首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Arachidonic acid and its metabolites have been previously implicated in the regulation of endothelial cell proliferation. Arachidonic acid may be liberated from cellular phospholipids by the action of group VIA calcium-independent phospholipase A2 (iPLA2-VIA). Consequently, we tested the hypothesis that iPLA2-VIA activity is linked to the regulation of endothelial cell proliferation. Inhibition of iPLA2 activity by bromoenol lactone (BEL) was sufficient to entirely block endothelial cell growth. BEL dose-dependently inhibited endothelial cell DNA synthesis in a manner that was reversed upon the exogenous addition of arachidonic acid. DNA synthesis was inhibited by the S-isomer and not by the R-isomer of BEL, demonstrating that endothelial cell proliferation is mediated specifically by iPLA2-VIA. iPLA2-VIA activity was critical to the progression of endothelial cells through S phase and is required for the expression of the cyclin A/cdk2 complex. Thus, inhibition of iPLA2-VIA blocks S phase progression and results in exit from the cell cycle. Inhibition of iPLA2-VIA-mediated endothelial cell proliferation is sufficient to block angiogenic tubule formation in co-culture assays. Consequently, iPLA2-VIA is a novel regulator of endothelial cell S phase progression, cell cycle residence, and angiogenesis.  相似文献   

2.
Excitatory agonists can induce significant smooth muscle contraction under constant free Ca(2+) through a mechanism called Ca(2+) sensitization. Considerable evidence suggests that free arachidonic acid plays an important role in mediating agonist-induced Ca(2+)-sensitization; however, the molecular mechanisms responsible for maintaining and regulating free arachidonic acid level are not completely understood. In the current study, we demonstrated that Ca(2+)-independent phospholipase A(2) (iPLA(2)) is expressed in vascular smooth muscle tissues. Inhibition of the endogenous iPLA(2) activity by bromoenol lactone (BEL) decreases basal free arachidonic acid levels and reduces the final free arachidonic acid level after phenylephrine stimulation, without significant effect on the net increase in free arachidonic acid stimulated by phenylephrine. Importantly, BEL treatment diminishes agonist-induced Ca(2+) sensitization of contraction from 49 +/- 3.6 to 12 +/- 1.0% (p < 0.01). In contrast, BEL does not affect agonist-induced diacylglycerol production or contraction induced by Ca(2+), phorbol 12,13-dibutyrate (a protein kinase C activator), or exogenous arachidonic acid. Further, we demonstrate that adenovirus-mediated overexpression of exogenous iPLA(2) in mouse portal vein tissue significantly potentiates serotonin-induced contraction. Our data provide the first evidence that iPLA(2) is required for maintaining basal free arachidonic acid levels and thus is essential for agonist-induced Ca(2+)-sensitization of contraction in vascular smooth muscle.  相似文献   

3.
We have investigated the possible involvement of two intracellular phospholipases A(2), namely group VIA calcium-independent phospholipase A(2) (iPLA(2)-VIA) and group IVA cytosolic phospholipase A(2) (cPLA(2)alpha), in the regulation of human promonocytic U937 cell proliferation. Inhibition of iPLA(2)-VIA activity by either pharmacological inhibitors such as bromoenol lactone or methyl arachidonyl fluorophosphonate or using specific antisense technology strongly blunted U937 cell proliferation. In contrast, inhibition of cPLA(2)alpha had no significant effect on U937 proliferation. Evaluation of iPLA(2)-VIA activity in cell cycle-synchronized cells revealed highest activity at G(2)/M and late S phases, and lowest at G(1). Phosphatidylcholine levels showed the opposite trend, peaking at G(1) and lowest at G(2)/M and late S phase. Reduction of U937 cell proliferation by inhibition of iPLA(2)-VIA activity was associated with arrest in G(2)/M and S phases. The iPLA(2)-VIA effects were found to be independent of the generation of free arachidonic acid or one of its oxygenated metabolites, and may work through regulation of the cellular level of phosphatidylcholine, a structural lipid that is required for cell growth/membrane expansion.  相似文献   

4.
Phospholipase A2 (PLA2) activity supports production of reactive oxygen species (ROS) by mammalian cells. In skeletal muscle, endogenous ROS modulate the force of muscle contraction. We tested the hypothesis that skeletal muscle cells constitutively express the calcium-independent PLA2 (iPLA2) isoform and that iPLA2 modulates both cytosolic oxidant activity and contractile function. Experiments utilized differentiated C2C12 myotubes and a panel of striated muscles isolated from adult mice. Muscle preparations were processed for measurement of mRNA by real-time PCR, protein by immunoblot, cytosolic oxidant activity by the dichlorofluorescein oxidation assay, and contractile function by in vitro testing. We found that iPLA2 was constitutively expressed by all muscles tested (myotubes, diaphragm, soleus, extensor digitorum longus, gastrocnemius, heart) and that mRNA and protein levels were generally similar among muscles. Selective iPLA2 blockade by use of bromoenol lactone (10 microM) decreased cytosolic oxidant activity in myotubes and intact soleus muscle fibers. iPLA2 blockade also inhibited contractile function of unfatigued soleus muscles, shifting the force-frequency relationship rightward and depressing force production during acute fatigue. Each of these changes could be reproduced by selective depletion of superoxide anions using superoxide dismutase (1 kU/ml). These findings suggest that constitutively expressed iPLA2 modulates oxidant activity in skeletal muscle fibers by supporting ROS production, thereby influencing contractile properties and fatigue characteristics.  相似文献   

5.
Dexamethasone-treated L6 (a rat cell line) and C2C12 (a mouse cell line) myotubes are frequently used as in vitro models of muscle wasting. We compared the effects of different concentrations of dexamethasone and corticosterone (the naturally occurring glucocorticoid in rodents) on protein breakdown rates, myotube size, and atrogin-1 and MuRF1 mRNA levels in the two cell lines. In addition, the expression of the glucocorticoid receptor (GR) and its role in glucocorticoid-induced metabolic changes were determined. Treatment with dexamethasone or corticosterone resulted in dose-dependent increases in protein degradation rates in both L6 and C2C12 myotubes accompanied by 25-30% reduction of myotube diameter. The same treatments increased atrogin-1 mRNA levels in L6 and C2C12 myotubes but, surprisingly, upregulated the expression of MuRF1 in L6 myotubes only. Both cell types expressed the GR and treatment with dexamethasone or corticosterone downregulated total cellular GR levels while increasing nuclear translocation of the GR in both L6 and C2C12 myotubes. The GR antagonist RU38486 inhibited the dexamethasone- and corticosterone-induced increases in atrogin-1 and MuRF1 expression in L6 myotubes but not in C2C12 myotubes. Interestingly, RU38486 exerted agonist effects in the C2C12, but not in the L6 myotubes. The present results suggest that muscle wasting-related responses to dexamethasone and corticosterone are similar, but not identical, in L6 and C2C12 myotubes. Most notably, the regulation by glucocorticoids of MuRF1 and the role of the GR may be different in the two cell lines. These differences need to be taken into account when cultured myotubes are used in future studies to further explore mechanisms of muscle wasting.  相似文献   

6.
Both elevated iron concentrations and the resulting oxidative stress condition are common signs in retinas of patients with age-related macular degeneration (AMD). The role of phospholipase A(2) (PLA(2)) during iron-induced retinal toxicity was investigated. To this end, isolated retinas were exposed to increasing Fe(2+) concentrations (25, 200 or 800μM) or to the vehicle, and lipid peroxidation levels, mitochondrial function, and the activities of cytosolic PLA(2) (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)) were studied. Incubation with Fe(2+) led to a time- and concentration-dependent increase in retinal lipid peroxidation levels whereas retinal cell viability was only affected after 60min of oxidative injury. A differential release of arachidonic acid (AA) and palmitic acid (PAL) catalyzed by cPLA(2) and iPLA(2) activities, respectively, was also observed in microsomal and cytosolic fractions obtained from retinas incubated with iron. AA release diminished as the association of cyclooxigenase-2 increased in microsomes from retinas exposed to iron. Retinal lipid peroxidation and cell viability were also analyzed in the presence of cPLA(2) inhibitor, arachidonoyl trifluoromethyl ketone (ATK), and in the presence of iPLA(2) inhibitor, bromoenol lactone (BEL). ATK decreased lipid peroxidation levels and also ERK1/2 activation without affecting cell viability. BEL showed the opposite effect on lipid peroxidation. Our results demonstrate that iPLA(2) and cPLA(2) are differentially regulated and that they selectively participate in retinal signaling in an experimental model resembling AMD.  相似文献   

7.
Apoptosis or programmed cell death is associated with changes in glycerophospholipid metabolism. Cells undergoing apoptosis generally release free fatty acids including arachidonic acid, which parallels the reduction in cell viability. The involvement of cytosolic group IVA phospholipase A(2)alpha (cPLA(2)alpha) in apoptosis has been the subject of numerous studies but a clear picture of the role(s) played by this enzyme is yet to emerge. More recently, the importance of lipid products generated by the action of a second phospholipase A(2), the group VIA calcium-independent phospholipase A(2) (iPLA(2)-VIA) in apoptosis has begun to be unveiled. Current evidence suggests that iPLA(2)-VIA-derived lysophosphatidylcholine may play a prominent role in mediating the chemoattractant and recognition/engulfment signals that accompany the process of apoptotic cell death, and gives possibility to the efficient clearance of dying cells by circulating phagocytes. Other lines of evidence suggest that perturbations in the control of free arachidonic acid levels within the cells, a process that may implicate iPLA(2)-VIA as well, may provide important cellular signals for the onset of apoptosis.  相似文献   

8.
An 84-kDa group VI phospholipase A2 (iPLA2) that does not require Ca2+ for catalysis has been cloned from Chinese hamster ovary cells, murine P388D1 cells, and pancreatic islet beta-cells. A housekeeping role for iPLA2 in generating lysophosphatidylcholine (LPC) acceptors for arachidonic acid incorporation into phosphatidylcholine (PC) has been proposed because iPLA2 inhibition reduces LPC levels and suppresses arachidonate incorporation and phospholipid remodeling in P388D1 cells. Because islet beta-cell phospholipids are enriched in arachidonate, we have examined the role of iPLA2 in arachidonate incorporation into islets and INS-1 insulinoma cells. Inhibition of iPLA2 with a bromoenol lactone (BEL) suicide substrate did not suppress and generally enhanced [3H]arachidonate incorporation into these cells in the presence or absence of extracellular calcium at varied time points and BEL concentrations. Arachidonate incorporation into islet phospholipids involved deacylation-reacylation and not de novo synthesis, as indicated by experiments with varied extracellular glucose concentrations and by examining [14C]glucose incorporation into phospholipids. BEL also inhibited islet cytosolic phosphatidate phosphohydrolase (PAPH), but the PAPH inhibitor propranolol did not affect arachidonate incorporation into islet or INS-1 cell phospholipids. Inhibition of islet iPLA2 did not alter the phospholipid head-group classes into which [3H]arachidonate was initially incorporated or its subsequent transfer from PC to other lipids. Electrospray ionization mass spectrometric measurements indicated that inhibition of INS-1 cell iPLA2 accelerated arachidonate incorporation into PC and that inhibition of islet iPLA2 reduced LPC levels by 25%, suggesting that LPC mass does not limit arachidonate incorporation into islet PC. Gas chromatography/mass spectrometry measurements indicated that BEL but not propranolol suppressed insulin secretagogue-induced hydrolysis of arachidonate from islet phospholipids. In islets and INS-1 cells, iPLA2 is thus not required for arachidonate incorporation or phospholipid remodeling and may play other roles in these cells.  相似文献   

9.
10.
We examined the time course of mRNA expression of myogenic cell differentiation- and muscle proteolytic system-related genes in cultures of C2C12 cells during differentiation from myoblasts to myotubes. Furthermore, we treated C2C12 myotubes with dimethyl sulphoxide (DMSO) and dexamethasone (Dex), and examined changes in these mRNA levels. Myogenin (Myog), Atrogin1, forkhead box O1 (Foxo1) and Capn1 mRNA levels increased in C2C12 cells differentiating from myoblasts to myotubes, whereas Myf5 mRNA levels decreased. Although genes such as MRF4, Foxo3a, UbB, Capn1 and MuRF1 mRNAs in the myotubes were affected by DMSO exposure, mRNA levels of other genes were not markedly affected by exposure to 0.02% or 0.5% DMSO. Myf5, MRF4, Atrogin1, Foxo3 and MuRF1 mRNA levels were elevated by Dex at all time points, Cbl and Capn1 mRNA levels were significantly elevated by Dex at 8 h, and Myog mRNA levels were significantly elevated by Dex at 24 h. However, CtsH mRNA levels decreased significantly with Dex at 24 h. This study provides a useful database of gene profiles that are differentially expressed throughout myogenic cell differentiation and the muscle proteolytic system.  相似文献   

11.
Islet Ca2+-independent phospholipase A2 (iPLA2) is postulated to mediate insulin secretion by releasing arachidonic acid in response to insulin secretagogues. However, the significance of iPLA2 signaling in insulin secretion in vivo remains unexplored. Here we investigated the physiological role of iPLA2 in beta-cell lines, isolated islets, and mice. We showed that small interfering RNA-specific silencing of iPLA2 expression in INS-1 cells significantly reduced insulin-secretory responses of INS-1 cells to glucose. Immunohistochemical analysis revealed that mouse islet cells expressed significantly higher levels of iPLA2 than pancreatic exocrine acinar cells. Bromoenol lactone (BEL), a selective inhibitor of iPLA2, inhibited glucose-stimulated insulin secretion from isolated mouse islets; this inhibition was overcome by exogenous arachidonic acid. We also showed that iv BEL administration to mice resulted in sustained hyperglycemia and reduced insulin levels during glucose tolerance tests. Clamp experiments demonstrated that the impaired glucose tolerance was due to insufficient insulin secretion rather than decreased insulin sensitivity. Short-term administration of BEL to mice had no effect on fasting glucose levels and caused no apparent pathological changes of islets in pancreas sections. These results unambiguously demonstrate that iPLA2 signaling plays an important role in glucose-stimulated insulin secretion under physiological conditions.  相似文献   

12.
The agonist-stimulated release of arachidonic acid (AA) from cellular phospholipids in many cell types (e.g. myocytes, beta-cells, and neurons) has been demonstrated to be primarily mediated by calcium-independent phospholipases A(2) (iPLA(2)s) that are inhibited by the mechanism-based inhibitor (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one (BEL). Recently, the family of mammalian iPLA(2)s has been extended to include iPLA(2)gamma, which previously could not be pharmacologically distinguished from iPLA(2)beta. To determine whether iPLA(2)beta or iPLA(2)gamma (or both) were the enzymes responsible for arginine vasopressin (AVP)-induced AA release from A-10 cells, it became necessary to inhibit selectively iPLA(2)beta and iPLA(2)gamma in intact cells. We hypothesized that the R- and S-enantiomers of BEL would possess different inhibitory potencies for iPLA(2)beta and iPLA(2)gamma. Accordingly, racemic BEL was separated into its enantiomeric constituents by chiral high pressure liquid chromatography. Remarkably, (S)-BEL was approximately an order of magnitude more selective for iPLA(2)beta in comparison to iPLA(2)gamma. Conversely, (R)-BEL was approximately an order of magnitude more selective for iPLA(2)gamma than iPLA(2)beta. The AVP-induced liberation of AA from A-10 cells was selectively inhibited by (S)-BEL (IC(50) approximately 2 microm) but not (R)-BEL, demonstrating that the overwhelming majority of AA release is because of iPLA(2)beta and not iPLA(2)gamma activity. Furthermore, pretreatment of A-10 cells with (S)-BEL did not prevent AVP-induced MAPK phosphorylation or protein kinase C translocation. Finally, two different cell-permeable protein kinase C activators (phorbol-12-myristate-13-acetate and 1,2-dioctanoyl-sn-glycerol) could not restore the ability of A-10 cells to release AA after exposure to (S)-BEL, thus supporting the downstream role of iPLA(2)beta in AVP-induced AA release.  相似文献   

13.
A cytosolic 84-kDa group VIA phospholipase A(2) (iPLA(2)beta) that does not require Ca(2+) for catalysis has been cloned from several sources, including rat and human pancreatic islet beta-cells and murine P388D1 cells. Many potential iPLA(2)beta functions have been proposed, including a signaling role in beta-cell insulin secretion and a role in generating lysophosphatidylcholine acceptors for arachidonic acid incorporation into P388D1 cell phosphatidylcholine (PC). Proposals for iPLA(2)beta function rest in part on effects of inhibiting iPLA(2)beta activity with a bromoenol lactone (BEL) suicide substrate, but BEL also inhibits phosphatidate phosphohydrolase-1 and a group VIB phospholipase A(2). Manipulation of iPLA(2)beta expression by molecular biologic means is an alternative approach to study iPLA(2)beta functions, and we have used a retroviral construct containing iPLA(2)beta cDNA to prepare two INS-1 insulinoma cell clonal lines that stably overexpress iPLA(2)beta. Compared with parental INS-1 cells or cells transfected with empty vector, both iPLA(2)beta-overexpressing lines exhibit amplified insulin secretory responses to glucose and cAMP-elevating agents, and BEL substantially attenuates stimulated secretion. Electrospray ionization mass spectrometric analyses of arachidonic acid incorporation into INS-1 cell PC indicate that neither overexpression nor inhibition of iPLA(2)beta affects the rate or extent of this process in INS-1 cells. Immunocytofluorescence studies with antibodies directed against iPLA(2)beta indicate that cAMP-elevating agents increase perinuclear fluorescence in INS-1 cells, suggesting that iPLA(2)beta associates with nuclei. These studies are more consistent with a signaling than with a housekeeping role for iPLA(2)beta in insulin-secreting beta-cells.  相似文献   

14.
We examined the roles of type 1 and type 2 calsequestrins (CSQ1 and CSQ2) in stored Ca2+ release of C2C12 skeletal muscle myotubes. Transduction of C2C12 myoblasts with CSQ1 or CSQ2 small interfering RNAs effectively reduced the expression of targeted CSQ protein to near undetectable levels. As compared with control infected or CSQ1 knockdown myotubes, CSQ2 and CSQ1/CSQ2 knockdown myotubes had significantly reduced stored Ca2+ release evoked by activators of intracellular Ca2+ release channel/ryanodine receptor (10 mM caffeine, 200 microM 4-chloro-m-cresol, or 10 mM KCl). Thus, CSQ1 is not essential for effective stored Ca2+ release in C2C12 myotubes despite our in vitro studies suggesting that CSQ1 may enhance ryanodine receptor channel activity. To determine the basis of the reduced stored Ca2+ release in CSQ2 knockdown myotubes, we performed immunoblot analyses and found a significant reduction in both sarco/endoplasmic reticulum Ca2+-ATPase and skeletal muscle ryanodine receptor proteins in CSQ2 and CSQ1/CSQ2 knockdown myotubes. Moreover, these knockdown myotubes exhibited reduced Ca2+ uptake and reduced stored Ca2+ release by UTP (400 microM) that activates a different family of intracellular Ca2+ release channels (inositol 1,4,5-trisphosphate receptors). Taken together, our data suggest that knocking down CSQ2, but not CSQ1, leads to reduced Ca2+ storage and release in C2C12 myotubes.  相似文献   

15.
16.
He F  Wu LX  Liu FY  Yang LJ  Zhang Y  Zhang HF  Zhou X  Huang BS  Deng XL 《生理学报》2008,60(2):235-242
本文旨在探讨肝细胞生长因子(hepatocyte growth factor,HGF)对神经元氧糖剥夺/再灌注损伤的影响。取原代培养12d的Sprague-Dawley大鼠大脑皮层神经元,无糖、无氧(95%N2+5%CO2)孵育2h后,换含25mmol/L葡萄糖的培养液、常氧培养0-24h,以MTT比色法检测细胞活力、乳酸脱氢酶(lactate dehydrogenase,LDH)漏出率作为细胞损伤指标,建立体外氧糖剥夺/再灌注损伤细胞模型;用流式细胞仪和Hoechst33258染色分析细胞凋亡率;用RT-PCR和Western blot分别检测大鼠脑皮层神经元HGF受体c-Met mRNA和蛋白的表达。于氧糖剥夺2h/再灌注24h处理前2h,加入不同终浓度(5-120ng/mL)的HGF,观察HGF对皮层神经元的影响。结果显示,c-Met表达于皮层神经元,氧糖剥夺2h/再灌注24h后,c-Met mRNA和蛋白表达均显著上调,神经元细胞活力明显降低,LDH漏出率和细胞凋亡率显著增高。HGF预处理明显促进氧糖剥夺/再灌注损伤神经元的存活,降低LDH漏出率,最大效应剂量为80ng/mL。流式细胞术和Hoechst33258染色结果均显示,HGF(80ng/mL)显著降低氧糖剥夺/再灌注神经元的细胞凋亡率。此外,c-Met抑制剂SU11274(5μmol/L)完全阻断HGF的神经保护作用。结果表明,HGF对皮层神经元氧糖剥夺/再灌注损伤具有直接的保护作用,呈一定的剂量依赖关系,并能有效对抗神经元凋亡。  相似文献   

17.
The double-stranded (ds) RNA-dependent protein kinase (PKR) is a primary regulator of antiviral responses; however, the ability of dsRNA to activate nuclear factor-kappa B (NF-kappa B) and dsRNA + interferon gamma (IFN-gamma) to stimulate inducible nitric-oxide synthase (iNOS) expression by macrophages isolated from PKR(-/-) mice suggests that signaling pathways in addition to PKR participate in antiviral activities. We have identified a novel phospholipid-signaling cascade that mediates macrophage activation by dsRNA and viral infection. Bromoenol lactone (BEL), a selective inhibitor of the calcium-independent phospholipase A(2) (iPLA(2)), prevents dsRNA- and virus-induced iNOS expression by RAW 264.7 cells and mouse macrophages. BEL does not modulate dsRNA-induced interleukin 1 expression, nor does it affect dsRNA-induced NF-kappa B activation. Protein kinase A (PKA) and the cAMP response element binding protein (CREB) are downstream targets of iPLA(2), because selective PKA inhibition prevents dsRNA-induced iNOS expression, and the inhibitory actions of BEL on dsRNA-induced iNOS expression are overcome by the direct activation of PKA. In addition, BEL inhibits dsRNA-induced CREB phosphorylation and CRE reporter activation. PKR does not participate in iPLA(2) activation or iNOS expression, because dsRNA stimulates iPLA(2) activity and dsRNA + IFN-gamma induces iNOS expression and nitric oxide production to similar levels by macrophages isolated from PKR(+/+) and PKR(-/-) mice. These findings support a PKR-independent signaling role for iPLA(2) in the antiviral response of macrophages.  相似文献   

18.
Hydrogen peroxide-induced apoptosis of U937 cells results in substantial hydrolysis of membrane phospholipids by calcium-independent group VIA phospholipase A(2) (iPLA(2)-VIA). However, abrogation of cellular iPLA(2)-VIA neither delays nor decreases apoptosis, suggesting that, beyond a mere destructive role, iPLA(2)-VIA may serve other specific roles. In this study, we report that phagocytosis of apoptosing U937 cells by macrophages is blunted if the cells are depleted of iPLA(2)-VIA by treatment with an inhibitor or an antisense oligonucleotide, and it is augmented by overexpression of iPLA(2)-VIA in the dying cells. Thus, the magnitude of macrophage phagocytosis correlates with the level of iPLA(2)-VIA activity of the dying cells. Eliminating by antisense oligonucleotide technology of cytosolic group IVA phospholipase A(2) does not attenuate phagocytosis of U937 dying cells by macrophages. Incubation of U937 cells with different fatty acids has no effect on either the extent of hydrogen peroxide-induced apoptosis or the degree of phagocytosis of the dying cells by macrophages. However, preincubation of the macrophages with lysophosphatidylcholine before exposing them to the dying cells blocks phagocytosis of the latter. These results indicate that formation of lysophosphatidylcholine by iPLA(2)-VIA in hydrogen peroxide-treated U937 cells to induce apoptosis directly contributes to their efficient clearance by macrophages.  相似文献   

19.
DTX4(Deltex 4 homolog)蛋白属于Deltex家族成员|Deltex家族是Notch信号通路的调节因子. 已知Notch信号通路在成肌分化中发挥重要作用. 然而,DTX4是否参与调控肌肉发育尚未有报道. 本研究探索DTX4对成肌分化的影响及作用机制. 实时定量PCR和蛋白质印迹分析揭示,伴随小鼠C2C12成肌细胞(myoblast)分化为肌管(myotube)过程,成肌分化标志蛋白肌球蛋白重链(myosin heavy-chain,MyHC)、肌细胞生成素(myogenin)表达逐渐升高,DTX4 mRNA及蛋白质表达水平也逐渐升高. 通过顺序专一的siRNA敲减DTX4表达后,C2C12成肌细胞肌管面积和肌管融合指数明显减少|MyHC、肌细胞生成素蛋白表达水平明显降低|但ERK信号通路未见明显变化.上述结果表明,敲减DTX4表达抑制C2C12细胞成肌分化.我们的结果提示,DTX4可能参与C2C12细胞成肌分化.  相似文献   

20.
Loss of muscle mass usually characterizes different pathologies (sepsis, cancer, trauma) and also occurs during normal aging. One reason for muscle wasting relates to a decrease in food intake. This study addressed the role of leucine as a regulator of protein breakdown in mouse C2C12 myotubes and aimed to determine which cellular responses regulate the process. Determination of the rate of protein breakdown indicated that leucine is one key regulator of this process in myotubes because starvation for this amino acid is responsible for 30-40% of the total increase generated by total amino acid starvation. Leucine restriction rapidly accelerates the rate of protein breakdown (+11 to 15% (p < 0.001) after 1 h of starvation) in a dose-dependent manner. By using various inhibitors, evidence is provided that acceleration of protein catabolism results mainly from an induction of autophagy, activation of lysosome-dependent proteolysis, without modification of mRNA levels encoding the lysosomal cathepsins B, L, or D. Those results suggest that autophagy is an essential cellular response for increasing protein breakdown in muscle following food deprivation. Induction of autophagy precedes a decrease in global protein synthesis (-20% to -30% (p < 0.001)) that occurs after 3 h of leucine starvation. Inhibition of the mammalian target of rapamycin (mTOR) activity does not abolish the effect of leucine starvation and the level of phosphorylated ribosomal S6 protein is not affected by leucine withdrawal. These latter data provide clear evidence that the mTOR signaling pathway is not involved in the mediation of leucine effects on both protein synthesis and degradation in C2C12 myotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号