首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been shown previously that in vitro renin secretion is inhibited by partial replacement of extracellular NaCl with either mannitol or choline chloride; the inhibitory effect is attributed to an increase in intracellular Ca, resulting from a decreased rate of Ca efflux via Na-Ca exchange. In the present experiments, we confirmed that partially replacing NaCl with choline chloride inhibited renin secretion from rat renal cortical slices, but we found that atropine completely blocked the effect, suggesting cholinergic mediation. Partially replacing NaCl with mannitol also inhibited renin secretion, but the effect could not be attributed specifically to a reduction in extracellular Na. Moreover, the stimulatory effect of Ca chelation on renin secretion was antagonized by either mannitol- or choline chloride -containing incubation media. These results do not support the hypothesis that lowering extracellular Na inhibits renin secretion by a mechanism involving decreased Ca efflux via Na-Ca exchange.  相似文献   

2.
The Drosophila genome contains at least three loci for the Na,K-ATPase β-subunit; however, only the protein products of nrv1 and nrv2 have been characterized hitherto. Here, we provide evidence that nrv3 also encodes for a functional Na,K-ATPase β-subunit, as its protein product co-precipitates with the Na,K-ATPase α-subunit. Nrv3 expression in adult flies is restricted to the nervous system in which Nrv3 is enriched in selective types of sensory cells. Because Nrv3 expression is especially prominent in the compound eye, we have analyzed the subcellular and developmental distribution of Nrv3 within the visual cells and related this distribution to those of the α-subunit and of the β-subunits Nrv1 and Nrv2. Prospective visual cells express Nrv2 in the third larval instar stage and during the first half of pupal development. During the last third of pupal life, Nrv3 gradually replaces Nrv2 as the Na,K-ATPase β-subunit in the photoreceptor cells. Adult photoreceptors express Nrv3 as their major β-subunit; the visual cells R1–R6 co-express Nrv2 at a low level, whereas R7 and R8 co-express Nrv1. Notably, β-subunits do not co-distribute exactly with the α-subunit at some developmental stages, supporting the concept that the α-subunit and β-subunit can exist in the plasma membrane without being engaged in α/β heterodimers. The non-visual cells within the compound eye express almost exclusively Nrv2, which segregates together with the α-subunit to septate junctions throughout development.  相似文献   

3.
Summary Recent studies in hepatocytes indicate that Na+-coupled HCO 3 transport contributes importantly, to regulation of intracellular pH and membrane HCO 3 transport. However, the direction of net coupled Na+ and HCO 3 movement and the effect of HCO 3 on Na+ turnover and Na+/K+ pump activity are not known. In these studies, the effect of HCO 3 on Na+ influx and turnover were measured in primary rat hepatocyte cultures with22Na+, and [Na+] i was measured in single hepatocytes using the Na+-sensitive fluorochrome SBFI. Na+/K+ pump activity was measured in intact perfused rat liver and hepatocyte monolayers as Na+-dependent or ouabain-suppressible86Rb uptake, and was measured in single hepatocytes as the effect of transient pump inhibition by removal of extracellular K+ on membrane potential difference (PD) and [Na+] i . In hepatocyte monolayers, HCO 3 increased22Na+ entry and turnover rates by 50–65%, without measurably altering22Na+ pool size or cell volume, and HCO 3 also increased Na+/K+ pump activity by 70%. In single cells, exposure to HCO 3 produced an abrupt and sustained rise in [Na+] i , from 8 to 12mm. Na+/K+ pump activity assessed in single cells by PD excursions during transient K+ removal increased 2.5-fold in the presence of HCO 3 , and the rise in [Na+] i produced by inhibition of the Na+/K+ pump was similarly increased 2.5-fold in the presence of HCO 3 . In intact perfused rat liver, HCO 3 increased both Na+/K+ pump activity and O2 consumption. These findings indicate that, in hepatocytes, net coupled Na+ and HCO 3 movement is inward and represents a major determinant of Na+ influx and Na+/K+ pump activity. About half of hepatic Na+/K+ pump activity appears dedicated to recycling Na+ entering in conjunction with HCO 3 to maintain [Na+] i within the physiologic range.  相似文献   

4.
Using immunoelectron microscopy and isoform-specific antibodies against Na,K-ATPase to study changes in Na,K-ATPase in rat erythroblastic cells during maturation, we unexpectedly observed numerous antigenic sites against the 3-isoform in the cytoplasmic phase. There was an increase in the number of 3-isoforms after denucleation of the erythroblast. The increase was transient. As the reticulocyte matured into a red blood cell, the number of 3-isoforms was reduced drastically. This 3-isoform was distributed in a reticular pattern resembling the double layers of endoplasmic reticulum. Western blot analysis confirms the presence of the 3-isoform in these cells. X-ray microanalysis of the erythroid series of cells in the bone marrow shows that sodium concentration in the young reticulocyte is higher than that in the nucleated erythroblast. The reason for the transient increase in this pump p rotein is not clear. It is possible that the increase in sodium concentration in the reticulocyte plays a role in the increase in pump protein synthesis.  相似文献   

5.
Previous studies showed that adverse effect of ionizing radiation on the cardiovascular system is beside other factors mostly mediated by reactive oxygen and nitrogen species, which deplete antioxidant stores. One of the structures highly sensitive to radicals is the Na,K-ATPase the main system responsible for extrusion of superfluous Na+ out of the cell which utilizes the energy derived from ATP. The aim of present study was the investigation of functional properties of cardiac Na,K-ATPase in 20-week-old male rats 6 weeks after γ-irradiation by a dose 25 Gy (IR). Irradiation induced decrease of systolic blood pressure from 133 in controls to 85 mmHg in IR group together with hypertrophy of right ventricle (RV) and hypotrophy of left ventricle (LV). When activating the cardiac Na,K-ATPase with substrate, its activity was lower in IR in the whole concentration range of ATP. Evaluation of kinetic parameters revealed a decrease of the maximum velocity (V max) by 40 % with no changes in the value of Michaelis–Menten constant (K m). During activation with Na+, we observed a decrease of the enzyme activity in hearts from IR at all tested Na+ concentrations. The value of V max decreased by 38 %, and the concentration of Na+ that gives half maximal reaction velocity (K Na) increased by 62 %. This impairment in the affinity of the Na+-binding site together with decreased number of active Na,K-ATPase molecules, as indicated by lowered V max values, are probably responsible for the deteriorated efflux of the excessive Na+ from the intracellular space in hearts of irradiated rats.  相似文献   

6.
The Na,K-ATPase is composed of multiple isoforms and the isoform distribution varies with the tissue and during development. The α1 isoform for example, is the major isoform in the kidney and many other tissues, while the α2 isoform is the predominate one in skeletal muscle. All three isoforms are found in the brain although in adult rodent brain, the α3 isoform is located essentially in neurons while the α2 isoform is found in astrocytes and some limited neuronal populations. Interestingly the α4 isoform is found exclusively in the mid region of the sperm tail. The distribution of the isoforms of the Na,K-ATPase has been extensively studied in many tissues and during development. The examples cited above provide some indication to the diversity of Na,K-ATPase isoform expression. In order to understand the significance of this distribution, we have developed animals which lack the α1, α2, and α3 isoforms. It is anticipated that these studies will provide insight into the role that these isoforms play in driving various biological processes in specific tissues. Here we describe some of our studies which deal with the behavioral aspects of the α1, α2, and α3 deficient mice, particularly those that are haploinsufficient in one isoform i.e. lacking one functional gene for the α1, α2, or α3 isoforms. Such studies are important as two human diseases are associated with deficiency in the α2 and α3 isoforms. These are Familial Hemiplegic Migraine type 2 and Rapid-Onset Dystonia Parkinsonism, these diseases result from α2 and α3 isoform haploinsufficiency, respectively. We find that the haploinsufficiency of both α2 and α3 isoforms result in behavioral defects.  相似文献   

7.
In the present study, a possible sertraline action on cerebral pre-synaptic Na(+) channels was investigated. For this purpose, the effect of sertraline on responses induced by the Na(+) channel opener, veratridine, namely the increase in Na(+) and in neurotransmitter release in hippocampus-isolated nerve endings was investigated. Results show that sertraline in the low μM range (1.5-25?μM) progressively inhibits the rise in Na(+) and the release of pre-loaded [(3) H]Glu as well as the release of endogenous 5-HT, Glu and GABA (detected by HPLC) induced by veratridine depolarization either under external Ca(2+) -free conditions or in the presence of external Ca(2+) . In addition, under non-depolarized conditions, sertraline (25 μM) increased the external concentration of 5-HT at expense of its internal concentration, and unchanged the external and internal concentrations of the amino acid neurotransmitters and of the 5-HT main metabolite, 5-HIAA. This result is consistent with the sertraline inhibitory action of the serotonin transporter. However, sertraline is unlikely to inhibit pre-synaptic Na(+) channels permeability by increasing external 5-HT. Because 5-HT in a wide concentration range (1-1000 μM) did not change the veratridine-induced increase in Na(+) . In summary, present findings demonstrate that besides the inhibition of 5-HT reuptake, sertraline is an effective inhibitor of pre-synaptic Na(+) channels controlling neurotransmitter release.  相似文献   

8.
9.
Summary Bicarbonate presence in the bathing media doubles Na+ and fluid transepithelial transport and in parallel significantly increases Na+ and Cl intracellular concentrations and contents, decreases K+ cell concentration without changing its amount, and causes a large cell swelling. Na+ and Cl lumen-to-cell influxes are significantly enhanced, Na+ more so than Cl. The stimulation does not raise any immediate change in luminal membrane potential and cannot be due to a HCO 3 -ATPase in the brush border. The stimulation goes together with a large increase in a Na+-dependent H+ secretion into the lumen. All of these data suggests that HCO 3 both activates Na+–Cl cotransport and H+–Na+ countertransport at the luminal barrier.Thiocyanate inhibits Na+ and fluid transepithelial transport without affecting H+ secretion and HCO 3 -dependent Na+ influx. It reduces Na+ and Cl concentrations and contents, increases the same parameters for K+, causes a cell shrinking, and abolishes the lumen-to-cell Cl influx. It enters the cell and is accumulated in the cytoplasm with a process which is Na+-dependent and HCO 3 -activated. Thus, SCN is likely to compete for the Cl site on the cotransport carrier and to be slowly transferred by the cotransport system itself.  相似文献   

10.
As a pivotal player in regulating sodium (Na+) and calcium (Ca2+) homeostasis and signalling in excitable cells, the Na+/Ca2+ exchanger (NCX) is involved in many neurodegenerative disorders in which an imbalance of intracellular Ca2+ and/or Na+ concentrations occurs, including Alzheimer’s disease (AD). Although NCX has been mainly implicated in neuroprotective mechanisms counteracting Ca2+ dysregulation, several studies highlighted its role in the neuronal responses to intracellular Na+ elevation occurring in several pathophysiological conditions. Since the alteration of Na+ and Ca2+ homeostasis significantly contributes to synaptic dysfunction and neuronal loss in AD, it is of crucial importance to analyze the contribution of NCX isoforms in the homeostatic responses at neuronal and synaptic levels. Some studies found that an increase of NCX activity in brains of AD patients was correlated with neuronal survival, while other research groups found that protein levels of two NCX subtypes, NCX2 and NCX3, were modulated in parietal cortex of late stage AD brains. In particular, NCX2 positive synaptic terminals were increased in AD cohort while the number of NCX3 positive terminals were reduced. In addition, NCX1, NCX2 and NCX3 isoforms were up-regulated in those synaptic terminals accumulating amyloid-beta (Aβ), the neurotoxic peptide responsible for AD neurodegeneration. More recently, the hyperfunction of a specific NCX subtype, NCX3, has been shown to delay endoplasmic reticulum stress and apoptotic neuronal death in hippocampal neurons exposed to Aβ insult. Despite some issues about the functional role of NCX in synaptic failure and neuronal loss require further studies, these findings highlight the putative neuroprotective role of NCX in AD and open new strategies to develop new druggable targets for AD therapy.  相似文献   

11.
Functional evidence of Na+–glucose cotransport in rat lung has been provided by Basset et al. (J. Physiol. 384:325–345, 1987). By autoradiography [3H]phloridzin binding has been found confined to alveolar epithelial type II cells in mouse and rabbit lungs (Boyd, J. Physiol. 422: 44P, 1990). In this research we checked by immunofluorescence whether Na+–glucose cotransporter (SGLT1) is also expressed in alveolar type I cells. Lungs of anesthetized rats and lambs were fixed by paraformaldehyde, perfused in pulmonary artery, or instilled into a bronchus, respectively. Tissue blocks embedded in paraffin or frozen were sectioned. Two specific anti-SGLT1 antibodies for rat recognizing aminoacid sequence 402–420, and 546–596 were used in both species. Bound primary antibody was detected by secondary antibody conjugated to fluorescein isothiocianate or Texas red, respectively. In some sections cellular nuclei were also stained. In rats alveolar type I cells were identified by fluorescent Erythrina cristagalli lectin. Sections were examined by confocal laser-scanning microscope. Both in rats and lambs alveolar epithelium was stained by either antibody; no labeling occurred in negative controls. Hence, SGLT1 appears to be also expressed in alveolar type I cells. This is functionally relevant because type I cells provide 95–97% of alveolar surface, and SGLT1, besides contributing to removal of lung liquid under some circumstances, keeps low glucose concentration in lining liquid, which is useful to prevent lung infection.  相似文献   

12.
Summary We investigated intracellular pH (pH i ) regulation in cultured human ciliary muscle cells by means of the pH-sensitive absorbance of 5(and 6)-carboxy-4,5-dimethylfluorescein (CDMF). The steady-state pH i was 7.09±0.04 (n = 12) in CO2/ HCO 3 -buffered and 6.86±0.03 (n = 12) in HEPES-buffered solution. Removal of extracellular sodium for 6 min acidified the cells by 1.11±0.06 pH units (n = 12) in the presence of CO2/ HCO 3 and by 0.91±0.05 pH units (n = 8) in its absence. Readdition of external sodium resulted in a rapid pH i recovery, which was almost completely amiloride-sensitive in the absence of CO2/ HCO 3 but only slightly influenced by amiloride in its presence. Application of DIDS under steady-state conditions significantly acidified the ciliary muscle cells by 0.25±0.02 (n = 4) in 6 min, while amiloride had no effect. The pH i recovery after an intracellular acid load was completely dependent on extracellular sodium. In HEPES-buffered solution the pH i recovery was almost completely mediated by Na+/H+ exchange, since it was blocked by amiloride (1 mmol/liter). In contrast, a marked amilorideinsensitive pH i recovery was observed in CO2/HCO 3 -buffered solution which was mediated by chloride-independent and chloride-dependent Na+ HCO 3 cotransport. This recovery, inhibited by DIDS (0.2 mmol/liter). was also observed if the cells were preincubated in chloride-free solution for 4 hr. Analysis of the sodium dependence of the pH i recovery after NH4Cl prepulse revealed V max = 0.57 pH units/min, K m= 39.7 mmol/liter extracellular sodium for the amiloride-sensitive component and V max = 0.19 pH units/min, K m= 14.3 mmol/liter extracellular sodium for the arniloride-insensitive component. We conclude that Na+/H+ exchange and chloride-independent and chloride-dependent Na+HCO 3 cotransport are involved in the pH i regulation of cultured human ciliary muscle cells.The expert technical assistance of Astrid Krolik is gratefully acknowledged. This work was supported by the Deutsche Forschungsgemeinschaft grant DFG Wi 328/11.  相似文献   

13.
Hans Komnick 《Protoplasma》1962,55(2):414-418
Ohne Zusammenfassung  相似文献   

14.
We have studied ouabain-resistant, external sodium-stimulated, lithium efflux (LiNa countertransport) in red blood cells from 21 borderline hypertensives with at least one hypertensive first degree relative (BH-F), 19 borderline hypertensives without family history of essential hypertension (BH-NF), and 35 age-matched normotensive subjects. The data indicate the finding of an increased LiNa countertransport in all BH (F+NF), but with a significant overlap between BH values and control ones: LiNa countertransport is significantly higher only in BH-F but it is normal in BH-NF. Moreover, there is a significant correlation of LiNa countertransport to total peripheral resistance but not to mean blood pressure in all hypertensive patients. It is suggested that in BH the increase of erythrocyte Na flux is mediated by the NaNa exchange diffusion, and its abnormality may be associated to the hereditary trait of essential hypertension rather than the high blood pressure per se, probably resulting in the development of hypertension, through the increased vascular smooth muscle tone.  相似文献   

15.
BackgroundFifty-five percent of individuals with HLA-B*57:01 exposed to the antiretroviral drug abacavir develop a hypersensitivity reaction (HSR) that has been attributed to naïve T-cell responses to neo-antigen generated by the drug. Immunologically confirmed abacavir HSR can manifest clinically in less than 48 hours following first exposure suggesting that, at least in some cases, abacavir HSR is due to re-stimulation of a pre-existing memory T-cell population rather than priming of a high frequency naïve T-cell population.MethodsTo determine whether a pre-existing abacavir reactive memory T-cell population contributes to early abacavir HSR symptoms, we studied the abacavir specific naïve or memory T-cell response using HLA-B*57:01 positive HSR patients or healthy controls using ELISpot assay, intra-cellular cytokine staining and tetramer labelling.ResultsAbacavir reactive CD8+ T-cell responses were detected in vitro in one hundred percent of abacavir unexposed HLA-B*57:01 positive healthy donors. Abacavir-specific CD8+ T cells from such donors can be expanded from sorted memory, and sorted naïve, CD8+ T cells without need for autologous CD4+ T cells.ConclusionsWe propose that these pre-existing abacavir-reactive memory CD8+ T-cell responses must have been primed by earlier exposure to another foreign antigen and that these T cells cross-react with an abacavir-HLA-B*57:01-endogenous peptide ligand complex, in keeping with the model of heterologous immunity proposed in transplant rejection.  相似文献   

16.
We have previously demonstrated that Na+, K+-ATPase activity is present in both differentiated plasma membranes from Electrophorus electricus (L.) electrocyte. Considering that the α subunit is responsible for the catalytic properties of the enzyme, the aim of this work was to study the presence and localization of α isoforms (α1 and α2) in the electrocyte. Dose-response curves showed that non-innervated membranes present a Na+, K+-ATPase activity 2.6-fold more sensitive to ouabain (I50=1.0±0.1 μM) than the activity of innervated membranes (I50=2.6±0.2 μM). As depicted in [3H]ouabain binding experiments, when the [3H]ouabain-enzyme complex was incubated in a medium containing unlabeled ouabain, reversal of binding occurred differently: the bound inhibitor dissociated 32% from Na+, K+-ATPase in non-innervated membrane fractions within 1 h, while about 50% of the ouabain bound to the enzyme in innervated membrane fractions was released in the same time. These data are consistent with the distribution of α1 and α2 isoforms, restricted to the innervated and non-innervated membrane faces, respectively, as demonstrated by Western blotting from membrane fractions and immunohistochemical analysis of the main electric organ. The results provide direct evidence for a distinct distribution of Na+, K+-ATPase α-subunit isoforms in the differentiated membrane faces of the electrocyte, a characteristic not yet described for any polarized cell.  相似文献   

17.
Recent studies suggest that at low concentrations, ouabain increases Na–K ATPase and NHE1 activity and activates the Src signaling cascade in proximal tubule cells. Our laboratory demonstrated that low concentrations of ouabain increase blood pressure in rats. We hypothesize that ouabain-induced increase in blood pressure and Na–K ATPase activity requires NHE1 activity and association. To test this hypothesis we treated rats with ouabain (1 μg kg body wt− 1 day− 1) for 9 days in the presence or absence of the NHE1 inhibitor, zoniporide. Ouabain stimulated a significant increase in blood pressure which was prevented by zoniporide. Using NHE1-expressing Human Kidney cells 2 (HK2), 8 (HK8) and 11 (HK11) and Mouse Kidney cells from Wild type (WT) and NHE1 knock-out mice (SWE) cell lines, we show that ouabain stimulated Na–K ATPase activity and surface expression in a Src-dependent manner in NHE1-expressing cells but not in NHE1-deplete cells. Zoniporide prevented ouabain-induced stimulation of 86Rb uptake in the NHE1-expressing cells. FRET and TIRF microscopy showed that ouabain increased association between GFP-NHE1 and mCherry-Na–K ATPase transfected into NHE1-deficient SWE cells. Mutational analysis demonstrated that the caveolin binding motif (CBM) of Na–K ATPase α1 is required for translocation of both Na–K ATPase α1 and NHE1 to the basolateral membrane. Mutations in activity or scaffold domains of NHE1 resulted in loss of ouabain-mediated regulation of Na–K ATPase. These results support that NHE1 is required for the ouabain-induced increase in blood pressure, and that the caveolin binding motif of Na–K ATPase α1 as well as the activity and scaffolding domains of NHE1 are required for their functional association.  相似文献   

18.
Na+ strongly promoted HCO3 transport in Anabaena variabilis. The effect was highly specific to this cation. Kinetic analysis indicated a progressive decrease in the Km (HCO3) of the transport system with increasing Na+ concentration. Vmax was also affected. We raise the possibility that the transport is a Na+-HCO3 symport; alternatively, that a Na+-H+ antiport (or Na+-OH+ symport) system mediates the efflux of the OH ions derived from the entering HCO3 ions, and that this antiport can rate-limit HCO3 influx.  相似文献   

19.
Abstract

We report results of molecular dynamics simulations of the limiting conductance of Na2+, Cl2?, Na°, and Cl° in supercritical water using the SPC/E model for water in conjuction with our previous study (Lee et al., Chem. Phys. Lett. 293, 289 (1998)). The behavior of the limiting conductances of Na2+ and Cl2? in the whole range of water density shows almost the same trend as those of Na+ and Cl?, but the deviation from the assumed linear dependence of limiting conductances of Na2+ and Cl2? on the water density is smaller than that of Na+ and Cl?. The ratio of the limiting conductance of the divalentions to that of the corresponding monovalentions over the whole range of water density is almost constant. In the cases of Na2+ and Cl2?, the dominating factor of the number of hydration water molecules around ions in the higher-density region and the dominating factor of the interaction strength between the ions and the hydration water molecules in the lower-density region are also found as was the cases for Na+ and Cl?. These factors, however, are not so strong as for the corresponding monovalent ions because the change in the energetics, structure, and dynamics are very small mainly due to the strong Coulomb interaction of the divalent ions with the hydration water molecules. The diffusion coefficient of Na° and Cl° monotonically increases with decreasing water density over the whole range of water density. The increase of the diffusion coefficient with decreasing water density is attributed only to the dramatic decrease of the hydration number of water in the first solvation shell around the uncharged species. Among the two important competing factors in the limiting conductance of Na+ and Cl?, the effect of the number of hydration water molecules around the uncharged species is the only existing factor over the whole range of water density since the interaction strength between the uncharged species and the hydration water molecules very small through the LJ interaction. This result has confirmed the dominating factor of the number of hydration water molecules around ions in the higher-density region in the explanation of the limiting conductance of Na+ and Cl? in supercritical water at 673 K.  相似文献   

20.
The ATP hydrolysis dependent Na+-Na+ exchange of reconstituted shark (Na+ + K+)-ATPase is electrogenic with a transport stoichiometry as for the Na+-K+ exchange, suggesting that translocation of extracellular Na+ is taking place via the same route as extracellular K+. The preparation thus offers an opportunity to compare the sided action of Na+ and of K+ on the affinity for ATP in a reaction in which the intermediary steps in the overall reaction seems to be the same without and with K+. With Na+ but no K+ on the two sides of the enzyme, the ATP-activation curve is hyperbolic and the affinity for ATP is high. Extracellular K+ in concentrations of 50 μM (the lowest tested) and up gives biphasic ATP activation curves, with both a high- and a low-affinity component for ATP. Cytoplasmic K+ also gives biphasic ATP-activation curves, however, only when the K+ concentration is 50 mM or higher (Na+ + K+ = 130 mM). The different ATP-activation curves are explained from the Albers-Post scheme, in which there is an ATP-dependent and an ATP-independent deocclusion of E2(Na2+) and E2(K2+), respectively, and in which the dephosphorylation of E2-P is rate limiting in the presence of Na+ (but no K+) extracellular, whereas in the presence of extracellular K+ it is the deocclusion of E2(K2+) which is rate limiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号