首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Autotrophic Thiobacillus sp. CH11 and heterotrophic Pseudomonas putida CH11 were isolated from piggery waste water. Extensive tests, including removal action, removal efficiency, removal capacity, and adaptability to perturbed conditions were conducted on autotrophic and heterotrophic biofilters. The results clearly demonstrate the application potential of autotrophic and heterotrophic biofilters for the continuous H2S removal under different perturbed conditions.  相似文献   

2.
Summary A Packed-bubble tower was used as absorber to treat 1000m3 biogas per day. A Biofilm reactor was used as the regeneration equipment in whichThiobacillus ferrooxidans was employed to oxidize Fe(II) to Fe(III). More than 95% H2S removal could be obtained when the inlet H2S concentration of the biogas ranged from 1.0 to 2.5 g/m3 and the maximum Fe(II) oxidation rate of bioreactor was 1170.87mg/L.h.  相似文献   

3.
Summary Pseudomonas putida, isolated from contaminated industrial wastewaters and soil sites, was found to utilize sodium cyanide (NaCN) as a sole source of carbon and nitrogen. Cells, immobilized in calcium alginate beads (1–2 mm diameter) were aerated in air-uplift-type fluidized batch bioreactor containing 100–400 ppm of NaCN. Degradation of NaCN was monitored for 168 h by analyzing gaseous and dissolved ammonia (NH3), CO2, pH and optical density. The results indicated that the alginate-immobilized cells ofP. putida were able to degrade NaCN into NH3 and CO2 in a time-dependent manner.  相似文献   

4.
A capillary assay was employed to quantify chemotactic responses in the chemoautotrophic bacterium,Thiobacillus thioparus. NH4Cl, KNO3, and Na2S2O3 were strong attractants. The minimum concentration of each of these inorganic chemicals needed to elicit an observable response was approximately 10–4 M.T. thioparus did not respond to carbohydrates or amino acids.  相似文献   

5.
Total base sequences of the 16S rRNA genes ofThiobacillus halophilus andThiobacillus aquaesulis show that these bacteria fall into the gamma- and beta-subdivisions, respectively of the Proteobacteria. The closest relative ofT. halophilus isThiobacillus hydrothermalis (with 98.7% similarity), and the closest relative ofT. aquaesulis isThiobacillus thioparus (93.2% similarity). Physiological properties and mol% G+C content of their DNA serve to confirm that these four organisms are all distinct species. It is reiterated that the species currently assigned to the genusThiobacillus are clearly so diverse that they need reclassification into several genera. The type species,T. thioparus, is unequivocally placed in the beta-subdivision of the Proteobacteria, thus requiring that the use of the genus nameThiobacillus be restricted to the chemolithoautotrophic species falling into that group.T. aquaesulis andT. thioparus may thus be regarded as true species ofThiobacillus. The relatively large number of obligately chemolithoautotrophicThiobacillus species falling in the gamma-subdivision of the Proteobacteria need further study in order to assess the case for reclassification into one or more new or different genera.  相似文献   

6.
Bacteria associated with H2S oxidization were isolated from a peat biofilter to which various concentrations of H2S gas were supplied. After acclimation of the peat, a facultative autotrophic bacterium, Thiobacillus itnermedius, was primarily responsible for H2S oxidation. The cell number isolates increased at above pH 3, but decreased when pH fell below 3, in which range breakthrough of H2S was finally observed. When pH was controlled at around 3, constant removal of H2S continued without a decline of the cell number. The specific H2S uptake rate of the autotrophic bacterium was determined as 1.4 × 10−13 g-H2S-S/h/cells. The cell number of the bacteria during steady state H2S removal was proportional to the inlet H2S concentration, verifying the kinetic equation derived previously.  相似文献   

7.
The 16S rRNA gene sequences of 12 strains of Thiobacillus thioparus held by different culture collections have been compared. A definitive sequence for the reference type strain (Starkey; ATCC 8158T) was obtained. The sequences for four examples of the Starkey type strain were essentially identical, confirming their sustained identity after passage through different laboratories. One strain (NCIMB 8454) was reassigned as a strain of Halothiobacillus neapolitanus, and a second (NCIMB 8349) was a species of Thermithiobacillus. These two strains have been renamed in their catalog by the National Collection of Industrial and Marine Bacteria. The 16S rRNA gene sequence of the type strain of Halothiobacillus neapolitanus (NCIMB 8539T) was determined and used to confirm the identity of other culture collection strains of this species. The reference sequences for the type strains of Thiobacillus thioparus and Halothiobacillus neapolitanus have been added to the online List of Prokaryotic Names with Standing in Nomenclature. Comparison of the 16S rRNA gene sequences available for strains of Thiobacillus denitrificans indicated that the sequence for the type strain (NCIMB 9548T) should always be used as the reference sequence for new and existing isolates.  相似文献   

8.
SYNOPSIS. Turbidity changes caused by ingestion of bacterial cell suspensions by Tetrahymena pyriformis W were used to measure feeding capabilities. Tetrahymena was grown on washed killed cells of Aerobacter aerogenes, Azotobacter agile, Arthrobacter sp., Bacillus megaterium, Mycobacterium lacticola, Pseudomonas fragi, Sarcinia lutea, Serratia marcescens, and Thiobacillus thioparus for 6 months with serial transfers. After this time the rate of feeding on each bacterium gave no indication of an adaptation to the food bacterium.  相似文献   

9.
In this study, 16S rRNA- and rDNA-based denaturing gradient gel electrophoresis (DGGE) were used to study the temporal and spatial evolution of the microbial communities in a compost biofilter removing H2S and in a control biofilter without H2S loading. During the first 81 days of the experiment, the H2S removal efficiencies always exceeded 93% at loading rates between 4.1 and 30 g m−3 h−1. Afterwards, the H2S removal efficiency decreased to values between 44 and 71%. RNA-based DGGE analysis showed that H2S loading to the biofilter increased the stability of the active microbial community but decreased the activity-based diversity and evenness. The most intense band in both the RNA- and DNA-based DGGE patterns of the H2S-degrading biofilter represented the sulfur oxidizing bacterium Thiobacillus thioparus. This suggested that T. thioparus constituted a major part of the bacterial community and was an important primary degrader in the H2S-degrading biofilter. The decreasing H2S removal efficiencies near the end of the experiment were not accompanied by a substantial change of the DGGE patterns. Therefore, the decreased H2S removal was probably not caused by a failing microbiology but rather by a decrease of the mass transfer of substrates after agglutination of the compost particles.  相似文献   

10.
Pseudomonas putida E41 was isolated from oil-contaminated soil and showed its ability to grow on ethyl-benzene as the sole carbon and energy source. Moreover, P. putida E41 show the activity of biodegradation of ethylbenzene in the batch culture. E41 showed high efficiency of biodegradation of ethylbenzene with the optimum conditions (a cell concentration of 0.1 g wet cell weight/L, pH 7.0, 25°C, and ethylbenzene concentration of 50 mg/L) from the results of the batch culture. The maximum degradation rate and specific growth rate (μmax) under the optimum conditions were 0.19+0.03 mg/mg-DCW (Dry Cell Weight)/h and 0.87+0.13 h−1, respectively. Benzene, toluene and ethylbenzene were degraded when these compounds were provided together; however, xylene isomers persisted during degradation by P. putida E41. When using a bioreactor batch system with a binary culture with P. putida BJ10, which was isolated previously in our lab, the degradation rate for benzene and toluene was improved in BTE mixed medium (each initial concentration: 50 mg/L). Almost all of the BTE was degraded within 4 h and 70–80% of m-, p-, and o-xylenes within 11 h in a BTEX mixture (initial concentration: 50 mg/L each). In summary, we found a valuable new strain of P. putida, determined the optimal degradation conditions for this isolate and tested a mixed culture of E41 and BJ10 for its ability to degrade a common sample of mixed contaminants containing benzene, toluene, and xylene.  相似文献   

11.
The solvent-tolerant bacterium Pseudomonas putida S12 was engineered to efficiently utilize the C1 compounds methanol and formaldehyde as auxiliary substrate. The hps and phi genes of Bacillus brevis, encoding two key steps of the ribulose monophosphate (RuMP) pathway, were introduced to construct a pathway for the metabolism of the toxic methanol oxidation intermediate formaldehyde. This approach resulted in a remarkably increased biomass yield on the primary substrate glucose when cultured in C-limited chemostats fed with a mixture of glucose and formaldehyde. With increasing relative formaldehyde feed concentrations, the biomass yield increased from 35% (C-mol biomass/C-mol glucose) without formaldehyde to 91% at 60% relative formaldehyde concentration. The RuMP-pathway expressing strain was also capable of growing to higher relative formaldehyde concentrations than the control strain. The presence of an endogenous methanol oxidizing enzyme activity in P. putida S12 allowed the replacement of formaldehyde with the less toxic methanol, resulting in an 84% (C-mol/C-mol) biomass yield. Thus, by introducing two enzymes of the RuMP pathway, co-utilization of the cheap and renewable substrate methanol was achieved, making an important contribution to the efficient use of P. putida S12 as a bioconversion platform host.  相似文献   

12.
A newly isolated autotrophic bacterium, Thiobacillus thioparus DW44, which is capable of degrading sulfur-containing gases, was inoculated into a pilot-scale peat biofilter to treat the exhaust gas from a night soil treatment plant. Hydrogen sulfide (H2S), methanethiol (MT), dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) in the exhaust gas were efficiently removed for six months. Average removal ratios were 99.8% for H2S, 99.0% for MT, 89.5% for DMS and 98.1% for DMDS at a space velocity of 46 h−1 during the period of operation. No acclimation period was needed to reach such a high efficiency in the removal of the gases, indicating that the ability of this bacterium to remove these gases was occurred immediately after its inoculation to the peat. Ammonia (NH3) in the exhaust gas was neutralized with SO42−, which is the final product of the oxidation of H2S, MT, DMS and DMDS by the bacterium. No remarkable decline of pH, which often causes a deterioration in bacterial activity, was observed, mainly because of the reaction of SO42− with NH3. This study is the first report on the application of an isolated microorganism to a practical deodorizing system. The inoculation of T. thioparus DW44 into the pilot-scale peat biofilter could overcome such disadvantages of the conventional peat biofilter as a long acclimation period to reach a constant gas removability and the low removability of DMS, and resulted in enhanced removal efficiency of malodorous gases.  相似文献   

13.
14.
Summary A study has been made of microbial processes in the oxidation of pyrite in aicd sulphate soil material. Such soils are formed during aeration of marine muds rich in pyrite (FeS2). Bacteria of the type ofThiobacillus ferrooxidans are mainly responsible for the oxidation of pyrite, causing a pronounced acidification of the soil. However, becauseThiobacillus ferrooxidans functions optimally at pH values bellow 4.0, its activity cannot explain the initial pH drop from approximately neutral to about 4. This was shown to be a non-biological process, in which bacteria play an insignificant part. AlthoughThiobacillus thioparus andThiobacillus thiooxidans were isolated from the acidifying soil, they did not stimulate oxidation of FeS2, but utilized reduced sulphur compounds, which are formed during the non-biological oxidation of FeS2.Ethylene-oxide-sterilized and dry-sterilized soil inoculated with pure cultures of mixtures of various thiobacilli or with freshly sampled acid sulphate soil soil did not acidify faster than sterile blanks.Thiobacillus thiooxians. Thiobacillus thioparus. Thiobacillus intermedius andThiobacillus perometabolis increased from about 104 to 105 cells/ml in media with FeS2 as energy source. However, FeS2 oxidation in the inoculated media was not faster than in sterile blanks.Attempts to isolate microorganisms other thanThiobacillus ferrooxidans, like metallogenium orLeptospirillum ferrooxidans, which might also be involved in the oxidation of FeS2 were not successful.Addition of CaCO3 to the soil prevented acidification but did not stop non-biological oxidation of FeS2.  相似文献   

15.
《Process Biochemistry》2014,49(9):1393-1401
In this study, a microbial biosensor for hydrogen sulfide (H2S) detection based on Thiobacillus thioparus immobilized in a gelatin matrix was developed. The T. thioparus was immobilized via either surface adsorption on the gelatin matrix or entrapment in the matrix. The bacterial and gelatin concentration in the support were then varied in order to optimize the sensor response time and detection limit for both methods. The optimization was conducted by a statistical analysis of the measured biosensor response with various bacterial and polymer concentrations. According to our experiments with both immobilization methods, the optimized conditions for the entrapment method were found to be a gelatin concentration of 1% and an optical density of 82. For the surface adsorption method, 0.6% gelatin and an optical density of 88 were selected as the optimal conditions. A statistical model was developed based on the extent of the biosensor response in both methods of immobilization. The maximum change in the potential of the solution was 23.16 mV for the entrapment method and 34.34 mV for the surface absorption method. The response times for the entrapment and adsorption methods were 160 s and 105 s, respectively. The adsorption method is more advantageous for the development of a gas biosensor due to its shorter response time.  相似文献   

16.
The present work aims to use a two-stage biotrickling filters for simultaneous treatment of hydrogen sulphide (H2S), methyl mercaptan (MM), dimethyl sulphide (DMS) and dimethyl disulphide (DMDS). The first biofilter was inoculated with Acidithiobacillus thiooxidans (BAT) and the second one with Thiobacillus thioparus (BTT). For separate feeds of reduced sulphur compounds (RSC), the elimination capacity (EC) order was DMDS > DMS > MM. The EC values were 9.8 gMM-S/m3/h (BTT; 78% removal efficiency (RE); empty bed residence time (EBRT) 58 s), 36 gDMDS-S/m3/h (BTT; 94.4% RE; EBRT 76 s) and 57.5 gH2S-S/m3/h (BAT; 92% RE; EBRT 59 s). For the simultaneous removal of RSC in BTT, an increase in the H2S concentration from 23 to 293 ppmv (EBRT of 59 s) inhibited the RE of DMS (97-84% RE), DMDS (86-76% RE) and MM (83-67% RE). In the two-stage biofiltration, the RE did not decrease on increasing the H2S concentration from 75 to 432 ppmv.  相似文献   

17.
Nitrate-dependent pyrite oxidation is an important process as it may prevent pollution by nitrate from agriculture. Anaerobic oxidation of pyrite with nitrate as an electron acceptor was studied in cultures of Thiobacillus denitrificans and Thiobacillus thioparus. Both strains reduced nitrate, with pyrite added as sole electron donor, but T. thioparus reduced nitrate to nitrite only. Accumulation of nitrite, however, was prevented in co-cultures of T. denitrificans and T. thioparus. Furthermore, pyrite oxidation rates were dependent on pyrite pretreatment, which results in different specific surface areas of pyrite. Initial nitrate concentration or pyrite origin did not affect the pyrite oxidation rate.  相似文献   

18.
Conversion of hydrogen sulphide (H2S) by the bacterium Thiobacillus thiooxidans to sulphur or sulphate was demonstrated in a continuous column contacter using a countercurrent flow of gas and liquid medium. The initial conversion to sulphur was much faster than subsequent oxidation to sulphate, allowing for removal of elemental sulphur. The rate of H2S removal increased with available surface area in the column bed and with time. The number of bacteria in the column increased very slowly with time, placing great importance on the initial concentration of bacteria in the column. Correspondence to: H. M. Lizama  相似文献   

19.
Response of Plant-Colonizing Pseudomonads to Hydrogen Peroxide   总被引:5,自引:2,他引:5       下载免费PDF全文
Colonization of plant root surfaces by Pseudomonas putida may require mechanisms that protect this bacterium against superoxide anion and hydrogen peroxide produced by the root. Catalase and superoxide dismutase may be important in this bacterial defense system. Stationary-phase cells of P. putida were not killed by hydrogen peroxide (H2O2) at concentrations up to 10 mM, and extracts from these cells possessed three isozymic bands (A, B, and C) of catalase activity in native polyacrylamide gel electrophoresis. Logarithmic-phase cells exposed directly to hydrogen peroxide concentrations above 1 mM were killed. Extracts of logarithmic-phase cells displayed only band A catalase activity. Protection against 5 mM H2O2 was apparent after previous exposure of the logarithmic-phase cells to nonlethal concentrations (30 to 300 μM) of H2O2. Extracts of these protected cells possessed enhanced catalase activity of band A and small amounts of bands B and C. A single form of superoxide dismutase and isoforms of catalase were apparent in extracts from a foliar intercellular pathogen, Pseudomonas syringae pv. phaseolicola. The mobilities of these P. syringae enzymes were distinct from those of enzymes in P. putida extracts.  相似文献   

20.
A copper [Cu(II)]-accumulating strain, Pseudomonas putida II-11, isolated from electroplating effluent removed a significantly high amount of Cu(II) from growth medium and buffer. A laboratory-scale fixed bed reactor with cells of P. putida II-11 immobilized in polyacrylamide gel was constructed. The adsorption of Cu(II) by the immobilized cells was pH-dependent. Maximum removal of Cu(II) by the immobilized cells was at pH 8.0. The presence of Cr(IV), Ni(II) and Zn(II) did not significantly inhibit Cu(II) uptake whereas the presence of Pb(II) reduced Cu(II) uptake by fivefold. The presence of borate, carbonate, chloride and sulphate did not significantly inhibit Cu(II) uptake. The Cu(II) removal capacity of the bioreactor with immobilized cells did not change significantly when operated at retention times greater than 3 min. More than 90% of Cu(II) adsorbed on immobilized cells could be recovered by eluting with 0.1 m HCl. The bioreactor could be used for at least five loading-elution cycles without loss of Cu(II) removal capacity. The feasibility of using this bioreactor to remove and recover Cu(II) from electroplating effluent is discussed. Correspondence to: P. K. Wong  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号