by infection with infectious bronchitis virus (IBV), which seriously affects the development of the global...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号