首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonreversible d-Glyceraldehyde 3-Phosphate Dehydrogenase of Plant Tissues   总被引:6,自引:6,他引:0  
Kelly GJ  Gibbs M 《Plant physiology》1973,52(2):111-118
Preparations of TPN-linked nonreversible d-glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.9), free of TPN-linked reversible d-glyceraldehyde 3-phosphate dehydrogenase, have been obtained from green shoots, etiolated shoots, and cotyledons of pea (Pisum sativum), cotyledons of peanut (Arachis hypogea), and leaves of maize (Zea mays). The properties of the enzyme were similar from each of these sources: the Km values for d-glyceraldehyde 3-phosphate and TPN were about 20 μm and 3 μm, respectively. The enzyme activity was inhibited by l-glyceraldehyde 3-phosphate, d-erythrose 4-phosphate, and phosphohydroxypyruvate. Activity was found predominantly in photosynthetic and gluconeogenic tissues of higher plants. A light-induced, phytochrome-mediated increase of enzyme activity in a photosynthetic tissue (pea shoots) was demonstrated. Appearance of enzyme activity in a gluconeogenic tissue (endosperm of castor bean, Ricinus communis) coincided with the conversion of fat to carbohydrate during germination. In photosynthetic tissue, the enzyme is located outside the chloroplast, and at in vivo levels of triose-phosphates and pyridine nucleotides, the activity is probably greater than that of DPN-linked reversible d-glyceraldehyde 3-phosphate dehydrogenase. Several possible roles for the enzyme in plant carbohydrate metabolism are considered.  相似文献   

2.
The oxidation of d- and l-glycerate by rat liver   总被引:1,自引:1,他引:0  
1. The interconversion of hydroxypyruvate and l-glycerate in the presence of NAD and rat-liver l-lactate dehydrogenase has been demonstrated. Michaelis constants for these substrates together with an equilibrium constant have been determined and compared with those for pyruvate and l-lactate. 2. The presence of d-glycerate dehydrogenase in rat liver has been confirmed and the enzyme has been purified 16–20-fold from the supernatant fraction of a homogenate, when it is free of l-lactate dehydrogenase, with a 23–29% recovery. The enzyme catalyses the interconversion of hydroxypyruvate and d-glycerate in the presence of either NAD or NADP with almost equal efficiency. d-Glycerate dehydrogenase also catalyses the reduction of glyoxylate, but is distinct from l-lactate dehydrogenase in that it fails to act on pyruvate, d-lactate or l-lactate. The enzyme is strongly dependent on free thiol groups, as shown by inhibition with p-chloromercuribenzoate, and in the presence of sodium chloride the reduction of hydroxypyruvate is activated. Michaelis constants for these substrates of d-glycerate dehydrogenase and an equilibrium constant for the NAD-catalysed reaction have been calculated. 3. An explanation for the lowered Vmax. with d-glycerate as compared with dl-glycerate for the rabbit-kidney d-α-hydroxy acid dehydrogenase has been proposed.  相似文献   

3.
A Mg2+-dependent, alkaline phosphatase has been isolated from mature pollen of Lilium longiflorum Thunb., cv. Ace and partially purified. It hydrolyzes 1l- and 1d-myo-inositol 1-phosphate, myo-inositol 2-phosphate, and β-glycerophosphate at rates decreasing in the order named. The affinity of the enzyme for 1l- and 1d-myo-inositol 1-phosphate is approximately 10-fold greater than its affinity for myo-inositol 2-phosphate. Little or no activity is found with phytate, d-glucose 6-phosphate, d-glucose 1-phosphate, d-fructose 1-phosphate, d-fructose 6-phosphate, d-mannose 6-phosphate, or p-nitrophenyl phosphate. 3-Phosphosphoglycerate is a weak competitive inhibitor. myo-Inositol does not inhibit the reaction. Optimal activity is obtained at pH 8.5 and requires the presence of Mg2+. At 4 millimolar, Co2+, Fe2+ or Mn2+ are less effective. Substantial inhibition is obtained with 0.25 molar Li+. With β-glycerophosphate as substrate the Km is 0.06 millimolar and the reaction remains linear at least 2 hours. In 0.1 molar Tris, β-glycerophosphate yields equivalent amounts of glycerol and inorganic phosphate, evidence that transphosphorylation does not occur.  相似文献   

4.
l-Glutamine d-fructose 6-phosphate amidotransferase (EC 2.6.1.16) was extracted and purified 600-fold by acetone fractionation and diethylaminoethyl cellulose column chromatography from mung bean seeds (Phaseolus aureus). The partially purified enzyme was highly specific for l-glutamine as an amide nitrogen donor, and l-asparagine could not replace it. The enzyme showed a pH optimum in the range of 6.2 to 6.7 in phosphate buffer. Km values of 3.8 mm and 0.5 mm were obtained for d-fructose 6-phosphate and l-glutamine, respectively. The enzyme was competitively inhibited with respect to d-fructose 6-phosphate by uridine diphosphate-N-acetyl-d-glucosamine which had a Ki value of 13 μm. Upon removal of l-glutamine and its replacement by d-fructose 6-phosphate and storage over liquid nitrogen, the enzyme was completely desensitized to inhibition by uridine diphosphate-N-acetyl-d-glucosamine. This indicates that the inhibitor site is distinct from the catalytic site and that uridine diphosphate-N-acetyl-d-glucosamine acts as a feedback inhibitor of the enzyme.  相似文献   

5.
Escherichia coli that is unable to metabolize d-glucose (with knockouts in ptsG, manZ, and glk) accumulates a small amount of d-glucose (yield of about 0.01 g/g) during growth on the pentoses d-xylose or l-arabinose as a sole carbon source. Additional knockouts in the zwf and pfkA genes, encoding, respectively, d-glucose-6-phosphate 1-dehydrogenase and 6-phosphofructokinase I (E. coli MEC143), increased accumulation to greater than 1 g/liter d-glucose and 100 mg/liter d-mannose from 5 g/liter d-xylose or l-arabinose. Knockouts of other genes associated with interconversions of d-glucose-phosphates demonstrate that d-glucose is formed primarily by the dephosphorylation of d-glucose-6-phosphate. Under controlled batch conditions with 20 g/liter d-xylose, MEC143 generated 4.4 g/liter d-glucose and 0.6 g/liter d-mannose. The results establish a direct link between pentoses and hexoses and provide a novel strategy to increase carbon backbone length from five to six carbons by directing flux through the pentose phosphate pathway.  相似文献   

6.
The property of loose stereochemical control at aldol products from aldolases helped to synthesize multiple polyhydroxylated compounds with nonnatural stereoconfiguration. In this study, we discovered for the first time that some fructose 1,6-diphosphate aldolases (FruA) and tagatose 1,6-diphosphate (TagA) aldolases lost their strict stereoselectivity when using l-glyceraldehyde and synthesized not only l-sorbose but also a high proportion of l-psicose. Among the aldolases tested, TagA from Bacillus licheniformis (BGatY) showed the highest enzyme activity with l-glyceraldehyde. Subsequently, a “one-pot” reaction based on BGatY and fructose-1-phosphatase (YqaB) generated 378 mg/liter l-psicose and 199 mg/liter l-sorbose from dihydroxyacetone-phosphate (DHAP) and l-glyceraldehyde. Because of the high cost and instability of DHAP, a microbial fermentation strategy was used further to produce l-sorbose/l-psicose from glucose and l-glyceraldehyde, in which DHAP was obtained from glucose through the glycolytic pathway, and some recombination pathways based on FruA or TagA and YqaB were constructed in Escherichia coli and Corynebacterium glutamicum strains. After evaluation of different host cells and combinations of FruA or TagA with YqaB and optimization of gene expression, recombinant C. glutamicum strain WT(pXFTY) was selected and produced 2.53 g/liter total ketoses, with a yield of 0.50 g/g l-glyceraldehyde. Moreover, deletion of gene cgl0331, encoding the Zn-dependent alcohol dehydrogenase in C. glutamicum, was confirmed for the first time to significantly decrease conversion of l-glyceraldehyde to glycerol and to increase yield of target products. Finally, fed-batch culture of strain SY14(pXFTY) produced 3.5 g/liter l-sorbose and 2.3 g/liter l-psicose, with a yield of 0.61 g/g l-glyceraldehyde. This microbial fermentation strategy also could be applied to efficiently synthesize other l-sugars.  相似文献   

7.
The pathway of d-xylose degradation in archaea is unknown. In a previous study we identified in Haloarcula marismortui the first enzyme of xylose degradation, an inducible xylose dehydrogenase (Johnsen, U., and Schönheit, P. (2004) J. Bacteriol. 186, 6198–6207). Here we report a comprehensive study of the complete d-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. The analyses include the following: (i) identification of the degradation pathway in vivo following 13C-labeling patterns of proteinogenic amino acids after growth on [13C]xylose; (ii) identification of xylose-induced genes by DNA microarray experiments; (iii) characterization of enzymes; and (iv) construction of in-frame deletion mutants and their functional analyses in growth experiments. Together, the data indicate that d-xylose is oxidized exclusively to the tricarboxylic acid cycle intermediate α-ketoglutarate, involving d-xylose dehydrogenase (HVO_B0028), a novel xylonate dehydratase (HVO_B0038A), 2-keto-3-deoxyxylonate dehydratase (HVO_B0027), and α-ketoglutarate semialdehyde dehydrogenase (HVO_B0039). The functional involvement of these enzymes in xylose degradation was proven by growth studies of the corresponding in-frame deletion mutants, which all lost the ability to grow on d-xylose, but growth on glucose was not significantly affected. This is the first report of an archaeal d-xylose degradation pathway that differs from the classical d-xylose pathway in most bacteria involving the formation of xylulose 5-phosphate as an intermediate. However, the pathway shows similarities to proposed oxidative pentose degradation pathways to α-ketoglutarate in few bacteria, e.g. Azospirillum brasilense and Caulobacter crescentus, and in the archaeon Sulfolobus solfataricus.d-Xylose, a constituent of the polymer xylan, is the major component of the hemicellulose plant cell wall material and thus one of the most abundant carbohydrates in nature. The utilization of d-xylose by microorganisms has been described in detail in bacteria and fungi, for which two different catabolic pathways have been reported. In many bacteria, such as Escherichia coli, Bacillus, and Lactobacillus species, xylose is converted by the activities of xylose isomerase and xylulose kinase to xylulose 5-phosphate as an intermediate, which is further degraded mainly by the pentose phosphate cycle or phosphoketolase pathway. Most fungi convert xylose to xylulose 5-phosphate via xylose reductase, xylitol dehydrogenase, and xylulose kinase. Xylulose 5-phosphate is also an intermediate of the most common l-arabinose degradation pathway in bacteria, e.g. of E. coli, via activities of isomerase, kinase, and epimerase (1).Recently, by genetic evidence, a third pathway of xylose degradation was proposed for the bacterium Caulobacter crescentus, in analogy to an alternative catabolic pathway of l-arabinose, reported for some bacteria, including species of Azospirillum, Pseudomonas, Rhizobium, Burkholderia, and Herbasprillum (2, 3). In these organisms l-arabinose is oxidatively degraded to α-ketoglutarate, an intermediate of the tricarboxylic acid cycle, via the activities of l-arabinose dehydrogenase, l-arabinolactonase, and two successive dehydration reactions forming 2-keto-3-deoxy-l-arabinoate and α-ketoglutarate semialdehyde; the latter compound is further oxidized to α-ketoglutarate via NADP+-specific α-ketoglutarate semialdehyde dehydrogenase (KGSADH).2 In a few Pseudomonas and Rhizobium species, a variant of this l-arabinose pathway was described involving aldolase cleavage of the intermediate 2-keto-3-deoxy-l-arabinoate to pyruvate and glycolaldehyde, rather than its dehydration and oxidation to α-ketoglutarate (4). Because of the presence of some analogous enzyme activities in xylose-grown cells of Azosprillum and Rhizobium, the oxidative pathway and its variant was also proposed as a catabolic pathway for d-xylose. Recent genetic analysis of Caulobacter crecentus indicates the presence of an oxidative pathway for d-xylose degradation to α-ketoglutarate. All genes encoding xylose dehydrogenase and putative lactonase, xylonate dehydratase, 2-keto-3-deoxylonate dehydratase, and KGSADH were found to be located on a xylose-inducible operon (5). With exception of xylose dehydrogenase, which has been partially characterized, the other postulated enzymes of the pathway have not been biochemically analyzed.The pathway of d-xylose degradation in the domain of archaea has not been studied so far. First analyses with the halophilic archaeon Haloarcula marismortui indicate that the initial step of d-xylose degradation involves a xylose-inducible xylose dehydrogenase (6) suggesting an oxidative pathway of xylose degradation to α-ketoglutarate, or to pyruvate and glycolaldehyde, in analogy to the proposed oxidative bacterial pentose degradation pathways. Recently, a detailed study of d-arabinose catabolism in the thermoacidophilic crenarchaeon Sulfolobus solfataricus was reported. d-Arabinose was found to be oxidized to α-ketoglutarate involving d-arabinose dehydrogenase, d-arabinoate dehydratase, 2-keto-3-deoxy-d-arabinoate dehydratase, and α-ketoglutarate semialdehyde dehydrogenase (3).In this study, we present a comprehensive analysis of the complete d-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. This halophilic archaeon was chosen because it exerts several suitable properties for the analyses. For example, it can be cultivated on synthetic media with sugars, e.g. xylose, an advantage for in vivo labeling studies in growing cultures. Furthermore, a shotgun DNA microarray of H. volcanii is available (7) allowing the identification of xylose-inducible genes, and H. volcanii is one of the few archaea for which an efficient protocol was recently described to generate in-frame deletion mutants.Accordingly, the d-xylose degradation pathway was elucidated following in vivo labeling experiments with [13C]xylose, DNA microarray analyses, and the characterization of enzymes involved and their encoding genes. The functional involvement of genes and enzymes was proven by constructing corresponding in-frame deletion mutants and their analysis by selective growth experiments on xylose versus glucose. The data show that d-xylose was exclusively degraded to α-ketoglutarate involving xylose dehydrogenase, a novel xylonate dehydratase, 2-keto-3-deoxyxylonate dehydratase, and α-ketoglutarate semialdehyde dehydrogenase.  相似文献   

8.
myo-Inositol-1-phosphatase has been purified to homogeneity from Lilium longiflorum pollen using an alternative procedure which includes pH change and phenyl Sepharose column chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis shows that the enzyme is a dimer (subunit molecular weight, 29,000 daltons). The enzyme is stable at low pH values and is inactivated only below pH 3.0. In addition to 1l-and 1d-myo-inositol-1-phosphate, it shows high specificity for 1l-chiro-inositol-3-phosphate. As observed earlier with other primary phosphate esters, d-glucitol-6-phosphate and d-mannitol-6-phosphate are hydrolyzed very slowly. No activity is observed with inorganic pyrophosphate or myo-inositol pentaphosphate as substrate. The enzyme is inhibited by fluoride, sulfate, molybdate, and thiol-directed reagents. Partial protection against N-ethylmaleimide inhibition by substrate and Mg2+ together suggests sulfhydryl involvement at the active site.  相似文献   

9.
The uncharacterized gene previously proposed as a mannose-6-phosphate isomerase from Bacillus subtilis was cloned and expressed in Escherichia coli. The maximal activity of the recombinant enzyme was observed at pH 7.5 and 40°C in the presence of 0.5 mM Co2+. The isomerization activity was specific for aldose substrates possessing hydroxyl groups oriented in the same direction at the C-2 and C-3 positions, such as the d and l forms of ribose, lyxose, talose, mannose, and allose. The enzyme exhibited the highest activity for l-ribulose among all pentoses and hexoses. Thus, l-ribose, as a potential starting material for many l-nucleoside-based pharmaceutical compounds, was produced at 213 g/liter from 300-g/liter l-ribulose by mannose-6-phosphate isomerase at 40°C for 3 h, with a conversion yield of 71% and a volumetric productivity of 71 g liter−1 h−1.l-Ribose is a potential starting material for the synthesis of many l-nucleoside-based pharmaceutical compounds, and it is not abundant in nature (5, 19). l-Ribose has been produced mainly by chemical synthesis from l-arabinose, l-xylose, d-glucose, d-galactose, d-ribose, or d-mannono-1,4-lactone (2, 17, 23). Biological l-ribose manufacture has been investigated using ribitol or l-ribulose. Recently, l-ribose was produced from ribitol by a recombinant Escherichia coli containing an NAD-dependent mannitol-1-dehydrogenase (MDH) with a 55% conversion yield when 100 g/liter ribitol was used in a 72-h fermentation (18). However, the volumetric productivity of l-ribose in the fermentation is 28-fold lower than that of the chemical method synthesized from l-arabinose (8). l-Ribulose has been biochemically converted from l-ribose using an l-ribose isomerase from an Acinetobacter sp. (9), an l-arabinose isomerase mutant from Escherichia coli (4), a d-xylose isomerase mutant from Actinoplanes missouriensis (14), and a d-lyxose isomerase from Cohnella laeviribosi (3), indicating that l-ribose can be produced from l-ribulose by these enzymes. However, the enzymatic production of l-ribulose is slow, and the enzymatic production of l-ribose from l-ribulose has been not reported.Sugar phosphate isomerases, such as ribose-5-phosphate isomerase, glucose-6-phosphate isomerase, and galactose-6-phosphate isomerase, work as general aldose-ketose isomerases and are useful tools for producing rare sugars, because they convert the substrate sugar phosphates and the substrate sugars without phosphate to have a similar configuration (11, 12, 21, 22). l-Ribose isomerase from an Acinetobacter sp. (9) and d-lyxose isomerase from C. laeviribosi (3) had activity with l-ribose, d-lyxose, and d-mannose. Thus, we can apply mannose-6-phosphate (EC 5.3.1.8) isomerase to the production of l-ribose, because there are no sugar phosphate isomerases relating to l-ribose and d-lyxose. The production of the expensive sugar l-ribose (bulk price, $1,000/kg) from the rare sugar l-ribulose by mannose-6-phosphate isomerase may prove to be a valuable industrial process, because we have produced l-ribulose from the cheap sugar l-arabinose (bulk price, $50/kg) using the l-arabinose isomerase from Geobacillus thermodenitrificans (20) (Fig. (Fig.11).Open in a separate windowFIG. 1.Schematic representation for the production of l-ribulose from l-arabinose by G. thermodenitrificans l-arabinose isomerase and the production of l-ribose from l-ribulose by B. subtilis mannose-6-phosphate isomerase.In this study, the gene encoding mannose-6-phosphate isomerase from Bacillus subtilis was cloned and expressed in E. coli. The substrate specificity of the recombinant enzyme for various aldoses and ketoses was investigated, and l-ribulose exhibited the highest activity among all pentoses and hexoses. Therefore, mannose-6-phosphate isomerase was applied to the production of l-ribose from l-ribulose.  相似文献   

10.
This study presents evidence for a new enzyme, d-ribose-5-P reductase, which catalyzes the reaction: d-ribose-5-P + NADPH + H+d-ribitol-5-P + NADP+. The enzyme was isolated from Adonis vernalis L. leaves in 38% yield and was purified 71-fold. The reductase was NADPH specific and had a pH optimum in the range of 5.5 to 6.0. The Michaelis constant value for d-ribose-5-P reduction was 1.35 millimolar. The enzyme also reduced d-erythrose-4-P, d-erythrose, dl-glyceraldehyde, and the aromatic aldehyde 3-pyridinecarboxaldehyde. Hexoses, hexose phosphates, pentoses, and dihydroxyacetone did not serve as substrates. d-Ribose-5-P reductase is distinct from the other known ribitol synthesizing enzymes detected in bacteria and yeast, and may be responsible for ribitol synthesis in Adonis vernalis.  相似文献   

11.
Determination of enzyme activities on the non-oxidative section of the pentose phosphate pathway in d-ribose-forming mutants of a Bacillus species revealed that two strains, which were isolated as shikimic acid-requiring mutants, lacked d-sedoheptulose-7-phosphate: d-glyceraldehyde glycolaldehydetransferase (EC 2.2.1.1) and one strain, which was isolated as d-gluconate-non-utilizing mutant, lacked d-ribulose-5-phosphate 3-epimerase (EC 5.1.3.1). These three strains were also found to have a kind of pleiotropic property, hardly growing on d-glucose.  相似文献   

12.
l-Serine is required to synthesize membrane lipids such as phosphatidylserine and sphingolipids. Nevertheless, it remains largely unknown how a diminished capacity to synthesize l-serine affects lipid homeostasis in cells and tissues. Here, we show that deprivation of external l-serine leads to the generation of 1-deoxysphingolipids (doxSLs), including 1-deoxysphinganine, in mouse embryonic fibroblasts (KO-MEFs) lacking d-3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step in the de novo synthesis of l-serine. A novel mass spectrometry-based lipidomic approach demonstrated that 1-deoxydihydroceramide was the most abundant species of doxSLs accumulated in l-serine-deprived KO-MEFs. Among normal sphingolipid species in KO-MEFs, levels of sphinganine, dihydroceramide, ceramide, and hexosylceramide were significantly reduced after deprivation of external l-serine, whereas those of sphingomyelin, sphingosine, and sphingosine 1-phosphate were retained. The synthesis of doxSLs was suppressed by supplementing the culture medium with l-serine but was potentiated by increasing the ratio of l-alanine to l-serine in the medium. Unlike with l-serine, depriving cells of external l-leucine did not promote the occurrence of doxSLs. Consistent with results obtained from KO-MEFs, brain-specific deletion of Phgdh in mice also resulted in accumulation of doxSLs in the brain. Furthermore, l-serine-deprived KO-MEFs exhibited increased formation of cytosolic lipid bodies containing doxSLs and other sphingolipids. These in vitro and in vivo studies indicate that doxSLs are generated in the presence of a high ratio of l-alanine to l-serine in cells and tissues lacking Phgdh, and de novo synthesis of l-serine is necessary to maintain normal sphingolipid homeostasis when the external supply of this amino acid is limited.  相似文献   

13.
The growth of corn (Zea mays) roots and barley (Hordeum vulgare) coleoptiles is sensitive to the presence of external d-glucosamine and d-galactose. In order to investigate this effect, tissues were fed the radioactive monosaccharides at concentrations that ranged from those that were strongly inhibitory to those that had little influence on growth. At low concentrations, d-glucosamine is converted to uridine diphosphate-N-acetyl-d-glucosamine, phosphate esters of N-acetylglucosamine, and free N-acetylglucosamine. As the external concentrations were increased, the pool levels of each of these metabolites rose several fold; and, in corn roots, two unidentified compounds, which had not been detected previously, began to accumulate in the tissues. The major products of d-galactose metabolism were uridine diphosphate-d-galactose and d-galactose 1-phosphate at all the concentrations tested. Both these compounds showed a marked increase as the external galactose concentrations were raised to inhibitory levels. The experiments indicate that efficient pathways exist in plants for the metabolism of d-glucosamine and d-galactose. These pathways, however, do not appear to be under strict control, so that metabolites accumulate in unusually high amounts and presumably interfere competitively with normal carbohydrate metabolism.  相似文献   

14.
15.
An l-glucose-utilizing bacterium, Paracoccus sp. 43P, was isolated from soil by enrichment cultivation in a minimal medium containing l-glucose as the sole carbon source. In cell-free extracts from this bacterium, NAD+-dependent l-glucose dehydrogenase was detected as having sole activity toward l-glucose. This enzyme, LgdA, was purified, and the lgdA gene was found to be located in a cluster of putative inositol catabolic genes. LgdA showed similar dehydrogenase activity toward scyllo- and myo-inositols. l-Gluconate dehydrogenase activity was also detected in cell-free extracts, which represents the reaction product of LgdA activity toward l-glucose. Enzyme purification and gene cloning revealed that the corresponding gene resides in a nine-gene cluster, the lgn cluster, which may participate in aldonate incorporation and assimilation. Kinetic and reaction product analysis of each gene product in the cluster indicated that they sequentially metabolize l-gluconate to glycolytic intermediates, d-glyceraldehyde-3-phosphate, and pyruvate through reactions of C-5 epimerization by dehydrogenase/reductase, dehydration, phosphorylation, and aldolase reaction, using a pathway similar to l-galactonate catabolism in Escherichia coli. Gene disruption studies indicated that the identified genes are responsible for l-glucose catabolism.  相似文献   

16.
2-Carboxyarabinitol-1-phosphate, the nocturnal inhibitor of ribulose-1,5-bisphosphate carboxylase/oxygenase is identical with d-hamamelonic acid-21-phosphate. Reasoning is based on theoretical considerations as well as on mass spectra and 1H- and 13C-NMR spectra of the phosphate-free compounds. d-Hamamelonic acid-21-phosphate is interpreted as a metabolic derivative of d-hamamelose-21,5-bisphosphate which originates in the chloroplast from fructose-1,6-bisphosphate. A simple method for the synthesis of the inhibitor is suggested.  相似文献   

17.
NtdA from Bacillus subtilis is a sugar aminotransferase that catalyzes the pyridoxal phosphate-dependent equatorial transamination of 3-oxo-α-d-glucose 6-phosphate to form α-d-kanosamine 6-phosphate. The crystal structure of NtdA shows that NtdA shares the common aspartate aminotransferase fold (Type 1) with residues from both monomers forming the active site. The crystal structures of NtdA alone, co-crystallized with the product α-d-kanosamine 6-phosphate, and incubated with the amine donor glutamate reveal three key structures in the mechanistic pathway of NtdA. The structure of NtdA alone reveals the internal aldimine form of NtdA with the cofactor pyridoxal phosphate covalently attached to Lys-247. The addition of glutamate results in formation of pyridoxamine phosphate. Co-crystallization with kanosamine 6-phosphate results in the formation of the external aldimine. Only α-d-kanosamine 6-phosphate is observed in the active site of NtdA, not the β-anomer. A comparison of the structure and sequence of NtdA with other sugar aminotransferases enables us to propose that the VIβ family of aminotransferases should be divided into subfamilies based on the catalytic lysine motif.  相似文献   

18.
Lactobacillus casei strains 64H and BL23, but not ATCC 334, are able to ferment d-ribitol (also called d-adonitol). However, a BL23-derived ptsI mutant lacking enzyme I of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was not able to utilize this pentitol, suggesting that strain BL23 transports and phosphorylates d-ribitol via a PTS. We identified an 11-kb region in the genome sequence of L. casei strain BL23 (LCABL_29160 to LCABL_29270) which is absent from strain ATCC 334 and which contains the genes for a GlpR/IolR-like repressor, the four components of a mannose-type PTS, and six metabolic enzymes potentially involved in d-ribitol metabolism. Deletion of the gene encoding the EIIB component of the presumed ribitol PTS indeed prevented d-ribitol fermentation. In addition, we overexpressed the six catabolic genes, purified the encoded enzymes, and determined the activities of four of them. They encode a d-ribitol-5-phosphate (d-ribitol-5-P) 2-dehydrogenase, a d-ribulose-5-P 3-epimerase, a d-ribose-5-P isomerase, and a d-xylulose-5-P phosphoketolase. In the first catabolic step, the protein d-ribitol-5-P 2-dehydrogenase uses NAD+ to oxidize d-ribitol-5-P formed during PTS-catalyzed transport to d-ribulose-5-P, which, in turn, is converted to d-xylulose-5-P by the enzyme d-ribulose-5-P 3-epimerase. Finally, the resulting d-xylulose-5-P is split by d-xylulose-5-P phosphoketolase in an inorganic phosphate-requiring reaction into acetylphosphate and the glycolytic intermediate d-glyceraldehyde-3-P. The three remaining enzymes, one of which was identified as d-ribose-5-P-isomerase, probably catalyze an alternative ribitol degradation pathway, which might be functional in L. casei strain 64H but not in BL23, because one of the BL23 genes carries a frameshift mutation.  相似文献   

19.
d-Glucose 6-phosphate cycloaldolase is inhibited 83% by 0.66 mm EDTA and stimulated 1.7-fold by 0.6 mm KCl. Dihydroxyacetone phosphate, an analog of the last three carbons in the proposed intermediate, d-xylo-5-hexulose 6-phosphate, acts as a partially competitive inhibitor. Treatment with NaBH4 in the presence of dihydroxyacetone phosphate does not cause permanent inactivation as would be expected if a Schiff base were being formed. In these properties it resembles a type II, metal-containing aldolase. Photooxidation in the presence of Rose Bengal inactivates this enzyme. NAD+ partially protects against this photooxidation. Cells grown on medium lacking myoinositol had four times as much enzyme activity as cells grown on medium containing 100 mg of myoinositol per liter.  相似文献   

20.
d-Lactate was identified as one of the few available organic acids that supported the growth of Gluconobacter oxydans 621H in this study. Interestingly, the strain used d-lactate as an energy source but not as a carbon source, unlike other lactate-utilizing bacteria. The enzymatic basis for the growth of G. oxydans 621H on d-lactate was therefore investigated. Although two putative NAD-independent d-lactate dehydrogenases, GOX1253 and GOX2071, were capable of oxidizing d-lactate, GOX1253 was the only enzyme able to support the d-lactate-driven growth of the strain. GOX1253 was characterized as a membrane-bound dehydrogenase with high activity toward d-lactate, while GOX2071 was characterized as a soluble oxidase with broad substrate specificity toward d-2-hydroxy acids. The latter used molecular oxygen as a direct electron acceptor, a feature that has not been reported previously in d-lactate-oxidizing enzymes. This study not only clarifies the mechanism for the growth of G. oxydans on d-lactate, but also provides new insights for applications of the important industrial microbe and the novel d-lactate oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号