首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim To delineate biogeographical patterns in Galapagos shallow‐water reef fauna at regional scales. Location Galapagos Islands. Methods Fishes and macro‐invertebrates were quantitatively censused using underwater visual techniques along more than 500 transects at defined depth strata across the Galapagos archipelago. Data were analysed using multivariate techniques to define regional patterns and identify species typical of different regions. Results Subtidal communities of fishes and macro‐invertebrates on shallow reefs differed consistently in species composition across the Galapagos archipelago, with three major biogeographical groupings: (1) the ‘far‐northern area’ containing the islands of Darwin and Wolf, (2) the ‘central/south‐eastern area’, including the east coast of Isabela, and (3) the ‘western area’, encompassing Fernandina and western Isabela. In addition, the northern islands of Pinta, Marchena and Genovesa form a separate region in the central/south‐eastern area, and Bahia Elizabeth and Canal Bolivar separate from other parts of the western area. The far‐northern bioregion is characterized by high fish species richness overall, including a high proportion of species of Indo‐Pacific origin. However, very few endemic fishes or species with distributions extending south from Ecuador (‘Peruvian’ species) are present, and the bioregion also possesses relatively low species richness of mobile macro‐invertebrate taxa. By contrast, the ‘western’ bioregion possesses disproportionately high numbers of endemic fish taxa, high numbers of cool‐temperate Peruvian fish species, and high invertebrate species richness, but very few species of Indo‐Pacific origin. The Bahia Elizabeth/Canal Bolivar bioregion possesses more endemic species and fewer species with Peruvian affinities than coasts within the western bioregion. The northern bioregion of Pinta, Marchena and Genovesa represents an overlap zone with affinities to both the far‐northern and south‐eastern islands. The south‐eastern bioregion includes species from a variety of different sources, particularly ‘Panamic’ species with distributions extending north to Central America. Main conclusions On the basis of congruent divisions for reef fish and macro‐invertebrate communities, the Galapagos archipelago can be separated into three major biogeographical areas, two of which can be further subdivided into two regions. Each of these five bioregions possesses communities characterized by a distinctive mix of species derived from Indo‐Pacific, Panamic, Peruvian and endemic source areas. The conservation significance of different regions is not reflected in counts of total species richness. The regions with the lowest overall fish species richness possess a temperate rather than tropical climate and highest levels of endemism.  相似文献   

2.
Global seagrass distribution and diversity: A bioregional model   总被引:5,自引:0,他引:5  
Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (< 60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica. The Temperate Southern Oceans bioregion includes the temperate southern coastlines of Australia, Africa and South America. Extensive meadows of low-to-high diversity temperate seagrasses are found in this bioregion, dominated by various species of Posidonia and Zostera. The tropical bioregions are the Tropical Atlantic and the Tropical Indo-Pacific, both supporting mega-herbivore grazers, including sea turtles and sirenia. The Tropical Atlantic bioregion has clear water with a high diversity of seagrasses on reefs and shallow banks, dominated by Thalassia testudinum. The vast Tropical Indo-Pacific has the highest seagrass diversity in the world, with as many as 14 species growing together on reef flats although seagrasses also occur in very deep waters. The global distribution of seagrass genera is remarkably consistent north and south of the equator; the northern and southern hemispheres share ten seagrass genera and only have one unique genus each. Some genera are much more speciose than others, with the genus Halophila having the most seagrass species. There are roughly the same number of temperate and tropical seagrass genera as well as species. The most widely distributed seagrass is Ruppia maritima, which occurs in tropical and temperate zones in a wide variety of habitats. Seagrass bioregions at the scale of ocean basins are identified based on species distributions which are supported by genetic patterns of diversity. Seagrass bioregions provide a useful framework for interpreting ecological, physiological and genetic results collected in specific locations or from particular species.  相似文献   

3.
Trap sampling over reefs in deep (mean = 20 m) and shallow (mean = 10 m) waters along c. 1500 km of coastline in tropical north‐western Australia during both day and night and in wet and dry periods yielded 23 377 fishes, representing 32 families, 58 genera and 119 species. Individuals of the Serranidae, Lutjanidae, Lethrinidae and Carangidae contributed 88·9% to the total catch. The ichthyofaunal compositions of the Kimberley, Canning and Pilbara bioregions were relatively discrete. Species composition was influenced far more by location (latitude) than by water depth, period and time of day, and underwent a gradational change southwards. The latter change reflected differences in the trends exhibited by the relative abundances of certain species with increasing latitude and the confinement of other species largely to particular regions. The three most abundant species, i.e. Lethrinus sp. 3, Lutjanus carponotatus and Lethrinus laticaudis contributed 34·8, 20·8 and 11·6% to the total catch, respectively. The first species was rarely recorded in the two most northern locations and was abundant in the four most southern locations, whereas the last two species were relatively more abundant in northern than in southern locations. Lutjanus bitaeniatus and Lutjanus johnii were found exclusively at the two locations in the Kimberley region, whereas Abalistes stellatus, Pentapodus emeryii and Lethrinus nebulosus were not caught in this region but were found in both locations of the Canning and Pilbara regions. The species composition in deep and shallow waters at each location almost invariably differed significantly between day and night and between dry and wet periods, with species such as L. bitaeniatus, L. johnii, Lutjanus sebae and A. stellatus being more abundant over deep reefs, whereas L. carponotatus, L. laticaudis, Siganus fuscescens and Lethrinus lentjan were more numerous over shallow reefs. Species such as L. johnii and Lethrinus atkinsoni were relatively more important in night‐time than daytime catches, whereas the reverse applied to Lethrinus lentjan, L. laticaudis and Choerodon cyanodus. Lethrinus sp. 3 and L. laticaudis were relatively more important in catches during the dry than wet period.  相似文献   

4.
Data on the species compositions and the ages, sizes, reproductive biology, habitats and diets of the main species in the ichthyofaunas of seven estuaries in temperate southwestern Australia have been collated. Twenty-two species spawn in these estuaries, of which 21 complete their lifecycles in the estuary. The latter group, which includes several species of atherinids and gobies with short lifecycles, make far greater contributions to the total numbers of fish in the shallows of these estuaries than in those of holarctic estuaries, such as the Severn Estuary in the United Kingdom. This is presumably related in part to far less extreme tidal water movements and the maintenance of relatively high salinities during the dry summers, and thus to more favourable conditions for spawning and larval development. However, since estuaries in southwestern Australia have tended to become closed for periods, there would presumably also have been selection pressures in favour of any members of marine species that were able to spawn in an estuary when that estuary became landlocked. Furthermore, the deep saline waters, under the marked haloclines that form in certain regions during heavy freshwater discharge in winter, act as refugia for certain estuarine species. The contributions of estuarine-spawning species to total fish numbers in the shallows varied markedly from 33 or 34% in two permanently open estuaries to ≥ 95% in an intermittently open estuary, a seasonally closed estuary and a permanently open estuary on the south coast, in which recruitment of the 0 + age class of marine species was poor. The larger estuarine species can live for several years and reach total lengths of ~ 700 mm and some estuarine species move out into deeper waters as they increase in size. Several marine species use southwestern Australian estuaries as nursery areas for protracted periods. However, sudden, marked increases in freshwater discharge in winter and resultant precipitous declines in salinity in the shallows, and in other regions where haloclines are not formed, are frequently accompanied by rapid and pronounced changes in ichthyofaunal composition, partly due to the emigration of certain marine species. In contrast, the ichthyofaunal compositions of macrotidal holarctic estuaries undergo annual, cyclical changes, due largely to the sequential entry of the juveniles of different marine species for short periods. The ichthyofaunal compositions of the narrow entrance channels, wide basins and saline riverine reaches of large, permanently open southwestern Australian estuaries vary, reflecting the marked tendency for some species to be restricted mainly to one or two of these regions. Comparative data indicate that the characteristics determined for ichthyofaunas in southwestern Australian estuaries apply in general to estuaries elsewhere in temperate Australia.  相似文献   

5.
Ecological communities are reorganizing in response to warming temperatures. For continuous ocean habitats this reorganization is characterized by large‐scale species redistribution, but for tropical discontinuous habitats such as coral reefs, spatial isolation coupled with strong habitat dependence of fish species imply that turnover and local extinctions are more significant mechanisms. In these systems, transient marine heatwaves are causing coral bleaching and profoundly altering habitat structure, yet despite severe bleaching events becoming more frequent and projections indicating annual severe bleaching by the 2050s at most reefs, long‐term effects on the diversity and structure of fish assemblages remain unclear. Using a 23‐year time series spanning a thermal stress event, we describe and model structural changes and recovery trajectories of fish communities after mass bleaching. Communities changed fundamentally, with the new emergent communities dominated by herbivores and persisting for >15 years, a period exceeding realized and projected intervals between thermal stress events on coral reefs. Reefs which shifted to macroalgal states had the lowest species richness and highest compositional dissimilarity, whereas reefs where live coral recovered exceeded prebleaching fish richness, but remained dissimilar to prebleaching compositions. Given realized and projected frequencies of bleaching events, our results show that fish communities historically associated with coral reefs will not re‐establish, requiring substantial adaptation by managers and resource users.  相似文献   

6.
This paper examines published information and gray literature about taxonomy and ecology of echinoderm species of the Colombian Pacific Coast. Unpublished collection data of specimens kept in the Marine Sciences Museum of the University of Valle are also considered. Sixty-six species are found in coastal ecosystems and shallow bottoms of ten geographical, coastal and insular localities of the Pacific coast of Colombia. Main habitats having echinoderms are: rocky cliffs and shores, coral reefs, sand beaches, mud substrates, mangroves, and shallow bottoms of mud, sand, gravel and rocks. Regular Echinoidea and Asteroidea are the most diverse and abundant groups, mainly in subtidal rocky shallow bottoms and coral reefs. Ophiuroidea are abundant below rocky boulders. Irregular Echinoidea are abundant on sand beaches. The relatively high number of species shows that this geographical area presents a high diversity of echinoderms compared with other tropical shallow and littoral zones of the world. Rocky substrates and coral reefs are the ecosystems with the highest numbers of echinoderm species and individuals. A conservation status assessment is difficult because the lack of periodical sampling and few data about deep zones. In general, the species reported in the last 25 years, have not experimented important changes in their populations, although in some specific places, populations may decrease because human activities in coastal areas increase sedimentation rates change some rocky substrates to mud or sand.  相似文献   

7.
Older species: a rejuvenation on coral reefs?   总被引:1,自引:1,他引:0  
Aim To discuss the theory that the present high species diversity and apomorphic character of the coral reef ecosystem is because of the historic accumulation of basal species from marginal habitats. Location The Indo‐West Pacific Ocean. Methods The examination of biogeographical patterns from the standpoint of paleontology, phylogeny, genetics, and empirical data. Results Fossil patterns from several clades indicate a gradient of increasing average generic age that extends outward from the high diversity reefs. Successful species that give rise to new species, genera, and families apparently originate from high diversity locations. The tropics have been a major source of evolutionary novelty, not simply a refuge that has accumulated diversity. Many plesiomorphic clades, that once dominated the shallow tropics, are now limited to the deep sea and other safe places. Recent research on several tropical fish families indicates that more apomorphic species inhabit the high diversity reefs. Genetic studies suggest that a decrease in genetic variation extends from the diversity centre toward the outer reaches of the Indo‐West Pacific. Empirical data show that it is extremely difficult for species from low diversity areas to invade places of higher diversity. Main conclusions There is no convincing evidence to indicate that basal species from marginal habitats have been able to accumulate on the coral reefs. Once such species have been displaced from a high diversity environment, there is apparently no return. The evolutionary innovations that contribute to the origination of new phyletic lines take place under conditions of high diversity and maximum competition.  相似文献   

8.
Coral reefs and their associated fauna are largely impacted by ongoing climate change. Unravelling species responses to past climatic variations might provide clues on the consequence of ongoing changes. Here, we tested the relationship between changes in sea surface temperature and sea levels during the Quaternary and present‐day distributions of coral reef fish species. We investigated whether species‐specific responses are associated with life‐history traits. We collected a database of coral reef fish distribution together with life‐history traits for the Indo‐Pacific Ocean. We ran species distribution models (SDMs) on 3,725 tropical reef fish species using contemporary environmental factors together with a variable describing isolation from stable coral reef areas during the Quaternary. We quantified the variance explained independently by isolation from stable areas in the SDMs and related it to a set of species traits including body size and mobility. The variance purely explained by isolation from stable coral reef areas on the distribution of extant coral reef fish species largely varied across species. We observed a triangular relationship between the contribution of isolation from stable areas in the SDMs and body size. Species, whose distribution is more associated with historical changes, occurred predominantly in the Indo‐Australian archipelago, where the mean size of fish assemblages is the lowest. Our results suggest that the legacy of habitat changes of the Quaternary is still detectable in the extant distribution of many fish species, especially those with small body size and the most sedentary. Because they were the least able to colonize distant habitats in the past, fish species with smaller body size might have the most pronounced lags in tracking ongoing climate change.  相似文献   

9.
We quantify the relative importance of multi‐scale drivers of reef fish assemblage structure on isolated coral reefs at the intersection of the Indian and Indo‐Pacific biogeographical provinces. Large (>30 cm), functionally‐important and commonly targeted species of fish, were surveyed on the outer reef crest/front at 38 coral reef sites spread across three oceanic coral reef systems (i.e. Christmas Island, Cocos (Keeling) Islands and the Rowley Shoals), in the tropical Indian Ocean (c. 1.126 x 106 km2). The effects of coral cover, exposure, fishing pressure, lagoon size and geographical context, on observed patterns of fish assemblage structure were modelled using Multivariate Regression Trees. Reef fish assemblages were clearly separated in space with geographical location explaining ~53 % of the observed variation. Lagoon size, within each isolated reef system was an equally effective proxy for explaining fish assemblage structure. Among local‐scale variables, ‘distance from port’, a proxy for the influence of fishing, explained 5.2% of total variation and separated the four most isolated reefs from Cocos (Keeling) Island, from reefs with closer boating access. Other factors were not significant. Major divisions in assemblage structure were driven by sister taxa that displayed little geographical overlap between reef systems and low abundances of several species on Christmas Island corresponding to small lagoon habitats. Exclusion of geographical context from the analysis resulted in local processes explaining 47.3% of the variation, highlighting the importance of controlling for spatial correlation to understand the drivers of fish assemblage structure. Our results suggest reef fish assemblage structure on remote coral reef systems in the tropical eastern Indian Ocean reflects a biogeographical legacy of isolation between Indian and Pacific fish faunas and geomorphological variation within the region, more than local fishing pressure or reef condition. Our findings re‐emphasise the importance that historical processes play in structuring contemporary biotic communities.  相似文献   

10.
Density and biomass of fishes, from shallow rocky and soft bottom habitats on the Swedish west coast, showed large seasonal variation with low values in winter and spring and with peaks in June. Season was also the most important factor determining the fish assemblage structure. Within season, however, there was a clear separation in assemblage structure between rocky-and soft-bottom habitats. There were significantly higher total fish abundances and biomasses during night compared with day catches. On soft bottoms density and biomass of fishes decreased with increasing depth, but no such pattern was seen in rocky habitats indicating that the distribution of fishes was related to vegetation cover. Altogether, 53 fish species were recorded of which 30 were common to both habitats. Species richness was similar on rocky and soft bottoms. Of the 10 most abundant species found in rocky habitats four belonged to the Labridae and three to the Gadidae. The fish assemblage on soft bottoms were of a more mixed nature with representatives among the 10 dominants from six families (Clupeidae, Cottidae, Gadidae, Gobiidae, Labridae and Pleuronectidae). When ranking the 10 dominant fish species on rocky bottoms according to biomass c . 50% of the mass was Labridae, 19% Gadidae and 13% Cottidae. In soft bottom habitats, fish biomass was mainly distributed between six families. Pleuronectidae and Gadidae were dominant and each made up 25% of the biomass, whereas Labridae only contributed 4% of the fish mass. It is concluded that the fish assemblage in rocky habitats is dominated by permanent non-commercial species (63% of biomass), whereas soft bottoms mainly function as nurseries for juvenile fishes and as feeding grounds for seasonal migrants of commercial species (80% of biomass).  相似文献   

11.
Mangroves and seagrass beds have long been perceived as important nurseries for many fish species. While there is growing evidence from the Western Atlantic that mangrove habitats are intricately connected to coral reefs through ontogenetic fish migrations, there is an ongoing debate of the value of these coastal ecosystems in the Indo-Pacific. The present study used natural tags, viz. otolith stable carbon and oxygen isotopes, to investigate for the first time the degree to which multiple tropical juvenile habitats subsidize coral reef fish populations in the Indo Pacific (Tanzania). Otoliths of three reef fish species (Lethrinus harak, L. lentjan and Lutjanus fulviflamma) were collected in mangrove, seagrass and coral reef habitats and analyzed for stable isotope ratios in the juvenile and adult otolith zones. δ13C signatures were significantly depleted in the juvenile compared to the adult zones, indicative of different habitat use through ontogeny. Maximum likelihood analysis identified that 82% of adult reef L. harak had resided in either mangrove (29%) or seagrass (53%) or reef (18%) habitats as juveniles. Of adult L. fulviflamma caught from offshore reefs, 99% had passed through mangroves habitats as juveniles. In contrast, L. lentjan adults originated predominantly from coral reefs (65–72%) as opposed to inshore vegetated habitats (28–35%). This study presents conclusive evidence for a nursery role of Indo-Pacific mangrove habitats for reef fish populations. It shows that intertidal habitats that are only temporarily available can form an important juvenile habitat for some species, and that reef fish populations are often replenished by multiple coastal habitats. Maintaining connectivity between inshore vegetated habitats and coral reefs, and conserving habitat mosaics rather than single nursery habitats, is a major priority for the sustainability of various Indo Pacific fish populations.  相似文献   

12.
Inshore marine seascapes support a diversity of interconnected habitats and are an important focus for biodiversity conservation. This study examines the importance of habitat attributes to fish assemblages across a mosaic of inshore habitats: coral reefs, rocky reefs, macroalgae beds and sand/rubble beds. Fishes and benthic habitats were surveyed at 34 sites around continental islands of the central Great Barrier Reef using baited remote underwater video stations (BRUVS). Species richness was influenced foremost by habitat type and also by structural complexity within habitat types. The most speciose assemblages occurred in coral and rocky reef habitats with high structural complexity, provided by the presence of coral bommies/overhangs, boulders and rock crevices. Nonetheless, macroalgae and sand/rubble beds also supported unique species, and therefore contributed to the overall richness of fish assemblages in the seascape. Most trophic groups had positive associations with complexity, which was the most important predictor for abundance of piscivorous fishes and mobile planktivores. There was significant differentiation of fish assemblages among habitats, with the notable exception of coral and rocky reefs. Species assemblages overlapped substantially between coral and rocky reefs, which had 60% common species, despite coral cover being lower on rocky reefs. This suggests that, for many species, rocky and coral substrates can provide equivalent habitat structure, emphasizing the importance of complexity in providing habitat refuges, and highlighting the contribution of rocky reefs to habitat provision within tropical seascapes. The results of this study support an emerging recognition of the collective value of habitat mosaics in inshore marine ecosystems.  相似文献   

13.
Beck  H. J.  Feary  D. A.  Nakamura  Y.  Booth  D. J. 《Coral reefs (Online)》2017,36(2):639-651

Warming waters and changing ocean currents are increasing the supply of tropical fish larvae to temperature regions where they are exposed to novel habitats, namely temperate macroalgae and barren reefs. Here, we use underwater surveys on the temperate reefs of south-eastern (SE) Australia and western Japan (~33.5°N and S, respectively) to investigate how temperate macroalgal and non-macroalgal habitats influence recruitment success of a range of tropical fishes. We show that temperate macroalgae strongly affected recruitment of many tropical fish species in both regions and across three recruitment seasons in SE Australia. Densities and richness of recruiting tropical fishes, primarily planktivores and herbivores, were over seven times greater in non-macroalgal than macroalgal reef habitat. Species and trophic diversity (K-dominance) were also greater in non-macroalgal habitat. Temperate macroalgal cover was a stronger predictor of tropical fish assemblages than temperate fish assemblages, reef rugosities or wave exposure. Tropical fish richness, diversity and density were greater on barren reef than on reef dominated by turfing algae. One common species, the neon damselfish (Pomacentrus coelestis), chose non-macroalgal habitat over temperate macroalgae for settlement in an aquarium experiment. This study highlights that temperate macroalgae may partly account for spatial variation in recruitment success of many tropical fishes into higher latitudes. Hence, habitat composition of temperate reefs may need to be considered to accurately predict the geographic responses of many tropical fishes to climate change.

  相似文献   

14.
The composition and trophic structure of reef fish communities in two natural and two artificial reefs along the coast of Paraíba State in north‐eastern Brazil were investigated. A total of 114 species of fish belonging to 47 families were recorded during 120 stationary visual surveys, slightly less than half (46·55%) of which were recorded at all four surveyed localities. Most species are widely distributed on the western Atlantic coast, but several are endemic to Brazil. The greatest diversity and equitability indexes were recorded at the reefs of Sapatas and Cabeço dos Cangulos, whereas the greatest richness and abundance were found at the Queimado shipwreck. The Alvarenga shipwreck reef had the least richness, diversity and equitability. The four localities studied had very similar ichthyofaunas, especially in relation to species composition. The reefs along the Paraíba coast are considered priority conservation areas by the Brazilian Ministry of the Environment, and the information generated by this study will be useful for comparison with other reefs in the region and can be directly applied to programmes seeking to protect and manage these environments.  相似文献   

15.
Aim The goal of our study was to test fundamental predictions of biogeographical theories in tropical reef fish assemblages, in particular relationships between fish species richness and island area, isolation and oceanographic variables (temperature and productivity) in the insular Caribbean. These analyses complement an analogous and more voluminous body of work from the tropical Indo‐Pacific. The Caribbean is more limited in area with smaller inter‐island distances than the Indo‐Pacific, providing a unique context to consider fundamental processes likely to affect richness patterns of reef fish. Location Caribbean Sea. Methods We compiled a set of data describing reef‐associated fish assemblages from 24 island nations across the Caribbean Sea, representing a wide range of isolation and varying in land area from 53 to 110,860 km2. Regression‐based analyses compared the univariate and combined effects of island‐specific physical predictors on fish species richness. Results We found that diversity of reef‐associated fishes increases strongly with increasing island area and with decreasing isolation. Richness also increases with increasing nearshore productivity. Analyses of various subsets of the entire data set reveal the robustness of the richness data and biogeographical patterns. Main conclusions Within the relatively small and densely packed Caribbean basin, fish species richness fits the classical species–area relationship. Richness also was related negatively to isolation, suggesting direct effects of dispersal limitation in community assembly. Because oceanic productivity was correlated with isolation, however, the related effects of system‐wide productivity on richness cannot be disentangled. These results highlight fundamental mechanisms that underlie spatial patterns of biodiversity among Caribbean coral reefs, and which are probably also are functioning in the more widespread and heterogeneous reefs of the Indo‐Pacific.  相似文献   

16.
The impacts of the unusually strong Cyclone Erica (March 2003) on coral reef habitats at a site located on the northwest coast of New Caledonia (South Pacific) were assessed using a 6-year data set (2002–2007). We examined the interannual variations of key variables describing reef habitats (live hard and soft corals, dead corals in place, coral debris, algae and relative proportion of mechanically vulnerable and resistant live hard corals). The cyclone-induced disturbances of habitats differed according to three reef types: patch reefs, barrier reefs far from passes (more than 3 km from the nearest pass) and barrier reefs near passes (less than 3 km from the nearest pass). Short-term mechanical damage was detected on the three-dimensional structure of reef habitats with a notable shift from a community dominated by mechanically vulnerable corals to one dominated by resistant corals on barrier reefs far from passes. The history of habitats and their pre-disturbance characteristics, in link with local hydrodynamics, was found to influence their short-term susceptibility to extreme events such as cyclones. However, the most significant effects appeared in the midterm (within 2 years after the cyclone) as the cover of live hard corals significantly decreased by approximately 45% between 2002 and 2004 on all reef types. The short- and midterm disturbances of coral reef habitats are discussed with regard to published temporal variations in reef fish assemblages, underlining the delayed effects of this cyclonic event on fish as well as benthic habitats. Coral reef habitats and live corals had shown significant patterns of recovery 4 years after the cyclone, followed by similar recovery in fish community, suggesting good resilience in a face of this major natural disturbance in an area under moderate anthropogenic pressure.  相似文献   

17.
Fifteen Lophelia reefs from offshore to coastal areas off northern Norway were studied using video. Health status of the coral habitat (degree of physical impact, % cover of living tissue, colony size), occurrence of trawl marks and lost fishing gear, height of coral colonies and associated fauna were analysed from 44 video-lines. Fishing impact was more frequent on the offshore reefs (36.5% of the observed areas) than those in the coastal reefs (0.6%). The most visible effects of fishing were broken and displaced coral colonies. At some sites only small scattered fragments of live corals were observed, indicating recent impact. The mean colony height of Lophelia and gorgonian corals at impacted sites was around half the size of those at non-impacted sites. Both species richness and abundance was higher at non-impacted coral habitats compared to impacted. The actinarian Protanthea simplex and unidentified brittlestars were the only taxa with higher abundance on impacted compared with non-impacted habitats. The reefs at the offshore location were protected against bottom trawling in 2009 through the establishment of a marine protected area (MPA), but a general ban against trawling on known coral reefs had already been implemented in 1999. In the MPA, signs of regrowth were observed. Most of the observed damage probably occurred over 10 years earlier. Results show that live and non-impacted cold water coral reefs have an important ecological function by enhancing the local biodiversity and fish abundance. Preventing further damage to impacted reefs may lead to full recovery within a few decades.  相似文献   

18.
Few studies have considered how seagrass fish assemblages are influenced by surrounding habitats. This information is needed for a better understanding of the connectivity between tropical coastal ecosystems. To study the effects of surrounding habitats on the composition, diversity and densities of coral reef fish species on seagrass beds, underwater visual census surveys were carried out in two seagrass habitat types at various locations along the coast of Zanzibar (Tanzania) in the western Indian Ocean. Fish assemblages of seagrass beds in a marine embayment with large areas of mangroves (bay seagrasses) situated 9 km away from coral reefs were compared with those of seagrass beds situated on the continental shelf adjacent to coral reefs (reef seagrasses). No differences in total fish density, total species richness or total juvenile fish density and species richness were observed between the two seagrass habitat types. However, at species level, nine species showed significantly higher densities in bay seagrasses, while eight other species showed significantly higher densities in reef seagrasses. Another four species were exclusively observed in bay seagrasses. Since seagrass complexity could not be related to these differences, it is suggested that the arrangement of seagrass beds in the surrounding landscape (i.e. the arrangement on the continental shelf adjacent to the coral reef, or the arrangement in an embayment with mangroves situated away from reefs) has a possible effect on the occurrence of various reef-associated fish species on seagrass beds. Fish migration from or to the seagrass beds and recruitment and settlement patterns of larvae possibly explain these observations. Juvenile fish densities were similar in the two types of seagrass habitats indicating that seagrass beds adjacent to coral reefs also function as important juvenile habitats, even though they may be subject to higher levels of predation. On the contrary, the density and species richness of adult fish was significantly higher on reef seagrasses than on bay seagrasses, indicating that proximity to the coral reef increases density of adult fish on reef seagrasses, and/or that ontogenetic shifts to the reef may reduce adult density on bay seagrasses.  相似文献   

19.
The Theory of Island Biogeography (TIB) predicts how area and isolation influence species richness equilibrium on insular habitats. However, the TIB remains silent about functional trait composition and provides no information on the scaling of functional diversity with area, an observation that is now documented in many systems. To fill this gap, we develop a probabilistic approach to predict the distribution of a trait as a function of habitat area and isolation, extending the TIB beyond the traditional species–area relationship. We compare model predictions to the body‐size distribution of piscivorous and herbivorous fishes found on tropical reefs worldwide. We find that small and isolated reefs have a higher proportion of large‐sized species than large and connected reefs. We also find that knowledge of species body‐size and trophic position improves the predictions of fish occupancy on tropical reefs, supporting both the allometric and trophic theory of island biogeography. The integration of functional ecology to island biogeography is broadly applicable to any functional traits and provides a general probabilistic approach to study the scaling of trait distribution with habitat area and isolation.  相似文献   

20.
This paper presents an analysis of the distributional patterns of blenniids (Pisces: Blenniidae) in the north‐eastern Atlantic. Two peaks of species diversity were found, both in terms of number of species and number of endemics: one in the tropical African coast and another in the Mediterranean Sea. A cluster analysis of similarity values (Jaccard coefficient) among the eastern Atlantic zoogeographical areas, revealed the following groups: a north temperate group, a tropical group formed by the tropical African coast and Mauritania, another group formed by the islands of Cape Verde, a south temperate group (South Africa), and a southern Atlantic group formed by the islands of Ascension and St Helena. Within the north temperate group, the subgroups with higher similarities were: Azores and Madeira, Canary Islands and Morocco, and the Mediterranean and the Atlantic coast of the Iberian Peninsula. Based on affinity indices, the probable directions of faunal flows were inferred. The tropical coast of Africa and the Mediterranean emerged from this analysis as probable speciation centres of the north‐eastern Atlantic blenniid fauna. The Mediterranean may have also acted as a refuge during glacial periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号