首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Na(+)-Ca(2+) exchanger is a plasma membrane protein expressed at high levels in cardiomyocytes. It extrudes 1 Ca(2+) for 3 Na(+) ions entering the cell, regulating intracellular Ca(2+) levels and thereby contractility. Na(+)-Ca(2+) exchanger activity is regulated by intracellular Ca(2+), which binds to a region (amino acids 371-508) within the large cytoplasmic loop between transmembrane segments 5 and 6. Regulatory Ca(2+) activates the exchanger and removes Na(+)-dependent inactivation. The physiological role of intracellular Ca(2+) regulation of the exchanger is not yet established. Yellow (YFP) and cyan (CFP) fluorescent proteins were linked to the NH(2)- and CO(2)H-termini of the exchanger Ca(2+) binding domain (CBD) to generate a construct (YFP-CBD-CFP) capable of responding to changes in intracellular Ca(2+) concentrations by FRET efficiency measurements. The two fluorophores linked to the CBD are sufficiently close to generate FRET. FRET efficiency was reduced with increasing Ca(2+) concentrations. Titrations of Ca(2+) concentration versus FRET efficiency indicate a K(D) for Ca(2+) of approximately 140 nM, which increased to approximately 400 nM in the presence of 1 mM Mg(2+). Expression of YFP-CBD-CFP in myocytes, generated changes in FRET associated with contraction, suggesting that NCX is regulated by Ca(2+) on a beat-to-beat basis during excitation-contraction coupling.  相似文献   

2.
Increases in intracellular free Ca(2+)+ concentration (Ca(2+)+ oscillations) occur during meiotic maturation and fertilization of mammalian oocytes but little is known about the mechanisms of Ca(2+) homeostasis in these cells. Cells extrude Ca(2+) from the cytosol using two main transport processes, the Ca(2+)-ATPase and the Na(+)-Ca(2+) exchanger. The aim of this study was to determine whether Na(+)-Ca(2+) exchange activity is present in immature and mature mouse oocytes. Na(+)-Ca(2+) exchange can be revealed by altering the Na(+) concentration gradient across the plasma membrane and recording intracellular free Ca(2+) concentrations using Ca(2+)-sensitive fluorescent dyes. Depletion of extracellular Na(+) caused an immediate increase in Ca(2+) concentration in immature oocytes and a delayed increase in mature oocytes. The Na(+) ionophore, monensin, caused an increase in intracellular Ca(2+) in immature oocytes similar to that induced by Na(+)-depleted medium. In mature oocytes, monensin had no effect on intracellular Ca(2+) but the time taken for Ca(2+) to reach a peak value on removal of extracellular Na(+) was significantly decreased. Finally, addition of Ca(2+) to immature oocytes incubated in Ca(2+)-free medium caused an increase in the concentration of intracellular Ca(2+) that was dependent upon the presence of extracellular Na(+). This effect was not seen in mature oocytes. The data show that Na(+)-Ca(2+) exchange occurs in immature and mature mouse oocytes and that Ca(2+) homeostasis in immature oocytes is more sensitive to manipulations that activate Na(+)-Ca(2+) exchange.  相似文献   

3.
The possible contribution of Na(+)-Ca(2+) exchange to the triggering of Ca(2+) release from the sarcoplasmic reticulum in ventricular cells remains unresolved. To gain insight into this issue, we measured the "trigger flux" of Ca(2+) crossing the cell membrane in rabbit ventricular myocytes with Ca(2+) release disabled pharmacologically. Under conditions that promote Ca(2+) entry via Na(+)-Ca(2+) exchange, internal [Na(+)] (10 mM), and positive membrane potential, the Ca(2+) trigger flux (measured using a fluorescent Ca(2+) indicator) was much greater than the Ca(2+) flux through the L-type Ca(2+) channel, indicating a significant contribution from Na(+)-Ca(2+) exchange to the trigger flux. The difference between total trigger flux and flux through L-type Ca(2+) channels was assessed by whole-cell patch-clamp recordings of Ca(2+) current and complementary experiments in which internal [Na(+)] was reduced. However, Ca(2+) entry via Na(+)-Ca(2+) exchange measured in the absence of L-type Ca(2+) current was considerably smaller than the amount inferred from the trigger flux measurements. From these results, we surmise that openings of L-type Ca(2+) channels increase [Ca(2+)] near Na(+)-Ca(2+) exchanger molecules and activate this protein. These results help to resolve seemingly contradictory results obtained previously and have implications for our understanding of the triggering of Ca(2+) release in heart cells under various conditions.  相似文献   

4.
A mouse model carrying a null mutation in one copy of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase isoform 2 (SERCA2) gene, in which SERCA2 protein levels are reduced by approximately 35%, was used to investigate the effects of decreased SERCA2 level on intracellular Ca(2+) homeostasis and contractile properties in isolated cardiomyocytes. When compared with wild-type controls, SR Ca(2+) stores and Ca(2+) release in myocytes of SERCA2 heterozygous mice were decreased by approximately 40-60% and approximately 30-40%, respectively, and the rate of myocyte shortening and relengthening were each decreased by approximately 40%. However, the rate of Ca(2+) transient decline (tau) was not altered significantly, suggesting that compensation was occurring in the removal of Ca(2+) from the cytosol. Phospholamban, which inhibits SERCA2, was decreased by approximately 40% in heterozygous hearts, and basal phosphorylation of Ser-16 and Thr-17, which relieves the inhibition, was increased approximately 2- and 2.1-fold. These results indicate that reduced expression and increased phosphorylation of phospholamban provides compensation for decreased SERCA2 protein levels in heterozygous heart. Furthermore, both expression and current density of the sarcolemmal Na(+)-Ca(2+) exchanger were up-regulated. These results demonstrate that a decrease in SERCA2 levels can directly modify intracellular Ca(2+) homeostasis and myocyte contractility. However, the resulting deficit is partially compensated by alterations in phospholamban/SERCA2 interactions and by up-regulation of the Na(+)-Ca(2+) exchanger.  相似文献   

5.
The Na(+)-Ca2+ exchanger from Drosophila was expressed in Xenopus and characterized electrophysiologically using the giant excised patch technique. This protein, termed Calx, shares 49% amino acid identity to the canine cardiac Na(+)-Ca2+ exchanger, NCX1. Calx exhibits properties similar to previously characterized Na(+)-Ca2+ exchangers including intracellular Na+ affinities, current-voltage relationships, and sensitivity to the peptide inhibitor, XIP. However, the Drosophila Na(+)-Ca2+ exchanger shows a completely opposite response to cytoplasmic Ca2+. Previously cloned Na(+)-Ca2+ exchangers (NCX1 and NCX2) are stimulated by cytoplasmic Ca2+ in the micromolar range (0.1- 10 microM). This stimulation of exchange current is mediated by occupancy of a regulatory Ca2+ binding site separate from the Ca2+ transport site. In contrast, Calx is inhibited by cytoplasmic Ca2+ over this same concentration range. The inhibition of exchange current is evident for both forward and reverse modes of transport. The characteristics of the inhibition are consistent with the binding of Ca2+ at a regulatory site distinct from the transport site. These data provide a rational basis for subsequent structure-function studies targeting the intracellular Ca2+ regulatory mechanism.  相似文献   

6.
7.
The deduced amino acid sequence of the cardiac sarcolemmal Na(+)-Ca2+ exchanger has a region which could represent a calmodulin binding site. As calmodulin binding regions of proteins often have an autoinhibitory role, a synthetic peptide with this sequence was tested for functional effects on Na(+)-Ca2+ exchange activity. The peptide inhibits the Na(+)-dependent Ca2+ uptake (KI approximately 1.5 microM) and the Nao(+)-dependent Ca2+ efflux of sarcolemmal vesicles in a noncompetitive manner with respect to both Na+ and Ca2+. The peptide is also a potent inhibitor (KI approximately 0.1 microM) of the Na(+)-Ca2+ exchange current of excised sarcolemmal patches. The binding site for the peptide on the exchanger is on the cytoplasmic surface of the membrane. The exchanger inhibitory peptide binds calmodulin with a moderately high affinity. From the characteristics of the inhibition of the exchange of sarcolemmal vesicles, we deduce that only inside-out sarcolemmal vesicles participate in the usual Na(+)-Ca2+ exchange assay. This contrasts with the common assumption that both inside-out and right-side-out vesicles exhibit exchange activity.  相似文献   

8.
Early (E9.5-E11.5) embryonic heart cells beat spontaneously, even though the adult pacemaking mechanisms are not yet fully established. Here we show that in isolated murine early embryonic cardiomyocytes periodic oscillations of cytosolic Ca(2+) occur and that these induce contractions. The Ca(2+) oscillations originate from the sarcoplasmic reticulum and are dependent on the IP(3) and the ryanodine receptor. The Ca(2+) oscillations activate the Na(+)-Ca(2+) exchanger, giving rise to subthreshold depolarizations of the membrane potential and/or action potentials. Although early embryonic heart cells are voltage-independent Ca(2+) oscillators, the generation of action potentials provides synchronization of the electrical and mechanical signals. Thus, Ca(2+) oscillations pace early embryonic heart cells and the ensuing activation of the Na(+)-Ca(2+) exchanger evokes small membrane depolarizations or action potentials.  相似文献   

9.
Activity-dependent modulation of synaptic transmission is an essential mechanism underlying many brain functions. Here we report an unusual form of synaptic modulation that depends on Na+ influx and mitochondrial Na(+)-Ca2+ exchanger, but not on Ca2+ influx. In Ca(2+)-free medium, tetanic stimulation of Xenopus motoneurons induced a striking potentiation of transmitter release at neuromuscular synapses. Inhibition of either Na+ influx or the rise of Ca2+ concentrations ([Ca2+]i) at nerve terminals prevented the tetanus-induced synaptic potentiation (TISP). Blockade of Ca2+ release from mitochondrial Na(+)-Ca2+ exchanger, but not from ER Ca2+ stores, also inhibited TISP. Tetanic stimulation in Ca(2+)-free medium elicited an increase in [Ca2+]i, which was prevented by inhibition of Na+ influx or mitochondrial Ca2+ release. Inhibition of PKC blocked the TISP as well as mitochondrial Ca2+ release. These results reveal a novel form of synaptic plasticity and suggest a role of PKC in mitochondrial Ca2+ release during synaptic transmission.  相似文献   

10.
The sarcolemmal Na(+)-Ca2+ exchanger is regulated by intracellular Ca2+ at a high affinity Ca2+ binding site separate from the Ca2+ transport site. Previous data have suggested that the Ca2+ regulatory site is located on the large intracellular loop of the Na(+)-Ca2+ exchange protein, and we have identified a high-affinity 45Ca2+ binding domain on this loop (Levitsky, D. O., D. A. Nicoll, and K. D. Philipson. 1994. Journal of Biological Chemistry. 269:22847-22852). We now use electrophysiological and mutational analyses to further define the Ca2+ regulatory site. Wild-type and mutant exchangers were expressed in Xenopus oocytes, and the exchange current was measured using the inside- out giant membrane patch technique. Ca2+ regulation was measured as the stimulation of reverse Na(+)-Ca2+ exchange (intracellular Na+ exchanging for extracellular Ca2+) by intracellular Ca2+. Single-site mutations within two acidic clusters of the Ca2+ binding domain lowered the apparent Ca2+ affinity at the regulatory site from 0.4 to 1.1-1.8 microM. Mutations had parallel effects on the affinity of the exchanger loop for 45Ca2+ binding (Levitsky et al., 1994) and for functional Ca2+ regulation. We conclude that we have identified the functionally important Ca2+ binding domain. All mutant exchangers with decreased apparent affinities at the regulatory Ca2+ binding site also have a complex pattern of altered kinetic properties. The outward current of the wild-type Na(+)-Ca2+ exchanger declines with a half time (th) of 10.8 +/- 3.2 s upon Ca2+ removal, whereas the exchange currents of several mutants decline with th values of 0.7-4.3 s. Likewise, Ca2+ regulation mutants respond more rapidly to Ca2+ application. Study of Ca2+ regulation has previously been possible only with the exchanger operating in the reverse mode as the regulatory Ca2+ and the transported Ca2+ are then on opposite sides of the membrane. The use of exchange mutants with low affinity for Ca2+ at regulatory sites also allows demonstration of secondary Ca2+ regulation with the exchanger in the forward or Ca2+ efflux mode. In addition, we find that the affinity of wild-type and mutant Na(+)-Ca2+ exchangers for intracellular Na+ decreases at low regulatory Ca2+. This suggests that Ca2+ regulation modifies transport properties and does not only control the fraction of exchangers in an active state.  相似文献   

11.
The transport of Na+ and Ca2+ ions in the cardiac Na(+)-Ca2+ exchanger can be described as separate events (Khananshvili, D. (1990) Biochemistry 29, 2437-2442). Thus, the Na(+)-Na+ and Ca(2+)-Ca2+ exchange reactions reflect reversible partial reactions of the transport cycle. The effect of diffusion potentials (K(+)-valinomycin) on different modes of the Na(+)-Ca2+ exchanger (Na(+)-Ca2+, Ca(2+)-Ca2+, and Na(+)-Na+ exchanges) were tested in reconstituted proteoliposomes, obtained from the Triton X-100 extracts of the cardiac sarcolemmal membranes. The initial rates of the Nai-dependent 45Ca-uptake (t = 1 s) were measured in EGTA-entrapped proteoliposomes at different voltages. At the fixed values of voltage [45 Ca]o was varied from 4 to 122 microM, and [Na]i was saturating (150 mM). Upon varying delta psi from -94 to +91 mV, the Vmax values were increased from 9.5 +/- 0.5 to 26.5 +/- 1.5 nmol.mg-1.s-1 and the Km from 17.8 +/- 2.5 to 39.1 +/- 5.2 microM, while the Vmax/Km values ranged from only 0.53 +/- 0.08 to 0.73 +/- 0.17 nmol.mg-1.s-1.microM-1. The equilibrium Ca(2+)-Ca2+ exchange was voltage sensitive at very low [Ca]o = [Ca]i = 2 microM, while at saturating [Ca]o = [Ca]i = 200 microM the Ca(2+)-Ca2+ exchange became voltage-insensitive. The rates of the equilibrium Na(+)-Na+ exchange appears to be voltage insensitive at saturating [Na]o = [Na]i = 160 mM. Under the saturating ionic conditions, the rates of the Na(+)-Na+ exchange were at least 2-3-fold slower than the Ca(2+)-Ca2+ exchange. The following conclusions can be drawn. (a) The near constancy of the Vmax/Km for Na(+)-Ca2+ exchange at different voltages is compatible with the ping-pong model proposed previously. (b) The effects of voltage on Vmax of Na(+)-Ca2+ exchange are consistent with the existence of a single charge carrying transport step. (c) It is not yet possible to clearly assign this step to the Na+ or Ca2+ transport half of the cycle although it is more likely that 3Na(+)-transport is a charge carrying step. Thus, the unloaded ion-binding domain contains either -2 or -3 charges (presumably carboxyl groups). (d) The binding of Na+ and Ca2+ appears to be weakly voltage-sensitive. The Ca(2+)-binding site may form a small ion-well (less than 2-3 A).  相似文献   

12.
Ciliates possess diverse Ca2+ homeostasis systems, but little is known about the occurrence of a Na(+)-Ca2+ exchanger. We studied Na(+)-Ca2+ exchange in the ciliate Euplotes crassus by digital imaging. Cells were loaded with fura-2/AM or SBF1/AM for fluorescence measurements of cytosolic Ca2+ and Na+ respectively. Ouabain pre-treatment and Na+o substitution in fura-2/AM-loaded cells elicited a bepridil-sensitive [Ca2+]i rise followed by partial recovery, indicating the occurrence of Na(+)-Ca2+ exchanger working in reverse mode. In experiments on prolonged effects, ouabain, Na+o substitution, and bepridil all caused Ca2+o-dependent [Ca2+]i increase, showing a role for Na(+)-Ca2+ exchange in Ca2+ homeostasis. In addition, by comparing the effect of orthovanadate (affecting not only Ca2+ ATPase, but also Na(+)-K+ ATPase and, hence, Na(+)-Ca2+ exchange) to that of bepridil on [Ca2+]i, it was shown that Na(+)-Ca2+ exchange contributes to Ca2+ homeostasis. In electrophysiological experiments, no membrane potential variation was observed after bepridil treatment suggesting compensatory mechanisms for ion effects on cell membrane voltage, which also agrees with membrane potential stability after ouabain treatment. In conclusion, data indicate the presence of a Na(+)-Ca2+ exchanger in the plasma membrane of E. crassus, which is essential for Ca2+ homeostasis, but could also promote Ca2+ entry under specific conditions.  相似文献   

13.
Calcium-mediated cross-signaling between the dihydropyridine (DHP) receptor, ryanodine receptor, and Na(+)-Ca2+ exchanger was examined in single rat ventricular myocytes where the diffusion distance of Ca2+ was limited to < 50 nm by dialysis with high concentrations of Ca2+ buffers. Dialysis of the cell with 2 mM Ca(2+)- indicator dye, Fura-2, or 2 mM Fura-2 plus 14 mM EGTA decreased the magnitude of ICa-triggered intracellular Ca2+ transients (Cai-transients) from 500 to 20-100 nM and completely abolished contraction, even though the amount of Ca2+ released from the sarcoplasmic reticulum remained constant (approximately 140 microM). Inactivation kinetics of ICa in highly Ca(2+)-buffered cells was retarded when Ca2+ stores of the sarcoplasmic reticulum (SR) were depleted by caffeine applied 500 ms before activation of ICa, while inactivation was accelerated if caffeine- induced release coincided with the activation of ICa. Quantitative analysis of these data indicate that the rate of inactivation of ICa was linearly related to SR Ca(2+)-release and reduced by > 67% when release was absent. Thapsigargin, abolishing SR release, suppressed the effect of caffeine on the inactivation kinetics of ICa. Caffeine- triggered Ca(2+)-release, in the absence of Ca2+ entry through the Ca2+ channel (using Ba2+ as a charge carrier), caused rapid inactivation of the slowly decaying Ba2+ current. Since Ba2+ does not release Ca2+ but binds to Fura-2, it was possible to calibrate the fluorescence signals in terms of equivalent cation charge. Using this procedure, the amplification factor of ICa-induced Ca2+ release was found to be 17.6 +/- 1.1 (n = 4). The Na(+)-Ca2+ exchange current, activated by caffeine- induced Ca2+ release, was measured consistently in myocytes dialyzed with 0.2 but not with 2 mM Fura-2. Our results quantify Ca2+ signaling in cardiomyocytes and suggest the existence of a Ca2+ microdomain which includes the DHP/ ryanodine receptors complex, but excludes the Na(+)- Ca2+ exchanger. This microdomain appears to be fairly inaccessible to high concentrations of Ca2+ buffers.  相似文献   

14.
The kinetics of Na(+)-Ca2+ exchange current after a cytoplasmic Ca2+ concentration jump (achieved by photolysis of DM-nitrophen) was measured in excised giant membrane patches from guinea pig or rat heart. Increasing the cytoplasmic Ca2+ concentration from 0.5 microM in the presence of 100 mM extracellular Na+ elicits an inward current that rises with a time constant tau 1 < 50 microseconds and decays to a plateau with a time constant tau 2 = 0.65 +/- 0.18 ms (n = 101) at 21 degrees C. These current signals are suppressed by Ni2+ and dichlorobenzamil. No stationary current, but a transient inward current that rises with tau 1 < 50 microseconds and decays with tau 2 = 0.28 +/- 0.06 ms (n = 53, T = 21 degrees C) is observed if the Ca2+ concentration jump is performed under conditions that promote Ca(2+)-Ca2+ exchange (i.e., no extracellular Na+, 5 mM extracellular Ca2+). The transient and stationary inward current is not observed in the absence of extracellular Ca2+ and Na+. The application of alpha-chymotrypsin reveals the influence of the cytoplasmic regulatory Ca2+ binding site on Ca(2+)-Ca2+ and forward Na(+)-Ca2+ exchange and shows that this site regulates both the transient and stationary current. The temperature dependence of the stationary current exhibits an activation energy of 70 kj/mol for temperatures between 21 degrees C and 38 degrees C, and 138 kj/mol between 10 degrees C and 21 degrees C. For the decay time constant an activation energy of 70 kj/mol is observed in the Na(+)-Ca2+ and the Ca(2+)-Ca2+ exchange mode between 13 degrees C and 35 degrees C. The data indicate that partial reactions of the Na(+)-Ca2+ exchanger associated with Ca2+ binding and translocation are very fast at 35 degrees C, with relaxation time constants of about 6700 s-1 in the forward Na(+)-Ca2+ exchange and about 12,500 s-1 in the Ca(2+)-Ca2+ exchange mode and that net negative charge is moved during Ca2+ translocation. According to model calculations, the turnover number, however, has to be at least 2-4 times smaller than the decay rate of the transient current, and Na+ inward translocation appears to be slower than Ca2+ outward movement.  相似文献   

15.
Dan P  Lin E  Huang J  Biln P  Tibbits GF 《Biophysical journal》2007,93(7):2504-2518
Mechanisms of cardiac excitation-contraction coupling in neonates are still not clearly defined. Previous work in neonates shows reverse-mode Na(+)-Ca(2+) exchange to be the primary route of Ca(2+) entry during systole and the neonatal sarcoplasmic reticulum to have similar capability as that of adult in storing and releasing Ca(2+). We investigated Na(+)-Ca(2+) exchanger (NCX) and ryanodine receptor (RyR) distribution in developing ventricular myocytes using immunofluorescence, confocal microscopy, and digital image analysis. In neonates, both NCX and RyR clusters on the surface of the cell displayed a short longitudinal periodicity of approximately 0.7 microm. However, by adulthood, both proteins were also found in the interior. In the adult, clusters of NCX on the surface of the cell retained the approximately 0.7-microm periodicity whereas clusters of RyR adopted a longer longitudinal periodicity of approximately 2.0 microm. This suggests that neonatal myocytes also have a peri-M-line RyR distribution that is absent in adult myocytes. NCX and RyR colocalized voxel density was maximal in neonates and declined significantly with ontogeny. We conclude in newborns, Ca(2+) influx via NCX could potentially activate the dense network of peripheral Ca(2+) stores via peripheral couplings, evoking Ca(2+)-induced Ca(2+) release.  相似文献   

16.
The Na(+)-Ca(2+) exchanger (NCX) mediated Ca(2+) fluxes are essential for handling Ca(2+) homeostasis in many cell-types. Eukaryotic NCX variants contain regulatory CBD1 and CBD2 domains, whereas in distinct variants the Ca(2+) binding to Ca3-Ca4 sites of CBD1 results either in sustained activation, inhibition or no effect. CBD2 contains an alternatively spliced segment, which is expressed in a tissue-specific manner although its impact on allosteric regulation remains unclear. Recent studies revealed that the Ca(2+) binding to Ca3-Ca4 sites results in interdomain tethering of CBDs, which rigidifies CBDs movements with accompanied slow dissociation of "occluded" Ca(2+). Here we investigate the effects of CBD2 variants on Ca(2+) occlusion in the two-domain construct (CBD12). Mutational studies revealed that both sites (Ca3 and Ca4) contribute to Ca(2+) occlusion, whereas after dissociation of the first Ca(2+) ion the second Ca(2+) ion becomes occluded. This mechanism is common for the brain, kidney and cardiac splice variants of CBD12, although the occluded Ca(2+) exhibits 20-50-fold difference in off-rates among the tested variants. Therefore, the spliced exons on CBD2 affect the rate-limiting step of the occluded Ca(2+) dissociation at the primary regulatory sensor to shape dynamic features of allosteric regulation in NCX variants.  相似文献   

17.
18.
Palty R  Sekler I 《Cell calcium》2012,52(1):9-15
Powered by the steep mitochondrial membrane potential Ca(2+) permeates into the mitochondria via the Ca(2+) uniporter and is then extruded by a mitochondrial Na(+)/Ca(2+) exchanger. This mitochondrial Ca(2+) shuttling regulates the rate of ATP production and participates in cellular Ca(2+) signaling. Despite the fact that the exchanger was functionally identified 40 years ago its molecular identity remained a mystery. Early studies on isolated mitochondria and intact cells characterized the functional properties of a mitochondrial Na(+)/Ca(2+) exchanger, and showed that it possess unique functional fingerprints such as Li(+)/Ca(2+) exchange and that it is displaying selective sensitivity to inhibitors. Purification of mitochondria proteins combined with functional reconstitution led to the isolation of a polypeptide candidate of the exchanger but failed to molecularly identify it. A turning point in the search for the exchanger molecule came with the recent cloning of the last member of the Na(+)/Ca(2+) exchanger superfamily termed NCLX (Na(+)/Ca(2+)/Li(+) exchanger). NCLX is localized in the inner mitochondria membrane and its expression is linked to mitochondria Na(+)/Ca(2+) exchange matching the functional fingerprints of the putative mitochondrial Na(+)/Ca(2+) exchanger. Thus NCLX emerges as the long sought mitochondria Na(+)/Ca(2+) exchanger and provide a critical molecular handle to study mitochondrial Ca(2+) signaling and transport. Here we summarize some of the main topics related to the molecular properties of the Na(+)/Ca(2+) exchanger, beginning with the early days of its functional identification, its kinetic properties and regulation, and culminating in its molecular identification.  相似文献   

19.
The Na(+)/Ca(2+) exchanger, a major mechanism by which cells extrude calcium, is involved in several physiological and physiopathological interactions. In this work we have used the dialyzed squid giant axon to study the effects of two oxidants, SIN-1-buffered peroxynitrite and hydrogen peroxide (H(2)O(2)), on the Na(+)/Ca(2+) exchanger in the absence and presence of MgATP upregulation. The results show that oxidative stress induced by peroxynitrite and hydrogen peroxide inhibits the Na(+)/Ca(2+) exchanger by impairing the intracellular Ca(2+) (Ca(i)(2+))-regulatory sites, leaving unharmed the intracellular Na(+)- and Ca(2+)-transporting sites. This effect is efficiently counteracted by the presence of MgATP and by intracellular alkalinization, conditions that also protect H(i)(+) and (H(i)(+) + Na(i)(+)) inhibition of Ca(i)(2+)-regulatory sites. In addition, 1 mM intracellular EGTA reduces oxidant inhibition. However, once the effects of oxidants are installed they cannot be reversed by either MgATP or EGTA. These results have significant implications regarding the role of the Na(+)/Ca(2+) exchanger in response to pathological conditions leading to tissue ischemia-reperfusion and anoxia/reoxygenation; they concur with a marked reduction in ATP concentration, an increase in oxidant production, and a rise in intracellular Ca(2+) concentration that seems to be the main factor responsible for cell damage.  相似文献   

20.
The release of neurotransmitter from presynaptic terminals depends on an increase in the intracellular Ca2+ concentration ([Ca2+]i). In addition to the opening of presynaptic Ca2+ channels during excitation, other Ca2+ transport systems may be involved in changes in [Ca2+]i. We have studied the regulation of [Ca2+]i in nerve terminals of hippocampal cells in culture by the Na(+)-Ca2+ exchanger and by mitochondria. In addition, we have measured changes in the frequency of spontaneous excitatory postsynaptic currents (sEPSC) before and after the inhibition of the exchanger and of mitochondrial metabolism. We found rather heterogeneous [Ca2+]i responses of individual presynaptic terminals after inhibition of Na(+)-Ca2+ exchange. The increase in [Ca2+]i became more uniform and much larger after additional treatment of the cells with mitochondrial inhibitors. Correspondingly, sEPSC frequencies changed very little when only Na(+)-Ca2+ exchange was inhibited, but increased dramatically after additional inhibition of mitochondria. Our results provide evidence for prominent roles of Na(+)-Ca2+ exchange and mitochondria in presynaptic Ca2+ regulation and spontaneous glutamate release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号