首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine whether swift foxes (Vulpes velox) could facilitate transmission of Yersinia pestis to uninfected black-tailed prairie dog (Cynomys ludovicianus) colonies by acquiring infected fleas, ectoparasite and serologic samples were collected from swift foxes living adjacent to prairie dog towns during a 2004 plague epizootic in northwestern Texas, USA. A previous study (1999-2001) indicated that these swift foxes were infested almost exclusively with the flea Pulex irritans. Black-tailed prairie dogs examined from the study area harbored only Pulex simulans and Oropsylla hirsuta. Although P. irritans was most common, P. simulans and O. hirsuta were collected from six swift foxes and a single coyote (Canis latrans) following the plague epizootic. Thus, both of these canids could act as transport hosts (at least temporarily) of prairie dog fleas following the loss of their normal hosts during a plague die-off. All six adult swift foxes tested positive for antibodies to Y. pestis. All 107 fleas from swift foxes tested negative for Y. pestis by mouse inoculation. Although swift foxes could potentially carry Y. pestis to un-infected prairie dog colonies, we believe they play only a minor role in plague epidemiology, considering that they harbored just a few uninfected prairie dog fleas (P. simulans and O. hirsuta).  相似文献   

2.
Swift foxes (Vulpes velox) have been proposed as potential carriers of fleas infected with the bacterium Yersinia pestis between areas of epizootics in black-tailed prairie dogs (Cynomys ludovicianus). We examined antibody prevalence rates of a population of swift foxes in Colorado, USA, and used polymerase chain reaction (PCR) assays to examine their flea biota for evidence of Y. pestis. Fifteen of 61 (24%) captured foxes were seropositive, and antibody prevalence was spatially correlated with epizootic plague activity in prairie dog colonies in the year of, and previous to, the study. Foxes commonly harbored the flea Pulex simulans, though none of the fleas was positive for Y. pestis.  相似文献   

3.
Five hundred and thirteen fleas, of eight different species, were collected from a sample of 252 foxes killed in suburban London. 25–8% of foxes carried fleas, with a mean of 204 fleas per fox. Levels of infestation of male and female hosts did not differ significantly. Possible sources of the fleas infesting foxes are discussed with respect to their seasonal occurrence and fox prey composition. No evidence was found to support the suggestion that foxes obtain the majority of their fleas from prey items, although occasional heavy infestations of some flea species were probably derived from recent meals. Although Pulex irritans, Paraceras m. melis and Ctenocephalides canis , which contributed 35 % of the flea epifauna, could be considered parasitic on the fox, it seems probable that foxes pick up the majority of their fleas from the habitat through which they move. Thus, two particularly heavily infested categories of foxes were found: (1) juveniles during July-September, their fleas probably being accumulated during exploratory and play activities, and (2) all animals during the period October-December.  相似文献   

4.
The ectoparasite fauna for island foxes (Urocyon littoralis) on Santa Cruz Island (California, USA) in April (wet season) and September (dry season) 1998 was evaluated. Three taxa of ectoparasites were identified. These were fleas (Pulex irritans), lice (Neotrichodectes mephitidis), and ticks (Ixodes pacificus). Ectoparasite abundances varied seasonally. Typical of insular endemic species, island foxes may be especially vulnerable to the introduction of novel disease organisms and their vectors.  相似文献   

5.
Outbreaks of plague, a flea‐vectored bacterial disease, occur periodically in prairie dog populations in the western United States. In order to understand the conditions that are conducive to plague outbreaks and potentially predict spatial and temporal variations in risk, it is important to understand the factors associated with flea abundance and distribution that may lead to plague outbreaks. We collected and identified 20,041 fleas from 6,542 individual prairie dogs of four different species over a 4‐year period along a latitudinal gradient from Texas to Montana. We assessed local climate and other factors associated with flea prevalence and abundance, as well as the incidence of plague outbreaks. Oropsylla hirsuta, a prairie dog specialist flea, and Pulex simulans, a generalist flea species, were the most common fleas found on our pairs. High elevation pairs in Wyoming and Utah had distinct flea communities compared with the rest of the study pairs. The incidence of prairie dogs with Yersinia pestis detections in fleas was low (n = 64 prairie dogs with positive fleas out of 5,024 samples from 4,218 individual prairie dogs). The results of our regression models indicate that many factors are associated with the presence of fleas. In general, flea abundance (number of fleas on hosts) is higher during plague outbreaks, lower when prairie dogs are more abundant, and reaches peak levels when climate and weather variables are at intermediate levels. Changing climate conditions will likely affect aspects of both flea and host communities, including population densities and species composition, which may lead to changes in plague dynamics. Our results support the hypothesis that local conditions, including host, vector, and environmental factors, influence the likelihood of plague outbreaks, and that predicting changes to plague dynamics under climate change scenarios will have to consider both host and vector responses to local factors.  相似文献   

6.
Host identity, habitat type, season, and interspecific interactions were investigated as determinants of the community structure of fleas on wild carnivores in northwestern Mexico. A total of 540 fleas belonging to seven species was collected from 64 wild carnivores belonging to eight species. We found that the abundances of some flea species are explained by season and host identity. Pulex irritans and Echidnophaga gallinacea abundances were significantly higher in spring than in fall season. Flea communities on carnivore hosts revealed three clusters with a high degree of similarity within each group that was explained by the flea dominance of E. gallinacea, P. simulans, and P. irritans across host identity. Flea abundances did not differ statistically among habitat types. Finally, we found a negative correlation between the abundances of three flea species within wild carnivore hosts. Individual hosts with high loads of P. simulans males usually had significantly lower loads of P. irritans males or tend to have lower loads of E. gallinacea fleas and vice‐versa. Additionally, the logistic regression model showed that the presence of P. simulans males is more likely to occur in wild carnivore hosts in which P. irritans males are absent and vice‐versa. These results suggest that there is an apparent competitive exclusion among fleas on wild carnivores. The study of flea community structure on wild carnivores is important to identify the potential flea vectors for infectious diseases and provide information needed to design programs for human health and wildlife conservation.  相似文献   

7.
A survey was conducted in order to gain current information on flea species (Siphonaptera: Pulicidae) infesting dogs and cats living in urban and rural areas of Hungary, along with data on the factors that affect the presence, distribution and seasonality of infestation. In addition, owner awareness of flea infestation was evaluated. Practitioners in 13 veterinary clinics were asked to examine all dogs and cats attending the clinic and to collect fleas, when present, on 2 days in each month from December 2005 to November 2006. They also completed a questionnaire for each animal examined. A total of 319 dogs (14.1%) were found to be infested; the highest prevalence (27.1%) of infestation on dogs occurred in August and the lowest (5.4%) in May. Prevalence of fleas on cats was higher (22.9%); the highest (35.0%) and lowest (8.1%) prevalences occurred in July and April, respectively. Fleas were more prevalent in rural (387/1924 animals, 20.2%) than in urban (161/1343 animals, 12.0%) areas. Three species, Ctenocephalides felis (Bouché), Ctenocephalides canis (Curtis) and Pulex irritans L., were found. On dogs, the prevalence of C. canis alone was 53.0%, whereas that of C. felis alone was 36.0%. Only 19 specimens of P. irritans were found on 14 dogs from rural habitats only. Prevalence of C. felis only on cats was 94.3%; the remaining cats were infested with either C. canis or with mixed infestations of C. felis and C. canis. More than half (51.4%) of the owners of infested dogs and cats had not used flea control products in the past year or more, and five times as many owners in rural than urban areas had not used flea control products in the same period. Very few owners reported having attempted to kill fleas in their animals' environment; instead, they believed that fleas were acquired from other cats or dogs.  相似文献   

8.
The fleas of wild and commensal small mammals, domestic animals (dogs, cats) and free-living flea forms in houses have been collected in plague nidi of Tay Nguyen plate, Dak-Lak province, Vietnam. Pulex irritans, Ctenocephalides felis felis, Ct. felis orientis were found in the houses on dogs, cats and on the ground floor. Commensal rats in populated areas were infested by Xenopsylla cheopis and rarely by Lentistivalius klossi. The agricultural zone was inhabited by both home and wild animals such as commensal, savannah and forest-dwelling small mammals. The flea fauna of this zone is presented by X. cheopis and L. klossi. In the tropical forest surrounding villages four of the flea species were found: X. vexabilis, a specific parasite of the forest-dwelling rat Berylmys berdmorei, L. klossi found on six species of forest small mammals, Acropsylla girshami from Berylmys bowersii and Pariodontis subjugis from Hystrix brachyura. The agricultural zone is the most possible place of commensal and forest-dwelling small mammals contact, where the latter can get plague microbe.  相似文献   

9.
The evolution of host specificity remains a central issue in the study of host‐parasite relationships. Here we tackle three basic questions about host specificity using data on host use by fleas (Siphonaptera) from 21 geographical regions. First, are the host species exploited by a flea species no more than a random draw from the locally available host species, or do they form a taxonomically distinct subset? Using randomization tests, we showed that in the majority of cases, the taxonomic distinctness (measured as the average taxonomic distances among host species) of the hosts exploited by a flea is no different from that of random subsets of hosts taken from the regional pool. In the several cases where a difference was found, the taxonomic distinctness of the hosts used by a flea was almost always lower than that of the random subsets, suggesting that the parasites use hosts within a narrower taxonomic spectrum than what is available to them. Second, given the variation in host specificity among populations of the same flea species, is host specificity truly a species character? We found that host specificity measures are repeatable among different populations of the same flea species: host specificity varies significantly more among flea species than within flea species. This was true for both measures of host specificity used in the analyses: the number of host species exploited, and the index measuring the average taxonomic distinctness of the host species and its variance. Third, what causes geographical variation in host specificity among populations of the same flea species? In the vast majority of flea species, neither of our two measures of host specificity correlated with either the regional number of potential host species or their taxonomic distinctness, or the distance between the sampled region and the center of the flea's geographical range. However, in most flea species host specificity correlated with measures of the deviation in climatic conditions (precipitation and temperature) between the sampled region and the average conditions computed across the flea's entire range. Overall, these results suggest that host specificity in fleas is to a large extent phylogenetically constrained, while still strongly influenced by local environmental conditions.  相似文献   

10.
The swift fox Vulpes velox Say, 1823, a small canid native to shortgrass prairie ecosystems of North America, has been the subject of enhanced conservation and research interest because of restricted distribution and low densities. Previous studies have described distributions of the species in the southern Great Plains, but data on density are required to evaluate indices of relative abundance and monitor population trends. We examined regressions of swift fox density (estimated by mark-recapture) on timed-track surveys, scat surveys, and catch-per-unit effort indices. Seventy-nine swift foxes (42 male, 37 female) were captured 151 times during 10 240 trapnights between May 2003 and December 2004 in the Panhandle of Oklahoma, USA. Density estimates, based on mark-recapture data from autumn 2004, were 0.08–0.44 foxes/km2. Survey indices explained 51 to 76% of the variation in estimates of fox density. Our study indicates that surveys of time-to-track encounters and scat deposition rates show promise in monitoring trends in population abundance over large areas.  相似文献   

11.
蚤消化系统的研究:14种蚤前胃的结构   总被引:2,自引:0,他引:2  
金萍 《昆虫学报》1994,37(1):51-58
蚤的前胃结构与其传病机制密切相关。 本文应用解剖、组织切片和扫描电镜研究14种蚤的前胃。前胃的外部形态可分为:球状、椭球状、管状和圆台状。前胃刺内部有原生质。 前胃刺的末端形态可分为:钩形、弯叉形、叶形、针形、矛形、喇叭口形、“W”形、大叉形、小叉形、马刀形、锥形和舌形。 前胃刺包括有齿刺和无齿刺两类,有齿刺上齿的分布茫固有:1/2、1/3、1/4、2/3和刺全长。未观察到花蠕形蚤 yermipsylla alakurt 和缓慢细蚤Leptopsylla sehnis的前胃刺上有齿。 前胃刺末端形态和齿的分布呈现出科的相似性。 前胃刺基部的形态有:四棱形、正方形、五边形、不规则五边形、六边形、卵形和圆形。致痒蚤Pulex irrirans和印鼠客蚤Xenopsylla cheopis的前胃刺较粗长、骨化强、在刺两侧具较密的齿且多分布于刺的一半以上,这些特征可能适宜于鼠疫杆菌的生存与大量聚集。没有观察到俊潜蚤Tunga callida的前胃和前胃刺。  相似文献   

12.
Opportunistic parasite species, capable of exploiting several different host species, do not achieve the same abundance on all these hosts. Parasites achieve maximum abundance on their principal host species, and lower abundances on their auxiliary host species. Taxonomic relatedness between the principal and auxiliary host species may determine what abundance a parasite can achieve on its auxiliary hosts, as relatedness should reflect similarities among host species in ecological, physiological and/or immunological characters. We tested this hypothesis with fleas (Siphonaptera) parasitic on small Holarctic mammals. We determined whether the abundance of a flea in its auxiliary hosts decreases with increasing taxonomic distance of these hosts from the principal host. Using data on 106 flea species from 23 regions, for a total of 194 flea-locality combinations, we found consistent support for this relationship, both within and across regions, and even after controlling for the potentially confounding effect of flea phylogeny. These results are most likely explained by a decrease in the efficiency of the parasite's evasive mechanisms against the host's behavioural and immune defences with increasing taxonomic distance from the principal host. Our findings suggest that host switching over evolutionary time may be severely constrained by the coupling of parasite success with the relatedness between new hosts and the original host.  相似文献   

13.
A total of 559 fleas representing four species (Pulex irritans, Ctenocephalides felis, Ctenocephalides canis and Spilopsyllus cuniculi) collected on carnivores (five Iberian lynx Lynx pardinus, six European wildcat Felis silvestris, 10 common genet Genetta genetta, three Eurasian badger Meles meles, 22 red fox Vulpes vulpes, 87 dogs and 23 cats) in Andalusia, southern Spain, were distributed in 156 pools of monospecific flea from each carnivore, and tested for Bartonella infection in an assay based on polymerase chain reaction (PCR) amplification of the 16 S–23 S rRNA intergenic spacer region. Twenty‐one samples (13.5%) were positive and the sequence data showed the presence of four different Bartonella species. Bartonella henselae was detected in nine pools of Ctenocephalides felis from cats and dogs and in three pools of Ctenocephalides canis from cats; Bartonella clarridgeiae in Ctenocephalides felis from a cat, and Bartonella alsatica in Spilopsyllus cuniculi from a wildcat. DNA of Bartonella sp., closely related to Bartonella rochalimae, was found in seven pools of Pulex irritans from foxes. This is the first detection of B. alsatica and Bartonella sp. in the Iberian Peninsula. All of these Bartonella species have been implicated as agents of human diseases. The present survey confirms that carnivores are major reservoirs for Bartonella spp.  相似文献   

14.
Parasite communities can be structured at different spatial scales depending on the level of organization of the hosts; hence, examining this structure should be a multiscale process. We investigated ectoparasite community structure in three closely related seabird hosts, the Mediterranean Cory's shearwater Calonectris diomedea diomedea , the Atlantic Cory's shearwater C. d. borealis and the Cape Verde shearwater C. edwardsii . This community was composed of three lice ( Halipeurus abnormis , Austromenopon echinatum and Saemundssonia peusi) and one flea species ( Xenopsylla gratiosa ), and was considered at the infra-, component and regional community levels. We examined temporal and spatial structuring of the infracommunities, the influence of host aggregation and body condition on the component community, and the effect of genetic and geographic connectivity among host populations on the regional community. Ectoparasite infracommunities showed substantial species overlaps in temporal patterns of abundance, but species were spatially segregated within the host body. Within component communities, all ectoparasite species showed an aggregated distribution in abundance. However, aggregation patterns and their relationships with the spatial distribution of hosts within the breeding colony differed among ectoparasite species, mainly reflecting ecological differences between fleas and lice. At the regional scale, similarity in ectoparasite communities correlated with geographic distances among host colonies, but not with genetic distances. This result suggests differences in climate and habitat characteristics among host localities as a major determinant of regional communities, rather than host connectivity. Taken together, our results highlight the importance of the geographic distribution of host breeding colonies and the spatial segregation within the host body as key factors in determining ectoparasite community structure in Calonectris shearwaters.  相似文献   

15.
Intracellular endosymbionts, Wolbachia spp., have been reported in many different orders of insects and in nematodes but not previously in fleas. This is the first conclusive report of Wolbachia spp. within members of the Siphonaptera. Using nested polymerase chain reaction (PCR) targeting of the 16S ribosomal RNA gene, we screened for Wolbachia spp. in fleas collected from 3 counties in Georgia and 1 in New York. The prevalence of Wolbachia spp. detected varied among the 6 different species screened: 21% in the cat flea Ctenocephalides felis (n = 604), 7% in the dog flea C. canis (n = 28), 25% in Polygenus gwyni (n = 8), 80% in Orchopeas howardi (n = 15), 94% in Pulex simulans (n = 255), and 24% in the sticktight flea Echidnophaga gallinacea (n = 101). Wolbachia spp. infection in fleas was confirmed by sequencing positive PCR products, comparing sequenced 16S ribosomal DNA (rDNA) with Wolbachia spp. sequences in GenBank using BLAST search, and subjecting sequence data to phylogenetic analysis. For further confirmation, 16S rDNA-positive samples were reamplified using the wsp gene.  相似文献   

16.
The aims of this study were to determine whether sexual size dimorphism in fleas and gamasid mites (i) conforms to Rensch’s rule (allometry of sexual size dimorphism) and (ii) covaries with sex ratio in infrapopulations (conspecific parasites harboured by an individual host), xenopopulations (conspecific parasites harboured by a population of a given host species in a locality) and suprapopulations (conspecific parasites harboured by an entire host community in a locality). Rensch’s rule in sexual size dimorphism was tested across 150 flea and 55 mite species, whereas covariation between sexual size dimorphism and sex ratio was studied using data on ectoparasites collected from small mammalian hosts in Slovakia and western Siberia. For fleas, we controlled for the confounding effect of phylogeny. The slope of the linear regression of female size on male size was significantly smaller than 1 in fleas, but did not differ from 1 in mites. The proportion of males in flea infrapopulations significantly increased with an increase in the female-to-male body size ratio. The same was true for obligatory haematophagous mites. No relationship between sex ratio and sexual size dimorphism was found for xenopopulations of either taxon or for mite suprapopulations. However, when controlling for the confounding effect of phylogeny, a significant negative correlation between sex ratio and sexual size dimorphism was revealed for flea suprapopulations. We conclude that (i) some macroecological patterns differ between ectoparasite taxa exploiting the same hosts (allometry in sexual size dimorphism), whereas other patterns are similar (sexual size dimorphism-sex ratio relationship in infrapopulations), and (ii) some patterns are scale-dependent and may demonstrate the opposite trends in parasite populations at different hierarchical levels.  相似文献   

17.
ABSTRACT The distribution and abundance of swift foxes (Vulpes velox) has declined from historic levels. Causes for the decline include habitat loss and fragmentation, incidental poisoning, changing land use practices, trapping, and predation by other carnivores. Coyotes (Canis latrans) overlap the geographical distribution of swift foxes, compete for similar resources, and are a significant source of mortality amongst many swift fox populations. Current swift fox conservation and management plans to bolster declining or recovering fox populations may include coyote population reduction to decrease predation. However, the role of coyote predation in swift fox population dynamics is not well-understood. To better understand the interactions of swift foxes and coyotes, we compared swift fox population demographics (survival rates, dispersal rates, reproduction, density) between areas with and without coyote population reduction. On the Piñon Canyon Maneuver Site, Colorado, USA, we monitored 141 swift foxes for 65,226 radio-days from 15 December 1998 to 14 December 2000 with 18,035 total telemetry locations collected. Juvenile swift fox survival rate was increased and survival was temporarily prolonged in the coyote removal area. Adult fox survival patterns were also altered by coyote removal, but only following late-summer coyote removals and, again, only temporarily. Coyote predation remained the main cause of juvenile and adult fox mortality in both areas. The increase in juvenile fox survival in the coyote removal area resulted in a compensatory increase in the juvenile dispersal rate and an earlier pulse in dispersal movements. Adult fox dispersal rate was more consistent throughout the year in the coyote removal area. Coyote removal did not influence the reproductive parameters of the swift foxes. Even though juvenile survival increased, swift fox density remained similar between the areas due to the compensatory dispersal rate among juvenile foxes. We concluded that the swift fox population in the area was saturated. Although coyote predation appeared additive in the juvenile cohort, it was compensatory with dispersal.  相似文献   

18.
We studied 26 reproductive groups of swift foxes, Vulpes velox, from both high- and low-density areas during three field seasons in northwestern Texas, U.S.A., to examine whether differences in population density affect mating system and group structure. Although high- and low-density populations were only separated by 40 km and vegetation and diets were similar between sites, polygynous groups, communal denning and nonbreeding females occurred in the area of high density, whereas only monogamous pairs occurred in the area of low density. Annual survival of adult swift foxes was 66% in the area of high density, but 44% in the area of low density. Predation from coyotes, Canis latrans, was the only mortality factor that differed (P=0.01) between sites and contributed most to differences in survival. Although previous research indicated that variation in social systems among canids is related to bottom-up forces (i.e. food, habitat), the results of our study indicate that variation in social systems can also be related to top-down forces (i.e. predation, displacement by larger competitor).  相似文献   

19.
The ability of vector-borne diseases to persist and spread is closely linked to the ecological characteristics of the vector species they use. Yet there have been no investigations of how species used as vectors by pathogens such as the plague bacterium differ from closely related species that are not used as vectors. The plague bacterium uses mammals as reservoir hosts and fleas as vectors. The ability of different fleas to serve as vectors is assumed to depend on how likely they are to experience gut blockage following bacterial multiplication; the blockage causes fleas to regurgitate blood into a wound and thus inject bacteria into new hosts. Beyond these physiological differences, it is unclear whether there exist fundamental ecological differences between fleas that are effective vectors and those that are not. Here, using a comparative analysis, we identify clear associations between the ability of flea species to transmit plague and their ecological characteristics. First, there is a positive relationship between the abundance of flea species on their hosts and their potential as vectors. Second, although the number of host species exploited by a flea is not associated with its potential as a vector, there is a negative relationship between the ability of fleas to transmit plague and the taxonomic diversity of their host spectrum. This suggests a correlation between some ecological characteristics of fleas and their ability to develop the plague blockage. The plague pathogen thus uses mainly abundant fleas specialized on a narrow taxonomic range of mammals, features that should maximize the persistence of the disease in the face of high flea mortality, and its transmission to suitable hosts only. This previously unrecognized pattern of vector use is of importance for the persistence and transmission of the disease.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

20.
Mc Millan , Calvin . (U. Texas, Austin.) Nature of the plant community. VI. Texas grassland communities under transplanted conditions. Amer. Jour. Bot. 48(9): 778–785. Illus. 1961.—Clones of 7 grass taxa, Bouteloua gracilis (H. B. K.) Lag., B. eriopoda (Torr.) Torr., B. curtipendula (Michx.) Torr., Panicum virgatum L., the Andropogon scoparius Michx. complex, the Andropogon gerardi Vitman-hallii Hack. complex, and Sorghastrum nutans (L.) Nash, were transplanted from throughout their distribution in Texas and studied in an experimental garden at Austin. Restricted to western Texas and Panhandle areas, Bouteloua gracilis and B. eriopoda contained similar early-flowering clones throughout their distribution. Less restricted to western sites, B. curtipendula contained later-flowering types from eastern and central areas. In the 4 remaining, widespread taxa, early-flowering potential characterized clones from western sites. These 4 widespread taxa contain the latest-flowering clones from the coast of southern Texas. Clones of Stipa leucotricha Trin. and Rupr. from a broad area in Texas lacked a flowering gradient. Grassland communities of western Texas and the Panhandle, attuned to short growing seasons and low rainfall, were composed of opportunists, the Bouteloua species, and early-flowering variants within the widespread species. Communities of central Texas in habitats of highly unpredictable moisture pattern and a relatively long growing season contained later-flowering variants. Coastal communities attuned to a long growing season contained the latest-flowering variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号