首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified a mutation of apolipoprotein B (apoB) in a kindred with hypobetalipoproteinemia. Four affected members had plasma concentrations of total cholesterol of 115 +/- 14, low density lipoprotein (LDL)-C of 48 +/- 11, and apoB of 28 +/- 9 (mg/dl mean +/- SD). The values correspond to approximately 30% the values for unaffected relatives. Triglyceride and high density lipoprotein (HDL)-C concentrations were 92 +/- 50 and 49 +/- 4, respectively, neither significantly different from unaffected relatives. Western blots of plasma apoB of affected subjects showed two major bands: apoB-100 and an apoB-75 (mol wt of approximately 418,000). DNA sequencing of the appropriate polymerase chain reaction (PCR)-amplified genomic DNA segment revealed a deletion of the cytidine at nucleotide position 10366, resulting in a premature stop codon at amino acid residue 3387. In apoB-75/apoB-100 heterozygotes, two LDL populations containing either apoB-75 or apoB-100 could be distinguished from each other by gel permeation chromatography and by immunoblotting of nondenaturing gels using monoclonal antibodies B1B3 (epitope between apoB amino acid residues 3506-3635) and C1.4 (epitope between residues 97-526). ApoB-75 LDL were smaller and more dense than apoB-100 LDL. To determine whether the low concentration of apoB-75 was due to its enhanced LDL-receptor-mediated removal, apoB-75 LDL were isolated from the proband's d 1.063-1.090 g/ml fraction (which contained most of the apoB-75 in his plasma) by chromatography on anti-apoB and anti-apoA-I immunoaffinity columns. The resulting pure apoB-75 LDL fraction interacted with the cells 1.5-fold more effectively than apoB-100 LDL (d 1.019-1.063 g/ml). To determine the physiologic mechanism responsible for the hypobetalipoproteinemia, in vivo kinetic studies were performed in two affected subjects, using endogenous labeling of apoB-75 and apoB-100 with [13C]leucine followed by multicompartmental kinetic analyses. Fractional catabolic rates of apoB-75 VLDL and LDL were 2- and 1.3-fold those of apoB-100 very low density lipoprotein (VLDL) and LDL, respectively. Production rates of apoB-75 were approximately 30% of those for apoB-100. This differs from the behavior of apoB-89, a previously described variant, whose FCRs were also increased approximately 1.5-fold relative to apoB-100, but whose production rates were nearly identical to those of apoB-100. Thus, in contrast to the apoB-89 mutation, the apoB-75 mutation imparts two physiologic defects to apoB-75 lipoproteins that account for the hypobetalipoproteinemia, diminished production and increased catabolism.  相似文献   

2.
A new, large kindred with hypobetalipoproteinemia and a previously undescribed truncated form of apolipoprotein B (apoB) has been identified. The asymptomatic, Caucasian male proband (CK, aged 37 years) has total plasma cholesterol, triglyceride, low density lipoprotein-(LDL) cholesterol, high density lipoprotein- (HDL) cholesterol, and apoB concentrations of 108, 131, 32, 50, and 16 mg/dl, respectively. Plasma samples of 11 family members spanning three generations, which had less than 5th percentile concentrations of LDL-cholesterol, contained three apoB bands detected on immunoblots: the normal apoB-100 and apoB-48 and an unusual band of apparent molecular mass of 299,356 +/- 9580 daltons (approximately 54% the molecular weight of apoB-100). Additional immunoblotting experiments using several different anti-apoB monoclonal antibodies showed that the carboxyl terminal of apoB-100 had been deleted somewhere between amino acid residues 2148-2488. A segment of genomic DNA from the proband was amplified by polymerase chain reaction (PCR) between nucleotides 7491-7791 of Exon 26 of the apoB gene. The DNA segment was cloned into pGEM3Zf(-) and sequenced. A C----T transition was found at nucleotide 7665, resulting in a premature stop codon at amino acid residue 2486 corresponding to apoB-54.8. These results were confirmed by direct sequencing of PCR products from three apoB-54.8 positive and three apoB-54.8 negative kindred members. Allele-specific oligonucleotides were used to identify other affected family members. Cosegregation of apoB-54.8 with the C----T transition occurred in all cases. Based on haplotypes constructed from restriction fragment length polymorphism, variable number of tandem repeats, and 5' insertion/deletion analyses and from the presence or absence of apoB-54.8, it was possible to assign a single allele of apoB to the mutation throughout the family. In contrast with other shorter truncations such as apoB-31, apoB-40, and apoB-46, which are found with particles in the HDL density range, and apoB-89 that is found primarily with LDL, apoB-54.8 was found primarily in very low density lipoproteins, much less in LDL, and was virtually absent in HDL. This suggests that the length of the truncation may significantly affect the metabolism of the associated lipoprotein particles.  相似文献   

3.
Low LDL cholesterol and apoB levels in plasma cosegregate with mutations of apoB in some kindreds with familial hypobetalipoproteinemia. Approximately 35 apoB mutations, many specifying apoB truncations, have been described. Based on the centile nomenclature where the full-length nature apoB consisting of 4536 amino acids is designated as apoB-100, only those truncations of apoB >25% of normal length are detectable in plasma. Previously, we reported on five unrelated kindreds with familial hypobetalipoproteinemia in whom although no apoB truncations were detectable in plasma, low apoB levels were nevertheless linked to the apoB gene. In one of those kindreds, we reported a donor splice site mutation in intron 5 (specifying apoB- 4). We now describe a nonsense mutation in exon 10 (apoB-9) in two of the other unrelated families. Both the apoB-4 and apoB-9 mutations have been reported by others in unrelated families. Recurrent mutations of apoB-40 and apoB-55 also have been reported, suggesting that recurrent mutations of apoB may account for an appreciable proportion of familial hypobetalipoproteinemia kindreds. To test this hypothesis, we searched for four apoB mutations whose products are not detected in plasma including the apoB-4, apoB-9, and two other previously reported mutations in exons 21 and 25. We studied three groups with plasma cholesterols <130 mg/dl in whom no apoB truncations were detected in plasma: a) 28 FHBL probands from St. Louis, b) 151 individual St. Louisians, and c) 28 individual Sicilians. One subject from the 28 kindreds and two subjects among 151 hypobeta individuals from St. Louis harbored the exon 10 mutation. None of the other mutations were detected. Thus, among hypobeta lipoproteinemic subjects without any detectable apoB truncations in plasma, <5% had an apoB truncation-producing mutation. As only about 0.5% of hypobeta lipoproteinemic subjects have plasma-detectable apoB truncations, our data suggest that the known apoB truncations account for only a small proportion of hypocholesterolemia.  相似文献   

4.
Low density lipoprotein receptor (LDLR)-deficient mice fed a chow diet have a mild hypercholesterolemia caused by the abnormal accumulation in the plasma of apolipoprotein B (apoB)-100- and apoB-48-carrying intermediate density lipoproteins (IDL) and low density lipoproteins (LDL). Treatment of LDLR-deficient mice with ciprofibrate caused a marked decrease in plasma apoB-48-carrying IDL and LDL but at the same time caused a large accumulation of triglyceride-depleted apoB-100-carrying IDL and LDL, resulting in a significant increase in plasma cholesterol levels. These plasma lipoprotein changes were associated with an increase in the hepatic secretion of apoB-100-carrying very low density lipoproteins (VLDL) and a decrease in the secretion of apoB-48-carrying VLDL, accompanied by a significant decrease in hepatic apoB mRNA editing. Hepatic apobec-1 complementation factor mRNA and protein abundance were significantly decreased, whereas apobec-1 mRNA and protein abundance remained unchanged. No changes in apoB mRNA editing occurred in the intestine of the treated animals. After 150 days of treatment with ciprofibrate, consistent with the increased plasma accumulation of apoB-100-carrying IDL and LDL, the LDLR-deficient mice displayed severe atherosclerotic lesions in the aorta. These findings demonstrate that ciprofibrate treatment decreases hepatic apoB mRNA editing and alters the pattern of hepatic lipoprotein secretion toward apoB-100-associated VLDL, changes that in turn lead to increased atherosclerosis.  相似文献   

5.
Studies of truncated apoB peptides in human subjects with familial hypobetalipoproteinemia, as well as of puromycin-generated spectra of nascent apoB peptides in rat and hamster liver, suggest that a minimum size is required for N-terminal fragments of apoB to be efficiently assembled into full-sized VLDL. We report here results of experiments undertaken to examine this phenomenon in greater detail by expressing individual carboxyl-truncated human apoB constructs in McArdle cells. Thus, apoB-29, -32, -37, -42, -47, -53, -70 and full length apoB-100 were transiently expressed in rat McA-RH7777 hepatoma cells, or human apoB-31 and apoB-53 were stably expressed in the same cells, and the secreted VLDL particles were characterized by kinetic gradient ultracentrifugal flotation. Calibration with rat plasma VLDL subfractions showed that about 90 and 50%, respectively, of lipoprotein particles containing endogenous rat B-100 and B-48 floated between fractions 2;-8 of the 11-fraction gradient. This corresponds to the normal VLDL diameter range of about 47 to 28 nm, with the remaining half of rat B-48 recovered as HDL particles in the 1.1 g/ml range. In contrast, regardless of their size, only 2;-5% of any of the truncated human apoB peptides expressed in these cells was recovered in the VLDL region of the gradient. The remaining 95+% of the lipoproteins were found as high density particles; as previously found in other systems the densities of the latter were inversely related to their peptide chain-length. Furthermore, transiently expressed full-length human apoB-100 was inefficiently secreted as VLDL by these cells, with the remainder appearing as LDL-sized particles. Thus, although we showed that McA-RH7777 cells secreted endogenous rat apoB as normal-sized VLDL, we found them unsuitable for our original purpose of using human apoB fragments to further define effects of apoB size on VLDL assembly. These cells appeared unable to efficiently use any size of human apoB for that process. Pulse-labeled untransfected McA-RH7777 cells chased in the presence of puromycin did, however, show a sharp decline in VLDL assembly efficiency for endogenous nascent rat apoB peptides shorter than B-48, similar to that originally found in normal rat liver.  相似文献   

6.
A monoclonal antibody to apolipoprotein (apo) B-100 (JI-H) with unique binding properties has been used to separate a population of triglyceride-rich lipoproteins from blood plasma of normotriglyceridemic individuals and patients with various forms of hypertriglyceridemia. This antibody fails to recognize an apoE-rich population of very low density lipoproteins (VLDL) containing apoB-100 as well as all triglyceride-rich lipoproteins containing apoB-48, but it binds other VLDL that contain apoE and almost all lipoproteins that contain apoB-100, but no apoE. The unbound triglyceride-rich lipoproteins separated by ultracentrifugation after separation from plasma by immunoaffinity chromatography contained 10-13% of the apoB of triglyceride-rich lipoproteins from three normotriglyceridemic individuals, 10-29% of that from five patients with endogenous hypertriglyceridemia, 40-48% of that from three patients with familial dysbetablipoproteinemia, and 65% of that from a patient with lipoprotein lipase deficiency. In all cases, the unbound triglyceride-rich lipoproteins contained more molecules of apoE and cholesteryl esters per particle than those that were bound to monoclonal antibody JI-H, and they were generally depleted of C apolipoproteins. These properties resemble those described for partially catabolized remnants of chylomicrons and VLDL. The affinity of the unbound lipoproteins for the low density lipoprotein (LDL) receptor varied widely, and closely resembled that of the total triglyceride-rich lipoproteins from individual subjects. Our results demonstrate that remnant-like chylomicrons and a population of remnant-like VLDL can be isolated and quantified in blood plasma obtained in the postabsorptive state from normotriglyceridemic and hypertriglyceridemic individuals alike.  相似文献   

7.
Inhibition of esterified and non-esterified cholesterol synthesis by lovastatin in primary rat hepatocytes suppressed the net synthesis and very-low-density lipoprotein (VLDL) secretion of apolipoprotein B (apoB)-48 and apoB-100. Lovastatin did not alter the rates of apoB-48 and apoB-100 post-translational degradation. 25-Hydroxycholesterol, which inhibited non-esterified cholesterol synthesis but increased the synthesis of cholesteryl ester, showed differential effects on the metabolism of apoB-48 and apoB-100. Whereas the secretion of apoB-48 VLDL was suppressed there was no effect on the secretion of apoB-100 VLDL. The post-translational degradation of apoB-48, but not of apoB-100, was enhanced by 25-hydroxycholesterol. The net synthesis rates of apoB-48 and apoB-100 were unaffected by 25-hydroxycholesterol. The inhibitory effect of lovastatin alone on the net synthesis of apoB-48 and apoB-100 was reversed by the simultaneous presence of 25-hydroxycholesterol, suggesting a role for newly synthesised cholesteryl ester. Prevention of the reversal effect by the acyl-CoA: cholesterol acyltransferase (ACAT) inhibitor YM 17E supported this interpretation. In the presence of lovastatin, restoration of the net synthesis of apoB by 25-hydroxycholesterol was not accompanied by an increased VLDL output of apoB-48 and apoB-100. However, under these conditions there was an increased post-translational degradation of apoB-48 and apoB-100. These results suggest that interference with intracellular cholesterol and cholesteryl ester metabolism interrupts VLDL assembly at sites of both apoB net synthesis and post-translational degradation.  相似文献   

8.
Objective: The metabolic syndrome is characterized by defective hepatic apolipoprotein B‐100 (apoB) metabolism. Hepato‐intestinal cholesterol metabolism may contribute to this abnormality. Research Methods and Procedures: We examined the association of cholesterol absorption and synthesis with the kinetics of apoB in 35 obese subjects with the metabolic syndrome. Plasma ratios of campesterol and lathosterol to cholesterol were used to estimate cholesterol absorption and synthesis, respectively. Very‐low‐density lipoprotein (VLDL), intermediate‐density lipoprotein (IDL), and low‐density lipoprotein apoB kinetics were studied using stable isotopy and mass spectrometry. Kinetic parameters were derived using multicompartmental modeling. Results: Compared with controls, the obese subjects had significantly lower plasma ratios of campesterol, but higher plasma ratios of lathosterol (p < 0.05 in both). This was associated with elevated VLDL‐apoB secretion rate (p < 0.05) and delayed fractional catabolism of IDL and low‐density lipoprotein‐apoB (p < 0.01). In the obese group, plasma ratios of campesterol correlated inversely with VLDL‐apoB secretion (r = ?0.359, p < 0.05), VLDL‐apoB (r = ?0.513, p < 0.01) and IDL‐apoB (r = ?0.511, p < 0.01) pool size, and plasma lathosterol ratio (r = ?0.366, p < 0.05). Subjects with low cholesterol absorption had significantly higher VLDL‐apoB secretion, VLDL‐apoB and IDL‐apoB pool size, and plasma lathosterol ratio (p < 0.05 in both) than those with high cholesterol absorption. Discussion: Subjects with the metabolic syndrome have oversecretion of VLDL‐apoB and decreased catabolism of apoB‐containing particles and low absorption and high synthesis rates of cholesterol. These changes in cholesterol homeostasis may contribute to the kinetic defects in apoB metabolism in the metabolic syndrome.  相似文献   

9.
The effect of apolipoprotein (apo) E genotype on apoB-100 metabolism was examined in three normolipidemic apoE2/E2, five type III hyperlipidemic apoE2/E2, and five hyperlipidemic apoE3/E2 subjects using simultaneous administration of 131I-VLDL and 125I-LDL, and multi-compartmental modeling. Compared with normolipidemic apoE2/E2 subjects, type III hyperlipidemic E2/E2 subjects had increased plasma and VLDL cholesterol, plasma and VLDL triglycerides, and VLDL and intermediate density lipoprotein (IDL) apoB concentrations (P < 0.05). These abnormalities were chiefly a consequence of decreased VLDL and IDL apoB fractional catabolic rate (FCR). Compared with hyperlipidemic E3/E2 subjects, type III hyperlipidemic E2/E2 subjects had increased IDL apoB concentration and decreased conversion of IDL to LDL particles (P < 0.05). In a pooled analysis, VLDL cholesterol was positively associated with VLDL and IDL apoB concentrations and the proportion of VLDL apoB in the slowly turning over VLDL pool, and was negatively associated with VLDL apoB FCR after adjusting for subject group. VLDL triglyceride was positively associated with VLDL apoB concentration and VLDL and IDL apoB production rates after adjusting for subject group. A defective apoE contributes to altered lipoprotein metabolism but is not sufficient to cause overt hyperlipidemia. Additional genetic mutations and environmental factors, including insulin resistance and obesity, may contribute to the development of type III hyperlipidemia.  相似文献   

10.
In this study, we tested the hypothesis that two separate pathways, the two-step process and an apolipoprotein B (apoB) size-dependent lipidation process, give rise to different lipoproteins. Expression of apoB-100 and C-terminally truncated forms of apoB-100 in McA-RH7777 cells demonstrated that VLDL particles can be assembled by apoB size-dependent linear lipidation, resulting in particles whose density is inversely related to the size of apoB. This lipidation results in a LDL-VLDL 2 particle containing apoB-100. VLDL 1 is assembled by the two-step process by apoB-48 and larger forms of apoB but not to any significant amount by apoB-41. The major amount of intracellular apoB-80 and apoB-100 banded with a mean density of 1.10 g/ml. Its formation was dependent on the sequence between apoB-72 and apoB-90. This dense particle, which is retained in the cell, possibly by chaperones or association with the microsomal membrane, is a precursor of secreted VLDL 1. The intracellular LDL-VLDL 2 particles formed during size-dependent lipidation appear to be the precursors of intracellular VLDL 1. We propose that the dense apoB-100 intracellular particle is converted to LDL-VLDL 2 by size-dependent lipidation. LDL-VLDL 2 is secreted or converted to VLDL 1 by the uptake of the major amount of triglycerides.  相似文献   

11.
Apolipoprotein E (apoE) is essential for the clearance of plasma chylomicron and VLDL remnants. The human APOE locus is polymorphic and 5-10% of APOE*2 homozygotes exhibit type-III hyperlipoproteinemia (THL), while the remaining homozygotes have less than normal plasma cholesterol. In contrast, mice expressing APOE*2 in place of the mouse Apoe (Apoe(2/2) mice) are markedly hyperlipoproteinemic, suggesting a species difference in lipid metabolism (e.g., editing of apolipoprotein B) enhances THL development. Since apoB-100 has an LDLR binding site absent in apoB-48, we hypothesized that the Apoe(2/2) THL phenotype would improve if all Apoe(2/2) VLDL contained apoB-100. To test this, we crossed Apoe(2/2) mice with mice lacking the editing enzyme for apoB (Apobec(-/-)). Consistent with an increase in remnant clearance, Apoe(2/2). Apobec(-/-) mice have a significant reduction in IDL/LDL cholesterol (IDL/LDL-C) compared with Apoe(2/2) mice. However, Apoe(2/2).Apobec(-/-) mice have twice as much VLDL triglyceride as Apoe(2/2) mice. In vitro tests show the apoB-100-containing VLDL are poorer substrates for lipoprotein lipase than apoB-48-containing VLDL. Thus, despite a lowering in IDL/LDL-C, substituting apoB-48 lipoproteins with apoB-100 lipoproteins did not improve the THL phenotype in the Apoe(2/2).Apobec(-/-) mice, because apoB-48 and apoB-100 differentially influence the catabolism of lipoproteins.  相似文献   

12.
Hyperlipidemia is a prominent feature of the nephrotic syndrome. Lipoprotein abnormalities include increased very low and low density lipoprotein (VLDL and LDL) cholesterol and variable reductions in high density lipoprotein (HDL) cholesterol. We hypothesized that plasma cholesteryl ester transfer protein (CETP), which influences the distribution of cholesteryl esters among the lipoproteins, might contribute to lipoprotein abnormalities in nephrotic syndrome. Plasma CETP, apolipoprotein and lipoprotein concentrations were measured in 14 consecutive untreated and 7 treated nephrotic patients, 5 patients with primary hypertriglyceridemia, and 18 normolipidemic controls. Patients with nephrotic syndrome displayed increased plasma concentrations of apoB, VLDL, and LDL cholesterol. The VLDL was enriched with cholesteryl ester (CE), shown by a CE/triglyceride (TG) ratio approximately twice that in normolipidemic or hypertriglyceridemic controls (P < 0.001). Plasma CETP concentration was increased in patients with untreated nephrotic syndrome compared to controls (3.6 vs. 2.3 mg/l, P < 0.001), and was positively correlated with the CE concentration in VLDL (r = 0.69, P = 0.004) and with plasma apoB concentration (r = 0.68, P = 0.007). Treatment with corticosteroids resulted in normalization of plasma CETP and of the CE/TG ratio in VLDL. An inverse correlation between plasma CETP and HDL cholesterol was observed in hypertriglyceridemic nephrotic syndrome patients (r = -0.67, P = 0.03). The dyslipidemia of nephrotic syndrome includes increased levels of apoB-lipoproteins and VLDL that are unusually enriched in CE and likely to be atherogenic. Increased plasma CETP probably plays a significant role in the enrichment of VLDL with CE, and may also contribute to increased concentrations of apoB-lipoproteins and decreased HDL cholesterol in some patients.  相似文献   

13.
We have used an extraction procedure, which released membrane-bound apoB-100, to study the assembly of apoB-48 VLDL (very low density lipoproteins). This procedure released apoB-48, but not integral membrane proteins, from microsomes of McA-RH7777 cells. Upon gradient ultracentrifugation, the extracted apoB-48 migrated in the same position as the dense apoB-48-containing lipoprotein (apoB-48 HDL (high density lipoprotein)) secreted into the medium. Labeling studies with [(3)H]glycerol demonstrated that the HDL-like particle extracted from the microsomes contains both triglycerides and phosphatidylcholine. The estimated molar ratio between triglyceride and phosphatidylcholine was 0.70 +/- 0.09, supporting the possibility that the particle has a neutral lipid core. Pulse-chase experiments indicated that microsomal apoB-48 HDL can either be secreted as apoB-48 HDL or converted to apoB-48 VLDL. These results support the two-step model of VLDL assembly. To determine the size of apoB required to assemble HDL and VLDL, we produced apoB polypeptides of various lengths and followed their ability to assemble VLDL. Small amounts of apoB-40 were associated with VLDL, but most of the nascent chains associated with VLDL ranged from apoB-48 to apoB-100. Thus, efficient VLDL assembly requires apoB chains of at least apoB-48 size. Nascent polypeptides as small as apoB-20 were associated with particles in the HDL density range. Thus, the structural requirements of apoB to form HDL-like first-step particles differ from those to form second-step VLDL. Analysis of proteins in the d < 1.006 g/ml fraction after ultracentrifugation of the luminal content of the cells identified five chaperone proteins: binding protein, protein disulfide isomerase, calcium-binding protein 2, calreticulin, and glucose regulatory protein 94. Thus, intracellular VLDL is associated with a network of chaperones involved in protein folding. Pulse-chase and subcellular fractionation studies showed that apoB-48 VLDL did not accumulate in the rough endoplasmic reticulum. This finding indicates either that the two steps of apoB lipoprotein assembly occur in different compartment or that the assembled VLDL is transferred rapidly out of the rough endoplasmic reticulum.  相似文献   

14.
15.
In vitro lipolysis of very low density lipoprotein (VLDL) from normolipidemic and familial dysbetalipoproteinemic plasma by purified bovine milk lipoprotein lipase was studied using the combined single vertical spin and vertical autoprofile method of lipoprotein analysis. Lipolysis of normolipidemic plasma supplemented with autologous VLDL resulted in the progressive transformation of VLDL to low density lipoprotein (LDL) via intermediate density lipoprotein (IDL) with the transfer of the excess cholesterol to high density lipoprotein (HDL). At the end of 60 min lipolysis, 92-96% of VLDL triglyceride was hydrolyzed, and, with this process, greater than 95% of the VLDL cholesterol and 125-I-labeled VLDL protein was transferred from the VLDL to the LDL and HDL density region. When VLDL from the plasma of an individual with familial dysbetalipoproteinemia was substituted for VLDL from normolipidemic plasma, less than 50% of the VLDL cholesterol and 65% of 125I-labeled protein was removed from the VLDL density region, although 84-86% of VLDL triglyceride was lipolyzed. Analysis of familial dysbetalipoproteinemic VLDL fractions from pre- and post-lipolyzed plasma showed that the VLDL remaining in the postlipolyzed plasma (lipoprotein lipase-resistant VLDL) was richer in cholesteryl ester and tetramethylurea-insoluble proteins than that from prelipolysis plasma; the major apolipoproteins in the lipoprotein lipase-resistant VLDL were apoB and apoE. During lipolysis of normolipidemic VLDL containing trace amounts of 125I-labeled familial dysbetalipoproteinemic VLDL, removal of VLDL cholesterol was nearly complete from the VLDL density region, while removal of 125I-labeled protein was only partial. A competition study for lipoprotein lipase, comparing normolipidemic and familial dysbetalipoproteinemic VLDL to an artificial substrate ([3H]triolein), revealed that normolipidemic VLDL is clearly better than familial dysbetalipoproteinemic VLDL in competing for the release of 3H-labeled free fatty acids. The results of this study suggest that, in familial dysbetalipoproteinemic individuals, a subpopulation of VLDL rich in cholesteryl ester, apoB, and apoE is resistant to in vitro conversion by lipoprotein lipase to particles having LDL-like density. The presence of this lipoprotein lipase-resistant VLDL in familial dysbetalipoproteinemic subjects likely contributes to the increased level of cholesteryl ester-rich VLDL and IDL in the plasma of these subjects.  相似文献   

16.
Transgenic (Tg) mice that overexpress the human apolipoprotein A-V gene (APOA5) yet lack an endogenous mouse apoa5 gene (APOA5 Tg mice) were generated. Subsequently, the effect of human apoA-V expression on plasma triglyceride (TG) concentration and lipoprotein and apolipoprotein distribution was determined and compared with that in mice deficient in apoA-V (apoa5(-/-) mice). NMR analysis of plasma lipoproteins revealed that APOA5 Tg mice had a very low VLDL concentration (26.4 +/- 7.7 nmol/dl), whereas VLDL in apoa5(-/-) mice was 18- fold higher (467 +/- 152 nmol/dl). SDS-PAGE analysis of the d < 1.063 g/ml plasma fraction revealed that the apoB-100/apoB-48 ratio was 14-fold higher in APOA5 Tg versus apoa5(-/-) mice and that the apoE/total apoB ratio was 7-fold greater in APOA5 Tg versus apoa5(-/-) mice. It is anticipated that a reduction in apoB-100/apoB-48 ratio as well as that for apoE/apoB would impair the uptake of VLDL and remnants in apoa5(-/-) mice, thereby contributing to increased plasma TG levels. The concentration of apoA-V in APOA5 Tg mice was 12.5 +/- 2.9 microg/ml, which is approximately 50- to 100-fold higher than that reported for normolipidemic humans. ApoA-V was predominantly associated with HDL but was rapidly and efficiently redistributed to apoA- V-deficient VLDL upon incubation. Consistent with findings reported for human subjects, apoA-V concentration was positively correlated with TG levels in normolipidemic APOA5 Tg mice. It is conceivable that, in a situation in which apoA-V is chronically overexpressed, complex interactions among factors regulating TG homeostasis may result in a positive correlation of apoA-V with TG concentrations.  相似文献   

17.
18.
Familial hypobetalipoproteinemia: a review   总被引:3,自引:0,他引:3  
We review the genetics and pathophysiology of familial hypobetalipoproteinemia (FHBL), a mildly symptomatic genetically heterogeneous autosomal trait. The minority of human FHBL is caused by truncation-specifying mutations of the APOB gene on chromosome 2. In seven families, linkage to chromosome 2 is absent, linkage is instead to chromosome 3 (3p21). In others, linkage is absent to both APOB and to 3p21. Apolipoprotein B-100 (apoB-100) levels are approximately 25% of normal, instead of the 50% expected based on the presence of one normal allele due to reduced rates of production. The presence of the truncating mutation seems to have a "dominant recessive" effect on apoB-100 secretion. Concentrations of apoB truncations in plasma differ by truncation but average at approximately 10% of normal levels. Lipoproteins bearing truncated forms of apoB are cleared more rapidly than apoB-100 particles. In contrast with apoB-100 particles cleared primarily in liver via the LDL receptor, most apoB truncation particles are cleared in renal proximal tubular cells via megalin. Since apoB defects cause a dysfunctional VLDL-triglyceride transport system, livers accumulate fat. Hepatic synthesis of fatty acids is reduced in compensation. Informational lacunae remain about genes affecting fat accumulation in liver, and the modulation of liver fat in the presence apoB truncation defects.  相似文献   

19.
Through its interaction with the low density lipoprotein (LDL) receptor, apolipoprotein (apo) B-100 is a major determinant of LDL metabolism and plasma cholesterol. Its receptor binding ability is conformation-dependent and requires its expression on the right lipoprotein particles. The structural signal that targets apoB-100 to LDL is unknown. We have microinjected a human apoB-100 minigene construct comprising less than 25% of the apoB-100 sequence driven by the natural apoB promoter to produce transgenic mice. The transgene product was expressed at a high level and was present exclusively in the LDL of these animals. Analysis of the responsible sequence (residues 2878-3925 of apoB-100) reveals unique structural features that may be important in its role as an LDL-targeting domain.  相似文献   

20.
Noninsulin-dependent diabetics, whose plasma contained no detectable beta-VLDL (very low density lipoprotein), had a proportion (0.23 +/- 0.04) of plasma apolipoprotein E in the form of an abnormal lipoprotein not recognized by antibodies to apoB-100 from LDL (low density lipoprotein) or apoA-I from HDL (high density lipoprotein). This lipoprotein, abnormally rich in free cholesterol and apoE, had a calculated particle density within the low density lipoprotein range. It competed with LDL at the apoB,E receptor of normal fibroblasts and stimulated cholesteryl ester accumulation in mouse peritoneal macrophages. However, it did not compete with the binding of labeled rabbit beta-VLDL to macrophages. A much lower proportion of apoE (0.04 +/- 0.03) was in this form in the plasma of patients with insulin-dependent diabetes who had a comparable degree of hyperglycemia. The diabetic lipoprotein was absent in normoglycemic control subjects. The net transport of cholesterol from cell membranes to the plasma of noninsulin-dependent diabetics (and to a lesser extent, insulin-dependent diabetics) was inhibited relative to control values, and the magnitude of this inhibition was well correlated with the concentration of the abnormal lipoprotein of diabetes in plasma (r = 0.66 and 0.75, respectively). These findings suggest that diabetic plasma contains an abnormal and novel low density lipoprotein that mediates the abnormal cholesterol transport characteristic of human diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号