首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prolonged sonication (3 h) of equimolar amounts of lysophosphatidylcholine (lysoPC) and cholesterol (chol) produces small unilamellar vesicles. Phosphorus-31 NMR (32.20 MHz) of the vesicles gave rise to a single peak (40.5 ppm) which was split upon addition of lanthanide ions. An additional, more intense signal appeared downfield near 51.0 ppm due to 2.4 mM Pr3+, upfield near 34.3 ppm due to 5 mM Yb3+. The more intense signals responsive to paramagnetic ions were assigned to lysoPC located in the outer vesicle leaflet; the signal not shifted by the ions was assigned to inside lysoPC. Based on peak intensities, an outside-to-inside lysoPC ratio (Ro/i) of 6.5-6.6 was determined. Essentially the same Ro/i values (6.6-6.8) were obtained when Pr3+ was present only in the vesicle interior or when Pr3+ was on the inside and Pr3+ and Yb3+ were on the outside. Ion leakage did not occur. Our data demonstrate that lysoPC/chol (1:1) vesicles are drastically asymmetric and that lysoPC shows a distinct preference for the outer bilayer leaflet.  相似文献   

2.
Sonication of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-sn-glycero-3-phosphocholine (lysoPC, up to approximately 30 mol %) produces small unilamellar vesicles (SUV, 250-265 A diameter). Phosphorus-31 NMR of the POPC/lysoPC vesicles gives rise to four distinct peaks for POPC and lysoPC in the outer and in the inner bilayer leaflet which can be used to localize and quantify the phospholipids in both vesicle shells. Addition of paramagnetic ions (3 mM Pr3+) enhances outside/inside chemical shift differences and allows monitoring of membrane integrity by the absence of Pr3+ in the vesicle interior. 31P NMR shows that lysoPC in these highly curved POPC/lysoPC vesicles prefers the outer bilayer leaflet. LysoPC incorporation into POPC SUV furthermore causes a substantial and concentration-dependent decrease in spin-spin relaxations (T*2) of the outside POPC phosphorus signals from 55 ms for pure POPC vesicles (v1/2, 5.8 Hz) to 29.5 ms (v1/2, 10.8 Hz) for POPC/lysoPC vesicles containing 25 mol % lysoPC. Our findings are consistent with the idea of a cone-shaped lysoPC molecule which, for geometric reasons, is preferentially accommodated in the outer bilayer leaflet. LysoPC incorporation into POPC SUV restricts POPC headgroup motion and tightens phospholipid packing, but only in the outer bilayer shell.  相似文献   

3.
Lysophosphatidylcholine (lysoPC) monomers or micelles in water give rise to a narrow, isotropic phosphorus-31 NMR signal (40.6 ppm; v1/2 1.7 Hz; 32.2 MHz). Upon addition of praseodymium ions, the phosphorus signals are shifted downfield. However, the downfield shifts for the longer-chain lysophosphatidylcholines, which exist in the aggregated state, are far greater than those for the shorter-chain homologues, which exist as monomers. At a Pr3+/lysoPC molar ratio of 0.5, the signals of C12lysoPC through C18lysoPC were shifted by 12.1 ppm, whereas the signals of C6lysoPC and C8lysoPC were shifted by only 2.26 ppm. This very pronounced difference in lanthanide-induced downfield shifts between micelles and monomers can be utilized to determine with accuracy lysoPC critical micelle concentrations (CMC) from downfield shift-vs.-concentration plots. The CMC values we determined were 57 mM for C8lysoPC, 5.7 mM for C10lysoPC, and 0.6 mM for C12lysoPC. The shift reagent phosphorus-31 nuclear magnetic resonance technique particularly lends itself to the measurement of CMC values in the millimolar and high micromolar range. The method can equally be used for measuring critical micelle concentrations of short-chain phosphatidylcholines.  相似文献   

4.
The stoichiometric palmitoyllysophosphatidylcholine (lysoPC)/gramicidin (4:1, mol/mol) lamellar complex (Killian, J.A., De Kruijff, B., Van Echteld, C.J.A., Verkleij, A.J., Leunissen-Bijvelt, J. and De Gier, J. (1983) Biochim. Biophys. Acta 728, 141-144) is a useful model system to investigate the various aspects of lipid protein interactions. To study the effect of gramicidin on local order and motion of 1-palmitoyl-sn-glycero-3-phosphocholine (lysoPC) we employed 31P and 2H nuclear magnetic resonance (NMR) using selectively deuterated lysoPC's and we compared the results to those obtained for lysoPC in bilayers with cholesterol (1:1, mol/mol) and dipalmitoylphosphatidylcholine (DPPC) (1:4, mol/mol). 2H-NMR experiments on acyl chain deuterated lysoPC showed similar quadrupole splittings in the liquid crystalline state for the lysoPC/DPPC and the lysoPC/gramicidin samples. In the lysoPC/cholesterol sample an increase of the quadrupole splitting was found. T1 measurements showed that gramicidin decreases the lysoPC acyl chain motion, especially at the C12 position. In the lysoPC/cholesterol sample an increase of motion was observed as compared to lysoPC in fluid bilayers of DPPC. 31P-NMR and 2-H-NMR measurements of lysoPC, deuterated at the alpha- and beta-position of the choline moiety, indicated an increase in headgroup flexibility in all samples as compared to the parent compound DPPC. In addition, a change in headgroup conformation was observed. The alpha- and beta-segments in all samples exhibited concerted motion. It was found that also in the polar headgroup gramicidin induces a decrease of the rate of motion.  相似文献   

5.
The regulation of human plasma lecithin:cholesterol acyltransferase (LCAT) by changes in bilayer fluidity of substrate egg phosphatidylcholine (egg PC) unilamellar vesicles was investigated using pyrene excimer fluorescence to measure fluidity. Fluidity was decreased by adding up to 20% cholesterol or increased by adding up to 10% egg 2-lysophosphatidylcholine (lysoPC). The fluidizing effect of lysoPC was suppressed by the addition of cholesterol. LCAT activity with 10% cholesterol vesicles was decreased by adding 5% lysoPC, yet activity with 5% cholesterol vesicles was unaffected by adding 5% lysoPC. This difference may be explained by a balance between the known LCAT inhibitory effect of lysoPC and its ability to increase bilayer fluidity and thereby increase LCAT activity. LCAT esterification of up to 37% of vesicle cholesterol failed to alter the lysoPC/cholesterol balance sufficiently to influence activity in this system. The findings of our studies are in keeping with modulation of LCAT activity by bilayer fluidity, but fluidity changes caused by enzyme action are not sufficient to regulate that activity.  相似文献   

6.
A ternary phase diagram is proposed for the hydrated lamellar lipid mixture dipalmitoylphosphatidylcholine/dilauroylphosphatidylcholine/cholesterol (DPPC/DLPC/cholesterol) at room temperature. The entire composition space has been thoroughly mapped by complementary experimental techniques, revealing interesting phase behavior that has not been previously described. Confocal fluorescence microscopy shows a regime of coexisting DPPC-rich ordered and DLPC-rich fluid lamellar phases, having an upper boundary at apparently constant cholesterol mole fraction chi(chol) approximately 0.16. Fluorescence resonance energy transfer experiments confirm the identification and extent of this two-phase regime and, furthermore, reveal a 1-phase regime between chi(chol) approximately 0.16 and 0.25, consisting of ordered and fluid nanoscopic domains. Dipyrene-PC excimer/monomer measurements confirm the new regime between chi(chol) approximately 0.16 and 0.25 and also show that rigidly ordered phases seem to disappear around chi(chol) approximately 0.25. This study should be considered as a step toward a more complete understanding of lateral heterogeneity within biomembranes. Cholesterol may play a role in domain separation on the nanometer scale.  相似文献   

7.
The interaction of the major bovine seminal plasma protein PDC-109 with cholesterol was studied by employing spin-labelled analogues. It could be shown that PDC-109 does not interact directly with cholesterol molecules. However, in the presence of phospholipids we found a strong reduction of cholesterol motion by PDC-109. The fraction of immobilized cholesterol was largest for phosphorylcholine-containing lipids. This is consistent with the preferential interaction between PDC-109 and phosphatidylcholine. It is concluded that a stronger association and interaction of PDC-109 with phosphatidylcholine leads to an enhanced fraction of immobilized cholesterol analogues, but not to a phospholipid-dependent specific interaction between the protein and cholesterol. Moreover, the interaction of PDC-109 with various spin-labelled analogues of phosphatidylcholine (lysoPC, diacylPC) was investigated. In membranes of lipid vesicles the protein caused an immobilization of the phosphatidylcholine analogues mainly in the outer membrane leaflet, with no differences between diacylPC and lysoPC. The results are of relevance for understanding the physiological role of PDC-109 in the genesis of sperm cells.  相似文献   

8.
With equimolar cholesterol, lysophosphatidylcholine (lysoPC) or 1-ether-2-deoxylyso-phosphatidylcholine (etherdeoxylysoPC) form unilamellar vesicles of identical dimensions. 13C-NMR spectra of such vesicles are interpreted on the premise that suppression of a signal by broadening (i.e. decrease of T*2 relaxation time) indicates a decrease of motion of the carbon atom relative to its surroundings. The signals for sn-glycerol C-1 and C-2 are completely suppressed in the lysoPC-cholesterol vesicles. In contrast, in the vesicles containing etherdeoxylysoPC, all three glycerol carbon signals make their appearance, with the T*2 of C-2 approaching the T*2 in the monomolecularly dissolved lysolipid. This result argues for lipid-lipid complexing in the "hydrogen belts' of the lysoPC-cholesterol bilayer, specifically, for hydrogen bonding involving the hydroxyl and carbonyl groups of lysoPC and the hydroxyl of cholesterol.  相似文献   

9.
P J Spooner  D M Small 《Biochemistry》1987,26(18):5820-5825
Triacylglycerols are the major substrates for lipolytic enzymes that act at the surface of emulsion-like particles such as triglyceride-rich lipoproteins, chylomicrons, and intracellular lipid droplets. This study examines the effect of cholesterol on the solubility of a triacylglycerol, triolein, in phospholipid surfaces. Solubilities of [carbonyl-13C]triolein in phospholipid bilayer vesicles containing between 0 and 50 mol % free cholesterol, prepared by cosonication, were measured by 13C NMR. The carbonyl resonances from bilayer-incorporated triglyceride were shifted downfield in the 13C NMR spectra from those corresponding to excess, nonincorporated material. This enabled solubilities to be determined directly from carbonyl peak intensities at most cholesterol concentrations. The bilayer solubility of triolein was inversely proportional to the cholesterol/phospholipid mole ratio. In pure phospholipid vesicles the triolein solubility was 2.2 mol %. The triglyceride incorporation decreased to 1.1 mol % at a cholesterol/phospholipid mole ratio of 0.5, and at a mole ratio of 1.0 for the bilayer lipids, the triolein solubility was reduced to just 0.15 mol %. The effects of free cholesterol were more pronounced and progressive than observed previously on the bilayer solubility of cholesteryl oleate (Spooner, P. J. R., Hamilton, J. A., Gantz, D. L., & Small, D. M. (1986) Biochim. Biophys. Acta 860, 345-353]. As with cholesteryl oleate, we suggest that cholesterol also displaces solubilized triglyceride to deeper regions of the bilayer.  相似文献   

10.
The comparative effect of cholesterol (CH) versus cholesterol sulfate (CS) on dimyristoylphosphatidylcholine (DMPC) membranes has been investigated by optical microscopy, freeze-fracture electron microscopy, x-ray diffraction, and solid state 2H and 31P nuclear magnetic resonance (NMR). The sulfate analogue extends the lamellar phase domain toward high water contents, and substitution of 30 mol % CH by CS in DMPC lamellae induces the trapping of 30 wt % additional water. The greater swelling of the CS-containing systems is evidenced by determination of lamellar repeat distances at maximal hydration: 147 +/- 4 A and 64 +/- 2 A in the presence of CS and CH, respectively. 2H-NMR of heavy water demonstrates that CS binds approximately 12 more water molecules at the interface than CH whereas NMR of deuterium-labeled DMPC chains reveals that 30 mol % CS orders the membrane as 15 mol % CH at high temperature and disorders much more than CH at low temperatures. The various effects of CS versus CH are discussed by taking into account attractive Van der Waals forces and repulsive steric/electrostatic interactions of the negatively charged sulfate group.  相似文献   

11.
For canonical lipid raft mixtures of cholesterol (chol), N-palmitoylsphingomyelin (PSM), and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), electron paramagnetic resonance (EPR) of spin-labeled phospholipids--which is insensitive to domain size--is used to determine the ternary phase diagram at 23°C. No phase boundaries are found for binary POPC/chol mixtures, nor for ternary mixtures with PSM content <24 mol %. EPR lineshapes indicate that conversion from the liquid-disordered (L(α)) to liquid-ordered (L(o)) phase occurs continuously in this region. Two-component EPR spectra and several tie lines attributable to coexistence of gel (L(β)) and fluid phases are found for ternary mixtures with low cholesterol or low POPC content. For PSM/POPC alone, coexistence of L(α) and L(β) phases occurs over the range 50-95.5 mol % PSM. A further tie line is found at 3 mol % chol with endpoints at 50 and ≥77 mol % PSM. For PSM/chol, L(β)-L(o) coexistence occurs over the range 10-38 mol % chol and further tie lines are found at 4.5 and 7 mol % POPC. Two-component EPR spectra indicative of fluid-fluid (L(α)-L(o)) phase separation are found for lipid compositions: 25%POPC>10%, and confirmed by nonlinear EPR. Tie lines are identified in the L(α)-L(o) coexistence region, indicating that the fluid domains are of sufficient size to obey the phase rule. The three-phase triangle is bounded approximately by the compositions 40 and 75 mol % PSM with 10 mol % chol, and 60 mol % PSM with 25 mol % chol. These studies define the compositions of raft-like L(o) phases for a minimal realistic biological lipid mixture.  相似文献   

12.
Synaptophysin interacts with synaptobrevin in membranes of adult small synaptic vesicles. The synaptophysin/synaptobrevin complex promotes synaptobrevin to built up functional SNARE complexes thereby modulating synaptic efficiency. Synaptophysin in addition is a cholesterol-binding protein. Depleting the membranous cholesterol content by filipin or beta-methylcyclodextrin (beta-MCD) decreased the solubility of synaptophysin in Triton X-100 with less effects on synaptobrevin. In small synaptic vesicles from rat brain the synaptophysin/synaptobrevin complex was diminished upon beta-MCD treatment as revealed by chemical cross-linking. Mice with a genetic mutation in the Niemann-Pick C1 gene developing a defect in cholesterol sorting showed significantly reduced amounts of the synaptophysin/synaptobrevin complex compared to their homo- or heterozygous littermates. Finally when using primary cultures of mouse hippocampus the synaptophysin/synaptobrevin complex was down-regulated after depleting the endogenous cholesterol content by the HMG-CoA-reductase inhibitor lovastatin. Alternatively, treatment with cholesterol up-regulated the synaptophysin/synaptobrevin interaction in these cultures. These data indicate that the synaptophysin/synaptobrevin interaction critically depends on a high cholesterol content in the membrane of synaptic vesicles. Variations in the availability of cholesterol may promote or impair synaptic efficiency by interfering with this complex.  相似文献   

13.
The kinetics of exchange of radiolabeled cholesterol and phospholipids between intact Mycoplasma gallisepticum cells and unilamellar lipid vesicles were investigated over a wide range of cholesterol/phospholipid molar ratio. The change in cholesterol/phospholipid molar ratio was achieved by adapting the sterol-requiring M. gallisepticum to grow in cholesterol-poor media, providing cells with decreased unesterified cholesterol content. At least 90% of the cholesterol molecules in unsealed M. gallisepticum membranes underwent exchange at 37 degrees C as a single kinetic pool in the presence of albumin (2%, w/v). However, we observed biphasic exchange kinetics with intact cells, indicating that cholesterol translocation from the inner to outer monolayers was rate-limiting in the exchange process. Approximately 50% of the cholesterol molecules were localized in each kinetic pool, independent of the cholesterol/phospholipid molar ratio in the cells and vesicles. A striking change in the kinetic parameters for cholesterol exchange occurred between 20 and 26 mol % cholesterol; for example, when the cholesterol/phospholipid molar ratio was decreased from 0.36 to 0.25, the half-time for equilibration of the two cholesterol pools at 37 degrees C decreased from 4.6 +/- 0.5 to 2.5 +/- 0.1 h. Phospholipid exchange rates were also enhanced on decreasing the membrane cholesterol content. The ability of cholesterol to modulate its own exchange rate, as well as that of phospholipids, is suggested to arise from the sterol's ability to regulate membrane lipid order. Extensive chemical modification of the membrane surface by cross-linking of some of the protein constituents with 1,4-phenylenedimaleimide decreased the cholesterol exchange rate. Depletion of membrane proteins by treatment of growing cultures with chloramphenicol increased the cholesterol exchange rate, possibly because of removal of some of the protein mass that may impede lipid translocation. The observations that phospholipid exchange was one order of magnitude slower than cholesterol exchange and that dimethyl sulfoxide, potassium thiocyanate, and potassium salicylate enhanced the cholesterol exchange rate are consistent with a mechanism involving lipid exchange by diffusion through the aqueous phase.  相似文献   

14.
The regulation of lecithin:cholesterol acyltransferase by changes in phospholipid bilayer fluidity was investigated using pyrene excimer fluorescence to measure fluidity. Fluidity of dimyristoylphosphatidylcholine (DMPC) unilamellar vesicles was decreased by the addition of up to 20% (mol/mol) cholesterol and increased by the addition of up to 10% (mol/mol) lysoDMPC. When both cholesterol and lysoDMPC are present in the bilayer, their individual effects on fluidity are altered. These changes can be explained by complex formation between cholesterol and phospholipid as in the model of Presti et al. (Presti, F.C., Pace, R.J. and Chan, S.I. (1982) Biochemistry 21, 3831-3335). Lecithin:cholesterol acyltransferase activity with these vesicles as substrates was measured to determine whether activity can be modulated by the fluidity changes of the bilayer on which the enzyme acts. When 10% lysoDMPC, a known lecithin:cholesterol acyltransferase inhibitor, is added to the vesicles, inhibition of activity is observed. When 7.5% lysoDMPC is added to vesicles which contain either 5 or 10% cholesterol, lecithin:cholesterol acyltransferase activity increases. This increase in lecithin:cholesterol acyltransferase activity due to vesicle-fluidity increase is sufficient to overcome the decrease in activity due to lecithin:cholesterol acyltransferase inhibition. This is the first report of the ability of lysoDMPC to increase lecithin:cholesterol acyltransferase activity.  相似文献   

15.
Phospholipid lamellae are cholesterol carriers in human bile   总被引:2,自引:0,他引:2  
Cholesterol solubility and precipitation in bile are major factors in the pathogenesis of cholesterol gallstones. At present, mixed micelles and phospholipid vesicles are considered to be the only cholesterol carriers in bile. In this study we present evidence showing that phospholipid lamellae are major cholesterol carriers in human bile. Lamellae are a known aggregational form in pure phospholipid model systems. In the present study, lamellae were demonstrated by electron microscopy after negative staining and by small-angle X-ray diffraction in all human gallbladder bile samples examined. During diffraction experiments, cholesterol was found to crystallize from these lamellae. Cholesterol carriers in bile were separated by high-resolution chromatography and by prolonged ultracentrifugation. Lamellae were shown to solubilize most of the biliary cholesterol; vesicles solubilized a lesser amount; while micelles solubilized only a minor portion. Our data suggest that phospholipid aggregates are the main cholesterol carriers in bile. Bile salts may control the equilibrium between the various aggregational forms of cholesterol-carrying phospholipids.  相似文献   

16.
The solubilization of cholesteryl oleate in sonicated phosphatidylcholine vesicles containing between 0 and 50 mol% cholesterol was studied by 13C-NMR using isotopically enriched [carbonyl-13C]cholesteryl oleate. The carbonyl-13C chemical shift from cholesteryl oleate in the phospholipid/cholesterol bilayer was significantly downfield from that for cholesteryl oleate in an oil phase and the peak area, relative to that of the phospholipid carbonyl, was used to determine bilayer solubility of the ester. The solubility (with respect to phospholipid) in the phospholipid bilayer without cholesterol (2.9 mol%) was only moderately reduced (to 2.3 mol%) at cholesterol levels up to 33 mol% but showed a more marked reduction to 1.4 mol% at 40 mol% cholesterol or 1.2 mol% at 50 mol% cholesterol. Since the vesicles containing 50 mol% cholesterol were larger (520 +/- 152 A diameter) than those with no cholesterol (291 +/- 97 A diameter), we measured the solubility of cholesteryl oleate in large vesicles with no cholesterol, prepared by extrusion through polycarbonate membrane filters, and found it similar to that in small, sonicated vesicles with no cholesterol. Therefore, the larger size of vesicles was not the factor responsible for the decreased cholesteryl oleate solubility at high cholesterol contents. A more direct effect of cholesterol is envisioned where the ester becomes displaced to deeper regions of the bilayer.  相似文献   

17.
W I Calhoun  G G Shipley 《Biochemistry》1979,18(9):1717-1722
Utilizing X-ray diffraction and differential scanning calorimetry (DSC), we have studied (1) the structure and thermotropic properties of hydrated N-palmitoylsphingomyelin, (2) the interaction of N-palmitoylsphingomyelin with dimyristoyllecithin, and (3) the interaction of cholesterol with N-palmitoylsphingomyelin and dimyristoyllecithin, both individually and in a 50:50 (mol/mol) mixture. N-Palmitoylsphingomyelin forms bilayers which undergo a thermotropic order--disorder (gel--liquid crystalline) transition at 40.5 degrees C (delta H = 5.8 kcal/mol). The bilayer repeat distance is 66.8 A at 10 degrees C and 61.6 A at 50 degrees C. N-Palmitoylsphingomyelin exhibits miscibility with dimyristoylecithin in both the gel and liquid-crystalline phases, and no lateral phase separation occurs. Scanning calorimetry indicates that interaction with cholesterol is similar for both N-palmitoylsphingomyelin and dimyristoyllecithin and that in a 50:50 (mol/mol) mixture cholesterol shows no preferential affinity for either phospholipid.  相似文献   

18.
The transverse distribution of the phospholipids in vesicular H+-translocating membranes prepared from pig gastric mucosa was investigated with the aid of phospholipase C, sphingomyelinase, and trinitrobenzenesulfonic acid. The major part (80-90%) of the phosphatidylcholine and the phosphatidylethanolamine, 60% of the phosphatidylserine, and 45% of the sphingomyelin was located on the external, cytoplasmic side of the vesicle membranes. After treatment with phospholipase C the vesicles still behaved as osmometers and appeared as closed vesicles on the electron micrographs. 31P NMR indicated that the phospholipids in untreated vesicles as well as the unhydrolyzed phospholipids in phospholipase C-treated vesicles were arranged in lamellar structures. The 31P NMR spectrum of untreated vesicles to which Pr3+ ions had been added supported the conclusion that the major part of the membrane phospholipids was located on the external surface of the vesicles. A small fraction of the lipids, 3.6 mol %, was found to consist of glycosphingolipids which occurred at a concentration of 52 nmol/mg of protein.  相似文献   

19.
The preincubation at 37 degrees C of rat liver microsomal fraction, followed by re-isolation of the treated vesicles, results in a time-dependent increase in the activity of acyl-CoA: cholesterol acyltransferase. The presence of cholesterol-phospholipid (1:1, mol/mol) liposomes results in higher rate of increase in activity and under these conditions the rate of increase is liposomal cholesterol concentration-dependent. The preincubation of the microsomal fraction in the presence of [3H]cholesterol-phospholipid liposomes results in transfer of [3H]cholesterol to the re-isolated microsomal vesicles and this transfer follows first-order kinetics in respect to the donor concentration. These preincubations result also in a time-dependent and liposomal cholesterol concentration-dependent increase in the incorporation of [3H]cholesterol into the cholesteryl oleate produced on assay of cholesterol acyltransferase activity. From specific radioactivity data of the cholesteryl esters synthesised on assay of cholesterol acyltransferase in treated microsomal preparations, the rate of liposomal [3H]cholesterol equilibration with the cholesterol acyltransferase substrate pool can be calculated. The half-time of this transfer decreased with the concentration of liposomal cholesterol present during the preincubation. The activation energy for the transfer of liposomal cholesterol to the cholesterol acyltransferase substrate pool was 87.9 kJ/mol and was independent of the concentration of liposomal cholesterol. The activation energy for the rate of increase of total cholesteryl oleate was similar to this value for low concentrations of liposomal cholesterol and progressively decreased with increasing concentrations of liposomal cholesterol. The data suggest that under the present conditions, the time-dependent and temperature-dependent increase in cholesterol acyltransferase activity is due to the transfer of non-esterified cholesterol from other microsomal and/or liposomal vesicles to the vesicles that contain the enzyme and therefore to increased availability of substrate.  相似文献   

20.
The curvature, cholesterol content, and transbilayer distribution of phospholipids significantly influence the functional properties of cellular membranes, yet little is known of how these parameters interact. In this study, the transbilayer distribution of phosphatidylethanolamine (PE) is determined in vesicles with large (98 nm) and small (19 nm) radii of curvature and with different proportions of PE, phosphatidylcholine, and cholesterol. It was found that the mean diameters of both types of vesicles were not influenced by their lipid composition, and that the amino-reactive compound 2,4,6-trinitrobenzenesulphonic acid (TNBS) was unable to cross the bilayer of either type of vesicle. When large vesicles were treated with TNBS, approximately 40% of the total membrane PE was derivatized; in the small vesicles 55% reacted. These values are interpreted as representing the percentage of total membrane PE residing in the outer leaflet of the vesicle bilayer. The large vesicles likely contained approximately 20% of the total membrane lipid as internal membranes. Therefore, in both types of vesicles, PE as a phospholipid class was randomly distributed between the inner and outer leaflets of the bilayer. The proportion of total PE residing in the outer leaflet was unaffected by changes in either the cholesterol or PE content of the vesicles. However, the transbilayer distributions of individual molecular species of PE were not random, and were significantly influenced by radius of curvature, membrane cholesterol content, or both. For example, palmitate- and docosahexaenoate-containing species of PE were preferentially located in the outer leaflet of the bilayer. Membrane cholesterol content affected the transbilayer distributions of stearate-, oleate-, and linoleate-containing species. The transbilayer distributions of palmitate-, docosahexaenoate-, and stearate-containing species were significantly influenced by membrane curvature, but only in the presence of high levels of cholesterol. Thus, differences in membrane curvature and cholesterol content alter the array of PE molecules present on the surfaces of phospholipid bilayers. In cells and organelles, these differences could have profound effects on a number of critical membrane functions and processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号