首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioenhancers can increase the bioavailability of metabolism susceptible drugs. The present study was designed to understand the impact of bioenhancer on permeability and bioavailability of a biopharmaceutical drug disposition classification system (BDDCS) class II drug raloxifene (RLX). RLX undergoes extensive first pass metabolism by UGT enzymes in gastrointestinal tract (GIT) and has an oral bioavailability of about 2%. Self-emulsifying drug delivery system (SEDDS) of RLX was developed using a designed approach and this formulation was loaded with reported bioenhancers: quercetin and piperine. These formulations were tested for improvement in permeability and bioavailability of the RLX. The apparent permeability using everted gut sac (P app) for SEDDS (5.26?±?1.10?×?10?8 cm/s) was found to be similar to that of SEDDS with bioenhancers (5.11?±?1.05?×?10?8 cm/s). In oral bioavailability study in rat, SEDDS demonstrated a 4-fold and 2.5-fold higher AUC0–∞ than RLX suspension (control) and marketed product, respectively. No additional improvement in permeability and bioavailability was offered by inclusion of piperine and quercetin (bioenhancers) in the SEDDS.  相似文献   

2.
Knowing that curcumin has low bioavailability when administered orally, and that piperine has bioenhancer activity by inhibition of hepatic and intestinal biotransformation processes, the aim of this study was to investigate the antidiabetic and antioxidant activities of curcumin (90 mg/kg) and piperine (20 or 40 mg/kg), alone or co-administered, incorporated in yoghurt, in streptozotocin (STZ)-diabetic rats. The treatment for 45 days of STZ-diabetic rats with curcumin-enriched yoghurt improved all parameters altered in this experimental model of diabetes: the body weight was increased in association with the weight of skeletal muscles and white adipose tissues; the progressive increase in the glycemia levels was avoided, as well as in the glycosuria, urinary urea, dyslipidemia, and markers of liver (alanine and aspartate aminotransferases and alkaline phosphatase) and kidney (urinary protein) dysfunction; the hepatic oxidative stress was decreased, since the activities of the antioxidant enzymes superoxide dismutase, catalase and gluthatione peroxidase were increased, and the levels of malondialdehyde and protein carbonyl groups were reduced. The dose of 20 mg/kg piperine also showed antidiabetic and antioxidant activities. The treatment of STZ-diabetic rats with both curcumin and 20 mg/kg piperine in yoghurt did not change the antidiabetic and antioxidant activities of curcumin; notably, the treatment with both curcumin and 40 mg/kg piperine abrogated the beneficial effects of curcumin. In addition, the alanine aminotransferase levels were further increased in diabetic rats treated with curcumin and 40 mg/kg piperine in comparison with untreated diabetic rats. These findings support that the co-administration of curcumin with a bioenhancer did not bring any advantage to the curcumin effects, at least about the antidiabetic and antioxidant activities, which could be related to changes on its biotransformation.  相似文献   

3.
P-glycoprotein (P-gp) has a major role to play in drug pharmacokinetics and pharmacodynamics, since it effluxes many cytotoxic hydrophobic anticancer drugs from gastrointestinal tract, brain, liver and kidney. Piperine is known to enhance the bioavailability of curcumin, as a substrate of P-gp by at least 2000 %. Besides these at least 50 other substrates and inhibitors of P-gp have been reported so far. All P-gp inhibitors have diverse structures. Although little is known about binding of some flavonoids and steroids at the NBD (nucleotide binding domain) of P-gp in the vicinity of ATP binding site inhibiting its hydrolysis, a valid explanation of how P-gp accommodates such a diverse set of inhibitors is still awaited. In the present study, piperine up to 100 μM has not shown observable cytotoxic effect on MDCK cell line, and it has been shown to accumulate rhodamine by fluorescence microscopy and fluorescent activated cell sorter in MDCK cells. Computational simulation for piperine and some first and second generation P-gp inhibitors has shown that these dock at the NBD site of P-gp. A comparative simulation study has been carried out regarding their docking and binding energies. Binding conformation of P-gp co-crystallized complexes with ADP, AMP-PNP (Adenylyl-imidodiphosphate), and ATP were compared with piperine. The receptor based E-pharmacophore of docked piperine has been simulated to find common features amongst P-gp inhibitors. Finally it has been concluded that piperine could be utilized as base molecule for design and development of safe non-toxic inhibitor of P-gp in order to enhance the bioavailability of most of its substrates.
Figure
Piperine binds between the consensus sequence of Walker A/P loop and Walker C loop (linker peptide) at the nucleotide binding domain which is crucial for ATP coupled efflux through P-gp. ATP binding competes with piperine. This explains why piperine enhances the bioavailability of its substrate like curcumin by 2000 %  相似文献   

4.
The impact of papain, trypsin and the enzyme complex vobenzyme on formation of biofilms by grampositive and gramnegative bacteria was studied. The enzymes were shown to inhibit the biofilm formation. When applilied to the formed associations, the enzymes potentiated the effect of antibiotics on the bacteria located in them. An increase in the antimicrobial effect of various nonrelated antibiotics was not connected with a change in the bacteria susceptibility but likely resulted from higher bioavailability of the drugs in the presence of the enzymes.  相似文献   

5.
《Phytomedicine》2014,21(4):534-540
Many endophytic fungi have been reported with the biosynthetic potential to produce same or similar metabolites present in host plants. The adaptations that might have acquired by these fungi as a result of the long-term association with their host plants can be the possible basis of their biosynthetic potential. The bioactive compounds originated from endophytes are currently explored for their potential applications in pharmaceutical, agriculture and food industries. Piper nigrum, a plant of the Piperaceae is very remarkable because of the presence of the alkaloid piperine. Piperine has been reported to have broad bioactive properties ranging from antimicrobial, antidepressant, anti-inflammatory, antioxidative to anticancer activities. Interestingly, piperine also plays a vital role in increasing the bioavailability of many drugs which again is a promising property. The current study was carried out to identify piperine producing endophytic fungus from Piper nigrum L. By screening various endophytic fungi, the isolate which was identified as member of Colletotrichum gloeosporioides was found to have the ability to form piperine and was confirmed by HPLC and LCMS. Considering the broad bioactive potential of piperine, the piperine producing fungi identified in the study can expect to have much industrial potential.  相似文献   

6.
Inhibitors of drug metabolism have important implications in pharmaco-toxicology and agriculture. We have reported earlier that piperine, a major alkaloid of black and long peppers inhibits both constitutive and inducible cytochrome P450 (CYP)-dependent drug metabolising enzymes. In the present study, an attempt has been made to prepare several novel synthetic analogues so as to relate various modifications in the parent molecule to the inhibition of CYP activities. Two types of mono-oxygenase reactions arylhydrocarbon hydroxylase (AHH) and 7-methoxycoumarin-O-demethylase (MOCD) have been studied. Inhibition studies were investigated in rat microsomal fraction prepared from untreated, 3MC- and PB- treated rat liver in vitro. Modifications were introduced into the piperine molecule: (i) in the phenyl nucleus, (ii) in the side chain and (iii) in the basic moiety. Thus, 38 compounds have been subjected to such studies, and simultaneously an attempt has also been made to arrive at the structure-activity relationship of synthetic analogues. In general, most of the inhibitory potential of the parent molecule is lost with modification in either of the three components of piperine. Saturation of the side chain resulted in significantly enhanced inhibition of CYP while modifications in the phenyl and basic moieties in few analogues offered maximal selectivity in inhibiting either constitutive or inducible CYP activities. Thus few novel analogues as CYP inactivators have been synthesized which may have important consequences in pharmacokinetics and bioavailability of drugs.  相似文献   

7.
应用体外肝微粒体孵育体系,考察胡椒碱在人、SD大鼠、小鼠、恒河猴和比格犬5个种属肝微粒体中的代谢稳定性,比较代谢的种属差异,确定其在人肝微粒体中的代谢表型。通过UFLC-MS/MS检测方法,测定胡椒碱在各个种属肝微粒体中孵育后的剩余浓度,考察他们的代谢稳定性及体外代谢动力学参数。采用化学抑制法考察胡椒碱在人肝微粒体中的代谢表型。结果表明胡椒碱在人、SD大鼠、小鼠、恒河猴和比格犬的肝微粒体中,半衰期T1/2分别为31. 36、48. 46、138. 60、147. 45、165. 00 min;体外固有清除率CLint分别为0. 0442、0. 0286、0. 0100、0. 0094、0. 0084m L/(m L·mg);在人肝微粒体中,胡椒碱主要被CYP3A4和CYP2C9酶代谢。推测胡椒碱在各种肝微粒体中的代谢均相对较稳定,其中大鼠和人的肝微粒体代谢性质最相近,在后续的实验中可以考虑用大鼠的代谢结果预测人的代谢结果;人肝微粒体中参与胡椒碱代谢的酶主要有CYP3A4和CYP2C9。  相似文献   

8.
9.
Piperine (1-Piperoyl piperidine) is a major alkaloid of Piper nigrum Linn. and Piper longum Linn. It is shown to possess bioavailability-enhancing activity with various structurally and therapeutically diverse drugs. The mechanism of enhancing the bioavailability, is, however, not understood. We hypothesize that piperine's bioavailability-enhancing property may be attributed to increased absorption, which may be due to alteration in membrane lipid dynamics and change in the conformation of enzymes in the intestine. Results of membrane fluidity studies using an apolar fluorescent probe, pyrene (which measures the fluid properties of hydrocarbon core), showed an increase in intestinal brush border membrane (BBM) fluidity. Piperine also stimulated Leucine amino peptidase and Glycyl-glycine dipeptidase activity, due to the alteration in enzyme kinetics. This suggests that piperine could modulate the membrane dynamics due to its apolar nature by interacting with surrounding lipids and hydrophobic portions in the protein vicinity, which may decrease the tendency of membrane lipids to act as stearic constrains to enzyme proteins and thus modify enzyme conformation. Ultra structural studies with piperine showed an increase in microvilli length with a prominent increase in free ribosomes and ribosomes on the endoplasmic reticulum in enterocytes, suggesting that synthesis or turnover of cytoskeletal components or membrane proteins may be involved in the observed effect. In conclusion, it is suggested that piperine may be inducing alterations in membrane dynamics and permeation characteristics, along with induction in the synthesis of proteins associated with cytoskeletal function, resulting in an increase in the small intestine absorptive surface, thus assisting efficient permeation through the epithelial barrier.  相似文献   

10.
In vitro and in vivo modulation of drug metabolizing enzymes by piperine was investigated in microsomes of rats and guinea pigs. In vitro piperine caused concentration related inhibition (50% at 100 microM) of arylhydrocarbon hydroxylase (AHH) and 7-ethoxycourmarin deethylase (7ECDE) activities, which were comparable in control and 3-methylcholanthrene (3MC) treated rats. In guinea pig microsomes however, piperine caused strong inhibition at lower concentrations (35% at 10 microM) and relatively much lesser inhibition with further increase in piperine concentrations. A Dixon plot of the kinetic data of both AHH and 7ECDE indicated noncompetitive inhibition with a Ki of approx. 100 microM. In vivo, piperine given at a dose of 25 mg/kg body wt to rats caused a maximal inhibition at 1 hr of both the enzymes, while only AHH returned to normal value within 4 hr. Similarly, upon daily treatment of piperine (15 mg/kg body wt) to rats for 7 days, 7ECDE was consistently inhibited, while AHH showed faster recovery. Piperine thus appeared to cause differential inhibition of two forms of cytochrome P450 and thus would accordingly affect the steady-state level of those drugs metabolized by these pulmonary forms of cytochromes P450.  相似文献   

11.
The influence of piperine on the enzymes and bioenergetic functions in isolated rat liver mitochondria and hepatocytes was studied. Piperine at lower concentrations (<50 μM) did not affect the RCR and ADP:O ratios, state 4 and 3 respirations supported by site-specific substrates, viz. glutamate + malate, succinate, and ascorbate + TMPD. The site-specific effects became significantly apparent only at higher concentrations. Only the state 3 respiration supported by NAD-linked substrates was impaired equipotently in mitochondria and permeabilized hepatocytes; the effect appeared to be localized at energy-coupling site 1. In hypotonic treated mitochondria, respiration supported by three kinds of substrates was not affected. Among the respiratory chain-linked enzymes, the activity of NADH-dehydrogenase registered a significant decrease of about 25, 42, and 53% at 100, 150, and 180 μM piperine, respectively. The activity of Mg++-ATPase, however, was stimulated at concentrations above 150 μM. Among the matrix enzymes, only malate and succinate dehydrogen-ases were studied. Malate dehydrogenase only showed a strong concentration-related inhibition in both the forward and backward directions. Enzyme kinetics indicated noncompetitive inhibition with a very low Ki of 10 μM. The presence of unsaturated double bonds in the side chain of piperine appeared essential for producing this strong inhibition. The studies suggested that piperine produces concentration related site-specific effects on mitochondrial bioenergetics and enzymes of energy metabolism.  相似文献   

12.
In recent years, considerable emphasis has been focused on identifying new chemopreventive agents, which could be useful for the human population. Piperine is a pure, pungent alkaloid constituent of black and long peppers (piper nigrum and piper longum), which is a most common spice used throughout the world. In the present study, we examined the protective role of piperine during experimental lung carcinogenesis with reference to its effect on DNA damage and detoxification enzyme system. The activities of detoxifying enzymes such as glutathione transferase (GST), quinone reductase (QR) and UDP-glucuronosyl transferase (UDP-GT) were found to be decreased while the hydrogen peroxide level was increased in the lung cancer bearing animals. Supplementation of piperine (50 mg/kg bwt) enhanced the detoxification enzymes and reduced DNA damage as determined by single cell electrophoresis. Furthermore, the DNA-Protein cross links which was found to be high in lung cancer bearing animals was also modulated upon supplementation with piperine. Our present results explain the understanding of unique association between anti-peroxidative effect of piperine and ultimately the capability of piperine to prevent cancer. (Mol Cell Biochem 268: 141–147, 2005)  相似文献   

13.
Effects of piperine at two oral doses (5 and 10 mg/kg body weight for 30 days) on the lipid composition and some lipogenic enzymes of the rat testis were studied. Piperine treatment depleted the total lipid content which was mainly due to the diminution of the total phospholipid concentration. All the classes of phospholipids were decreased markedly following high dose piperine treatment. In contrast, a marked increase in total cholesterol and cholesterol ester was evident with a concomitant fall in free cholesterol. A similar trend was found for the total glyceride glycerol and its fractions. Total glyceride glycerol and triacyl glycerol showed a significant increase at the expense of diacyl glycerol in rats treated with the high dose of piperine. Lipogenic enzymes, malate dehydrogenase (MDH), malic enzyme (ME) and isocitrate dehydrogenase (ICDH) were inhibited by the high dose and only MDH and ME activities were inhibited by the low dose treatment.  相似文献   

14.
15.
Piperine, an alkaloid present in the fruits of commonly used spice pepper, is known to impair reproductive functions. In the present study, piperine was administered to adult male rats at the dose levels of 1, 10, and 100 mg/kg body weight for 30 days to evaluate its effects on the testis. A significant decrease in the activities of antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase in the testis was observed at 10 and 100 mg of piperine administration when compared with the controls. A dose‐dependent increase in lipid peroxidation and hydrogen peroxide generation was also observed. Sialic acid levels in the testis were also found to be decreased when piperine was administered at 10 and 100 mg dose levels. Immunofluorescence studies demonstrated a dose‐dependent increase in caspase 3 and Fas protein in testicular germ cells after piperine treatment. These observations indicate that piperine induces oxidative stress and thereby triggers apoptosis in the testis, contributing to hampered reproductive functions. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:382–388, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20251  相似文献   

16.
Black pepper is used worldwide to enhance food flavor. We investigated dietary supplementation with piperine, the active principle of black pepper, to high carbohydrate, high fat (HCHF) diet-fed rats as a model of human metabolic syndrome. Rats were fed with either HCHF diet (carbohydrate, 52%; fat, 24%; 25% fructose in drinking water) or cornstarch (CS) diet for a total of 16 weeks. Diets of the treatment groups (CS + piperine and HCHF + piperine) were supplemented with piperine for the last 8 weeks of this protocol. After 16 weeks, rats fed with HCHF diet developed hypertension, elevated oxidative stress and inflammation-induced cardiac changes (infiltration of inflammatory cells in heart, increase in count and degranulation of mast cells in heart, cardiac fibrosis and increase in ventricular stiffness), reduced responsiveness of aortic rings, impaired glucose tolerance, abdominal obesity together with liver fibrosis, fat deposition and increased plasma liver enzymes. Supplementation with piperine (375 mg/kg food; approximately 30 mg/kg/day) in HCHF-fed rats normalized blood pressure, improved glucose tolerance and reactivity of aortic rings, reduced plasma parameters of oxidative stress and inflammation, attenuated cardiac and hepatic inflammatory cell infiltration and fibrosis and improved liver function. These changes clearly suggest that piperine reduces symptoms of human metabolic syndrome in HCHF-fed rats by reducing inflammation and oxidative stress.  相似文献   

17.
P-glycoprotein (P-gp) is found to play a very significant role in intestinal and biliary transport of irinotecan and its active metabolite, SN-38. This makes P-gp inhibition a logical strategy for improving irinotecan's oral efficacy and reducing its toxicity. The objective of the present study was to identify the most suitable P-gp inhibitor, amongst various commonly used herbal components via in vitro screening; followed by determination of in vivo effects in rats. Caco-2 cell monolayers were used to investigate the influence of various components (quercetin, hesperitin, piperine, curcumin and naringenin) on the transport of irinotecan. The secretory transport (basolateral-to-apical) was significantly decreased by all components (p<0.05) except piperine. In the apical-to-basolateral transport, quercetin showed the highest absorptive permeability enhancement and P-gp interaction potential making it an appropriate candidate for further in vivo studies in female Wistar rats. Quercetin pre-treatment resulted in increased irinotecan C(max) and area under curve (AUC) with a concomitant decrease in t(max), plasma clearance and volume of distribution (p<0.05). The absolute bioavailability (F) of irinotecan control was 33%, which was increased to 43% (1.3 fold) by quercetin administration. The amounts of irinotecan and SN-38 eliminated in bile in control rats, is reduced to almost half when treated with quercetin. Our studies not only propose a safe approach for bioavailability enhancement and reducing toxicity of irinotecan by P-gp inhibition but in another way also reiterate the significance of elucidating herb-drug interactions for future insights.  相似文献   

18.
The leishmanicidal property of piperine intercalated in liposomes and in mannose-coated liposomes was tested in experimental visceral leishmaniasis in hamsters. Mannose-coated liposomal piperine eliminated intracellular amastigotes of Leishmania donovani in splenic macrophages much more efficiently than did the liposomal piperine or free piperine. At a dose equivalent to 6 mg/kg body wt every 4th day for a total of 4 doses in 12 days, the mannose-coated liposomal piperine was found to reduce spleen parasite load to the extent of 90% in comparison to that achieved by liposomal piperine (77%) or free piperine (29%). Histological examination of spleen and liver function tests showed that the toxicity of piperine was reduced when mannosylated liposomal piperine was administered.  相似文献   

19.
Piperine is a major component of black (Piper nigrum Linn) and long pepper (Piper longum Linn) used widely in various systems of traditional medicine. We have evaluated the effect of piperine on mitochondrial tricarboxylic acid cycle and phase I and glutathione-metabolizing enzymes in Benzo(a)pyrene induced experimental lung carcinogenesis in swiss albino mice. Lung cancer bearing mice showed a significant decrease in the activities of mitochondrial enzymes-isocitrate dehydrogenase (ICDH), -ketoglutarate dehydrogenase (KDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) and significantly increased NADPH-Cytochorome reductase (NADPH-C reductase), cytochrome P450 (cyt-p450) and cytochrome b5(cyt-b5). The activities of glutathione-metabolizing enzymes glutathione peroxidase(GPx), glutathione reductase (GR) and glucose-6-phospho dehydrogenase(G6PDH) were significantly lowered in lung-cancer bearing mice when compared with control mice. Piperine supplementation to tumour-induced animals significantly lowered the phase-I enzymes (NADPH-C reductase, cyt-p450 and cyt-b5)) and there was a rise in glutathione-metabolizing enzymes (GPx, GR and G6PDH), which indicated an antitumour and anti-cancer effect. Comparison of normal control mice and mice administered piperine only as drug control showed no significant variations in enzyme activities. Piprine administration to benzo(a)pyrene induced animals significantly increased the activities of mitochondrial enzymes, thereby suggesting its role in mitochondrial energy production.  相似文献   

20.
Alkaloid-containing natural compounds have shown promise in the treatment of microbial infections. However, practical application of many of these compounds is pending a mechanistic understanding of their mode of action. We investigated the effect of two alkaloids, piperine (found in black pepper) and reserpine (found in Indian snakeroot), on the ability of the uropathogenic bacterium Escherichia coli CFT073 to colonize abiotic surfaces. Sub-inhibitory concentrations of both compounds (0.5 to 10 µg/mL) decreased bacterial swarming and swimming motilities and increased biofilm formation. qRT-PCR revealed a decrease in the expression of the flagellar gene (fliC) and motility genes (motA and motB) along with an increased expression of adhesin genes (fimA, papA, uvrY). Interestingly, piperine increased penetration of the antibiotics ciprofloxacin and azithromycin into E. coli CFT073 biofilms and consequently enhanced the ability of these antibiotics to disperse pre-established biofilms. The findings suggest that these alkaloids can potentially affect bacterial colonization by hampering bacterial motility and may aid in the treatment of infection by increasing antibiotic penetration in biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号