首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The mouse homeobox gene Gbx2 is first expressed throughout the posterior region of the embryo during gastrulation, and becomes restricted to rhombomeres 1-3 (r1-3) by embryonic day 8.5 (E8.5). Previous studies have shown that r1-3 do not develop in Gbx2 mutants and that there is an early caudal expansion of the midbrain gene Otx2 to the anterior border of r4. Furthermore, expression of Wnt1 and Fgf8, two crucial components of the isthmic organizer, is no longer segregated to adjacent domains in Gbx2 mutants. In this study, we extend the phenotypic analysis of Gbx2 mutants by showing that Gbx2 is not only required for development of r1-3, but also for normal gene expression in r4-6. To determine whether Gbx2 can alter hindbrain development, we generated Hoxb1-Gbx2 (HG) transgenic mice in which Gbx2 is ectopically expressed in r4. We show that Gbx2 is not sufficient to induce r1-3 development in r4. To test whether an Otx2/Gbx2 interface can induce r1-3 development, we introduced the HG transgene onto a Gbx2-null mutant background and recreated a new Otx2/Gbx2 border in the anterior hindbrain. Development of r3, but not r1 and r2, is rescued in Gbx2-/-; HG embryos. In addition, the normal spatial relationship of Wnt1 and Fgf8 is established at the new Otx2/Gbx2 border, demonstrating that an interaction between Otx2 and Gbx2 is sufficient to produce the normal pattern of Wnt1 and Fgf8 expression. However, the expression domains of Fgf8 and Spry1, a downstream target of Fgf8, are greatly reduced in mid/hindbrain junction area of Gbx2-/-; HG embryos and the posterior midbrain is truncated because of abnormal cell death. Interestingly, we show that increased cell death and a partial loss of the midbrain are associated with increased expression of Fgf8 and Spry1 in Gbx2 conditional mutants that lack Gbx2 in r1 after E9.0. These results together suggest that cell survival in the posterior midbrain is positively or negatively regulated by Fgf8, depending on Fgf8 expression level. Our studies provide new insights into the regulatory interactions that maintain isthmic organizer gene expression and the consequences of altered levels of organizer gene expression on cell survival.  相似文献   

3.
In order to identify molecular mechanisms involved in striatal development, we employed a subtraction cloning strategy to enrich for genes expressed in the lateral versus the medial ganglionic eminence. Using this approach, the homeobox gene Meis2 was found highly expressed in the lateral ganglionic eminence and developing striatum. Since Meis2 has recently been shown to be upregulated by retinoic acid in P19 EC cells (Oulad-Abdelghani, M., Chazaud, C., Bouillet, P., Sapin, V., Chambon, P. and Dollé, P. (1997) Dev. Dyn. 210, 173-183), we examined a potential role for retinoids in striatal development. Our results demonstrate that the lateral ganglionic eminence, unlike its medial counterpart or the adjacent cerebral cortex, is a localized source of retinoids. Interestingly, glia (likely radial glia) in the lateral ganglionic eminence appear to be a major source of retinoids. Thus, as lateral ganglionic eminence cells migrate along radial glial fibers into the developing striatum, retinoids from these glial cells could exert an effect on striatal neuron differentiation. Indeed, the treatment of lateral ganglionic eminence cells with retinoic acid or agonists for the retinoic acid receptors or retinoid X receptors, specifically enhances their striatal neuron characteristics. These findings, therefore, strongly support the notion that local retinoid signalling within the lateral ganglionic eminence regulates striatal neuron differentiation.  相似文献   

4.
Origin, timing and direction of neuronal migration during brain development determine the distinct organization of adult structures. Changes in these processes might have driven the evolution of the forebrain in vertebrates. GABAergic neurons originate from the ganglionic eminence in mammals and migrate tangentially to the cortex. We are interested in differences and similarities in tangential migration patterns across corresponding telencephalic territories in mammals and reptiles. Using morphological criteria and expression patterns of Darpp-32, Tbr1, Nkx2.1 and Pax6 genes, we show in slice cultures of turtle embryos that early cohorts of tangentially migrating cells are released from the medial ganglionic eminence between stages 14 and 18. Additional populations migrate tangentially from the dorsal subpallium. Large cohorts of tangentially migrating neurons originate ventral to the dorsal ventricular ridge at stage 14 and from the lateral ganglionic eminence from stage 15. Release of GABAergic cells from these regions was investigated further in explant cultures. Tangential migration in turtle proceeds in a fashion similar to mammals. In chimeric slice culture and in ovo graft experiments, the tangentially migrating cells behaved according to the host environment - turtle cells responded to the available cues in mouse slices and mouse cells assumed characteristic migratory routes in turtle brains, indicating highly conserved embryonic signals between these distant species. Our study contributes to the evaluation of theories on the origin of the dorsal cortex and indicates that tangential migration is universal in mammals and sauropsids.  相似文献   

5.
The development of the progenitor zones in the pallium, lateral ganglionic eminence (LGE) and medial ganglionic eminence (MGE) in the subpallium has been well studied; however, so far the role of the caudal ganglionic eminence (CGE), a posterior subpallial domain, in telencephalon patterning remains poorly understood. COUP-TFII, an orphan nuclear receptor, is preferentially expressed in the CGE. We generated COUP-TFII mouse mutants, using Rx-Cre (RxCre;COUP-TFII(F/F)), to study its function in telencephalon development. In these mutants, we found severe defects in the formation of the amygdala complex, including the lateral (LA), basolateral (BLA) and basomedial (BMA) amygdala nuclei. Molecular analysis provided evidence that the migration of CGE-derived Pax6(+) cells failed to settle into the BMA nucleus, owing to reduced expression of neuropilin 1 (Nrp1) and Nrp2, two semaphorin receptors that regulate neuronal cell migration and axon guidance. Our ChIP assays revealed that Nrp1 and Nrp2 genes are the direct targets of COUP-TFII in the telencephalon in vivo. Furthermore, our results showed that the coordinated development between the CGE originated subpallial population (Pax6(+) cells) and pallial populations (Tbr1(+) and Lhx2(+) cells) was essential for patterning the amygdala assembly. Our study presented novel genetic evidence that the caudal ganglionic eminence, a distinct subpallial progenitor zone, contributes cells to the basal telencephalon, such as the BMA nucleus.  相似文献   

6.
Gbx2 homeobox genes are important for formation and function of the midbrain/hindbrain boundary, namely the isthmic organizer. Two Gbx2 genes were identified in Xenopus laevis, differing in 13 amino acids, including a change in the homeodomain. Xgbx2a is activated earlier during gastrulation and reaches higher levels of expression while Xgbx2b is expressed later, at lower levels and has an additional domain in the ventral blood islands. Their overexpression results in microcephalic embryos with shortened axes and defects in brain and notochord formation. Both genes encode functionally homologous proteins, which differ primarily in their temporal and spatial expression patterns.  相似文献   

7.
8.
9.
In vertebrates, the common expression border of two homeobox genes, Otx2 and Gbx2, demarcates the prospective midbrain-hindbrain border (MHB) in the neural plate at the end of gastrulation. The presence of a compartment boundary at the MHB has been demonstrated, but the mechanism and timing of its formation remain unclear. We show by genetic inducible fate mapping using a Gbx2(CreER) knock-in mouse line that descendants of Gbx2(+) cells as early as embryonic day (E) 7.5 do not cross the MHB. Without Gbx2, hindbrain-born cells abnormally populate the entire midbrain, demonstrating that Gbx2 is essential for specifying hindbrain fate. Gbx2(+) and Otx2(+) cells segregate from each other, suggesting that mutually exclusive expression of Otx2 and Gbx2 in midbrain and hindbrain progenitors is responsible for cell sorting in establishing the MHB. The MHB organizer gene Fgf8, which is expressed as a sharp transverse band immediately posterior to the lineage boundary at the MHB, is crucial in maintaining the lineage-restricted boundary after E7.5. Partial deletion of Fgf8 disrupts MHB lineage separation. Activation of FGF pathways has a cell-autonomous effect on cell sorting in midbrain progenitors. Therefore, Fgf8 from the MHB may signal the nearby mesencephalic cells to impart distinct cell surface characteristics or induce local cell-cell signaling, which consequently prevents cell movements across the MHB. Our findings reveal the distinct function of Gbx2 and Fgf8 in a stepwise process in the development of the compartment boundary at the MHB and that Fgf8, in addition to its organizer function, plays a crucial role in maintaining the lineage boundary at the MHB by restricting cell movement.  相似文献   

10.
11.
Gbx2 is a homeobox gene that plays a crucial role in positioning the mid/hindbrain organizer (isthmus), which regulates midbrain and cerebellar development primarily through the secreted factor FGF8. In Gbx2 null homozygotes, rhombomeres (r) 1-3 fail to develop and the isthmic expression of Fgf8 is reduced and disorganized. These mutants fail to form a cerebellum, as it is derived from r1. Here, we analyze mice homozygous for a Gbx2 hypomorphic allele (Gbx2(neo)). Quantitative RT-PCR and RNA in situ analyses indicate that the presence of a neo-resistance cassette impairs normal Gbx2 splicing thus reducing wild-type Gbx2 mRNA levels to 6-10% of normal levels in all domains and stages examined. In Gbx2 hypomorphic mutants, gene marker and neuronal patterning analyses indicate that reduced Gbx2 expression is sufficient to support the development of r3 but not r2. The posterior region of r1, from which the lateral cerebellum develops, is unaffected in these mutants. However, the anterior region of r1 is converted to an isthmus-like tissue. Hence, instead of expressing r1 markers, this region displays robust expression of Fgf8 and Fgf17, as well as the downstream FGF targets Spry1 and Spry4. Additionally, we demonstrate that the cell division regulator cyclin D2 is downregulated, and that cellular proliferation is reduced in both the normal isthmus and in the mutant anterior r1. As a result of this transformation, the cerebellar midline fails to form. Thus, our studies demonstrate different threshold requirements for the level of Gbx2 gene product in different regions of the hindbrain.  相似文献   

12.
13.
Regional patterning in the developing mammalian brain is partially regulated by restricted gene expression patterns within the germinal zone, which is composed of stem cells and their progenitor cell progeny. Whether or not neural stem cells, which are considered at the top of the neural lineage hierarchy, are regionally specified remains unknown. Here we show that the cardinal properties of neural stem cells (self-renewal and multipotentiality) are conserved among embryonic cortex, ganglionic eminence and midbrain/hindbrain, but that these different stem cells express separate molecular markers of regional identity in vitro, even after passaging. Neural stem cell progeny derived from ganglionic eminence but not from other regions are specified to respond to local environmental cues to migrate ventrolaterally, when initially deposited on the germinal layer of ganglionic eminence in organotypic slice cultures. Cues exclusively from the ventral forebrain in a 5 day co-culture paradigm could induce both early onset and late onset marker gene expression of regional identity in neural stem cell colonies derived from both the dorsal and ventral forebrain as well as from the midbrain/hindbrain. Thus, neural stem cells and their progeny are regionally specified in the developing brain, but this regional identity can be altered by local inductive cues.  相似文献   

14.
Cortical interneurons are born in the proliferative zones of the ganglionic eminences in the subpallium and migrate to the developing cortex along well-defined tangential routes. The mechanisms regulating interneuron migration are not completely understood. Here we examine the role of class-A members of the Eph/ephrin system in directing the migration of interneurons. In situ hybridizations demonstrated that ephrin A3 is expressed in the developing striatum, an area that is strictly avoided by migrating cortical interneurons in vivo, which express the EphA4 receptor. We then examined interneuron migration in grafting experiments, where explants of the medial ganglionic eminence (MGE) from enhanced green fluorescent protein-expressing transgenic mice were homotopically grafted into host slices from wild-type littermate embryos. After blocking ephrin-A ligands, many interneurons invaded the striatal anlage. Moreover, stripe assay experiments revealed that ephrin-A3 acts as a repellent cue for neurons from the medial ganglionic eminence. Downregulation of the EphA4 receptor via siRNA transfection reduced the repulsive effect of ephrin-A3, indicating that EphA4 mediates at least in part the repulsive effect of ephrin A3 on these cells. Together, these results suggest that ephrin-A3 acts as a repulsive cue that restricts cortical interneurons from entering inappropriate regions and thus contributes to define the migratory route of cortical interneurons.  相似文献   

15.
16.
In vertebrate embryos, positioning of the boundary between the midbrain and hindbrain (MHB) and subsequent isthmus formation are dependent upon the interaction between the Otx2 and Gbx genes. In zebrafish, sequential expression of gbx1 and gbx2 in the anterior hindbrain contributes to this process, whereas in mouse embryos, a single Gbx gene (Gbx2) is responsible for MHB development. In the present study, to investigate the regulatory mechanism of gbx2 in the MHB/isthmic region of zebrafish embryos, we cloned the gene and showed that its organization is conserved among different vertebrates. Promoter analyses revealed three enhancers that direct reporter gene expression after the end of epiboly in the anterior-most hindbrain, which is a feature of the zebrafish gbx2 gene. One of the enhancers is located upstream of gbx2 (AMH1), while the other two enhancers are located downstream of gbx2 (AMH2 and AMH3). Detailed analysis of the AMH1 enhancer showed that it directs expression in the rhombomere 1 (r1) region and the dorsal thalamus, as has been shown for gbx2, whereas no expression was induced by the AMH1 enhancer in other embryonic regions in which gbx2 is expressed. The AMH1 enhancer is composed of multiple regulatory subregions that share the same spatial specificity. The most active of the regulatory subregions is a 291-bp region that contains at least two Pax2-binding sites, both of which are necessary for the function of the main component (PB1-A region) of the AMH1 enhancer. In accordance with these results, enhancer activity in the PB1-A region, as well as gbx2 expression in r1, was missing in no isthmus mutant embryos that lacked functional pax2a. In addition, we identified an upstream conserved sequence of 227bp that suppresses the enhancer activity of AMH1. Taken together, these findings suggest that gbx2 expression during the somitogenesis stage in zebrafish is regulated by a complex mechanism involving Pax2 as well as activators and suppressors in the regions flanking the gene.  相似文献   

17.
Chick/quail transplantation experiments were performed to analyse possible factors involved in the regionalisation of the midbrain-hindbrain domain. The caudal prosomeres, expressing Otx2, were transplanted at stage HH10 into rostrocaudal levels of the midbrain-hindbrain domain, either straddling the intra-metencephalic constriction (type 1 grafts), or at rostral and medial levels of pro-rhombomere A1 (type 2 and 3 grafts, respectively); thus, in all situations, one border of the graft was in contact with the host Gbx2- and Fgf8-expressing domains. The area containing the graft, recognised by QCPN immunohistochemistry, was first analysed 48 hours after transplantation for Otx2, Gbx2, En2 and Fgf8. Although in all three situations, a large part of the graft maintained Otx2 expression, another part became Otx2 negative and was induced to express Gbx2 and Fgf8. These inductive events occurred exclusively at the interface between the Otx2-positive transplanted domain and the ipsilateral host Gbx2-positive rhombomere 1, creating a new Otx2-Gbx2 boundary within the grafted territory. In type 1 and 2 grafts, the induced Fgf8 domain is in continuity with the host Fgf8 isthmic domain, whereas for type 3 grafts, these two domains are separate. High levels of En2 expression were also induced in the area expressing Gbx2 and Fgf8, and Wnt1 and Pax2 expressions, analysed in type 3 grafts, were induced at the intragraft Otx2-Gbx2 new boundary. Moreover, at later embryonic stages, the graft developed meso-isthmo-cerebellar structures. Thus, gene expressions induced in the grafted prosencephalon not only mimicked the pattern observed in the normal midbrain-hindbrain domain, but is followed by midbrain-hindbrain cytodifferentiation, indicating that not only Fgf8 but also confrontation of Otx2 and Gbx2 may play an essential role during midbrian-hindbrain regionalisation.  相似文献   

18.
Retinoic acid (RA) signaling plays critical roles in diverse cellular processes during nervous system development. In mouse models, the roles for RA signals in telencephalic development remain unclear, partly because of the ambiguity of RA telencephalic sources after E8.75. Here, we have developed a genetic approach that utilizes Cre-lox technology to conditionally express a potent dominant negative retinoid receptor, RAR403, in vivo. This approach blocks RA signaling pathways at the receptor level, enabling the disruption of RA signals in contexts in which the RA source is unknown. RAR403 expression throughout the developing telencephalon causes pronounced hypoplasia resulting from defective proliferation in dorsal telencephalic progenitors and extensive cell death. Furthermore, Nkx2.1+ progenitors in the medial ganglionic eminence (MGE) are misspecified such that they acquire a subset of lateral ganglionic eminence (LGE)-specific properties at the expense of MGE fates. This genetic approach reveals new roles for RA signaling in telencephalic proliferation, survival and fate specification, and underscores its utility in investigating the function of retinoid signaling pathways throughout peri- and postnatal development.  相似文献   

19.
20.
Interneurons originating from the ganglionic eminence migrate tangentially into the developing cerebral wall as they navigate to their distinct positions in the cerebral cortex. Compromised connectivity and differentiation of interneurons are thought to be an underlying cause in the emergence of neurodevelopmental disorders such as schizophrenia. Previously, it was suggested that tangential migration of interneurons occurs in a radial glia independent manner. Here, using simultaneous imaging of genetically defined populations of interneurons and radial glia, we demonstrate that dynamic interactions with radial glia can potentially influence the trajectory of interneuronal migration and thus the positioning of interneurons in cerebral cortex. Furthermore, there is extensive local interneuronal migration in tangential direction opposite to that of pallial orientation (i.e., in a medial to lateral direction from cortex to ganglionic eminence) all across the cerebral wall. This counter migration of interneurons may be essential to locally position interneurons once they invade the developing cerebral wall from the ganglionic eminence. Together, these observations suggest that interactions with radial glial scaffold and localized migration within the expanding cerebral wall may play essential roles in the guidance and placement of interneurons in the developing cerebral cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号