首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A restriction enzyme analysis of the repeat structure of mouse satellite, sheep satellite II, human highly repetitive fractions, calf satellite I, and a repetitive fraction of the rat indicates that those DNAs share repeat periodicites in common with one another and with the highly repetitive component α DNA of the African green monkey. The basic repeat periodicity of component α is 176 ± 4 nucleotide base-pairs: the repeat periodicities of the various highly repetitive fractions described here also seem based on this fundamental unit, but it is disguised by a superimposed, higher order repeat organization in each case. The higher orders of organization are based on integral multiples of the basic unit which may reflect the nucleosome spacing of constitutive heterochromatin. With the exception of component α DNA, which shows a repeat structure based on a monomer of 176 ± 4 nucleotide base-pairs, all of the highly repetitive DNAs examined showed a preference for even-numbered or geometric multiples of the basic unit in their higher order sequence organization. It is suggested that such organization is a relatively recent development in the hierarchical evolution of the sequences.Several models are discussed which may account for the higher order organization and expansion of these highly repetitive DNAs. Either a modified unequal crossover model (Smith, 1973) or a modified replicative loop model (Keyl, 1965a) seems consistent with many of the properties of highly repetitive DNAs. The models may have implications for the number, distribution and intranuclear rearrangements of transcribed sequences associated with such DNAs.  相似文献   

2.
alpha-Satellite DNA containing chromatin from African green monkey cells (CV-1 cells) has been used to study the question whether or not nucleosomes are arranged in phase with the 172 bp repeat unit of the satellite DNA. Digestion experiments with DNAase II led us to exclude a simple phase relationship between the nucleosomal and the satellite DNA repeats. Digestion of CV-1 nuclei with micrococcal nuclease and endogenous nuclease (s) produced a series of sharp bands in the satellite DNA register over a background of heterogeneous length fragments. This observation is explained by a preferential cleavage of certain nucleotide sequences by these nucleases and is not in contradiction to our conclusion that a simple phase relationship does not exist.  相似文献   

3.
In DNA transfer experiments, using the cloned thymidine kinase (tk) gene from HSV I as selective marker, highly repetitive DNA from African green monkey cells (α-satellite) was introduced into mouse cells by the calcium technique. The tk+ transformants (transformation is defined as a change in the genotype by introduction of foreign DNA) contained exogenous DNA in amounts that can be visualized in most cases directly in ethidium bromide (EB)-stained gels. In two transformants it represented approx. 0.1% of the host genome. After transfer into the recipient cells the organization of the α-satellite has been changed as deduced by analysis with restriction nucleases. According to in situ hybridization experiments, most (if not all) of the α-satellite is present at one chromosomal location of the host genome.  相似文献   

4.
The DNA of the African green monkey contains three components that are distinguishable by the kinetics of reassociation. The rapidly reassociating component represents about 20% of the total DNA and is composed almost entirely of a sequence (AGMr(HindIII)-1) which is repeated 6.8 x 10(6) times. The majority of the AGMr(HindIII)-1 sequences are organized in long tandem repeats of a segment of 172 base pairs in length. However, a fraction of the AGMr (HindIII)-1 sequences is interspersed with another 37% of the genome. The structure of the chromatin containing the AGMr-(HindIII)-1 sequence is indistinguishable from that containing total DNA. Furthermore, there is nothing inherent in the nucleotide sequence of AGMr(HindIII)-1 which specifies a unique location for nucleosomes.  相似文献   

5.
In the African green monkey genome, 20% of the total DNA consists of a highly reiterated DNA sequence that occurs largely in long tandem arrays of a repeat unit that is 172 base-pairs in length. The DNA of the baboon contains sequences homologous to this repeat unit. However, in the baboon genome, these sequences comprise roughly 6% of the total DNA and alternate in a regular fashion with a DNA segment that may be distantly related to the monkey repeat unit. The sequences in the baboon that are homologous to the monkey repeat unit are contained within a 340 base-pair repeat unit of the highly repeated DNA fraction of the baboon. The extent of nucleotide divergence of the homologous repeated sequences between the two species is estimated to be about 10%.  相似文献   

6.
By the use of restriction endonucleases the organization of the alpha-satellite DNA from African green monkey cells (Cercopithecus aethiops) has been analyzed. With endo R-HindIII, endo R-AluI and with endo R-EcoRI at conditions of low salt and high pH (endo R-EcoRI) all of the satellite was digested while only a part of the satellite was cleaved with endo R-Bsu and endo R-EcoRI under standard conditions. With each of the four nucleases a series of fragments was formed which were multiplies in size of a basic repeat unit linked in tandem arrays in the intact satellite. The quantitative evaluation of the digestion with each nuclease as well as with combinations of two nucleases yielded information about the distribution of the cleavage sites. While the arrangement of the endo R-HindIII cleavage sites conforms to a random distribution across the entire satellite, the results from the endo R-Bsu and endo R-EcoRI cleavage patterns are consistent with a picture where the cleavage sites are clustered in fractions of the satellite. Since endo R-AluI recognizes the central four nucleotide pairs of the endo R-HindIII cleavage site, the redigestion of the endo R-HindIII dimer with endo R-AluI gave information about the distribution of mutations in the satellite. The results of these experiments together with the comparison of the sequence divergence determined from digestion with endo R-HindIII and endo R-EcoRI lend support to the hypothesis that mutations have affected all bases in the satellite evenly. The gamma-satellite, another fraction of the African green monkey DNA, could be separated by Ag+/CsSO4 density gradient centrifugation into two components. With the three restriction nucleases used both components gave a background of fragments of heterogenous length on gel electrophoresis with some faint bands of no apparent regularity in one case.  相似文献   

7.
An analysis of the repeat structure of the highly repetitive sequence, component α DNA of the African green monkey, shows that the DNA contains restriction sites for EcoRI, EcoRI1, HindIII and HaeIII. All four restriction enzyme activities indicate a basic repeat length of 176 ± 4 base-pairs. In addition to primary EcoRI1 and HindIII sites, about 59% of the repeat sequences contain secondary EcoRI1 sites and about 36% of the repeat sequences contain secondary HindIII sites. The secondary sites are located less than 176 base-pairs from the primary sites and their cleavage yields several complex series of minor, intermediate segments in gels of the partial EcoRI1 or HindIII digests. Cleavage at the secondary sites yields segments shorter than the unit monomer in the limit digests. The sites for EcoRI, EcoRI1, HindIII and HaeIII have been mapped within the repeat unit.Treatment of the monkey nuclei with micrococcal nuclease at 2 °C and in the presence of 80 mm-NaCl reveals two distinct populations of nucleosomes. One population contains bulk DNA sequences, and after cleavage with micrococcal nuclease this population yields heterogeneous segments of DNA spanning 180 to 200 base-pairs in length. The other population contains component α sequences and after cleavage with micrococcal nuclease yields homogeneous segments of component α DNA that are exact multiples of the basic sequence repeat unit of 176 base-pairs. Thus, the cleavage by micrococcal nuclease of nucleosomal arrays containing component α sequences is as regular and precise as the cleavage of the purified DNA by the restriction enzymes. The resolution of the two distinct subsets of nucleosomes in the monkey nuclei is dependent upon the conditions of ionic strength and temperature employed during the nuclear isolation and the micrococcal nuclease digestion.These observations are consistent with a phase relation between the component α repeat sequences and the associated nucleosomal proteins (Musich et al., 1977b). They are also in accord with the hypothesis that the subunit structure of constitutive heterochromatin modulates or determines the repeat sequence structure and hence, the evolution of many highly repetitive mammalian DNAs (Maio et al., 1977).  相似文献   

8.
The intranuclear distribution of [3H]-estradiol binding sites was studied in highly purified nuclei isolated from calf endometrial tissue pre-incubated with the labeled hormone. The major part (approximately 85%) of the receptor bound estradiol was found associated with the extranucleolar chromatin; only a negligible amount of [3H]-estradiol (approximately 8%) sedimented with the nucleolar fraction. [3H]-estradiol labeled chromatin was then fragmented by sonication and fractionated by sucrose density gradient sedimentation under different conditions of centrifugation. The vast majority of the [3H]-estradiol was invariably found to be associated with a fast sedimenting fraction which contained only 5 to 10% of the nuclear DNA. The concentration of estradiol receptors (per weight of DNA) in this fraction was 25- to 50-fold higher than that found in the slow sedimenting major chromatin component. Chemical analysis showed this fraction to have a high protein/DNA ratio but no phospholipids were detected.  相似文献   

9.
10.
11.
An autonomously replicating shuttle vector was used to investigate enhancement of plasmid-chromosome recombination in mammalian host cells by gamma irradiation and UV light. Sequences homologous to the shuttle vector were stably inserted into the genome of African green monkey kidney cells to act as the target substrate for these recombination events. The shuttle vector molecules were irradiated at various doses before transfection into the mammalian host cells that contained the stable insertions. The homologous transfer of the bacterial ampicillin resistance gene from the inserted sequences to replace a mutant ampicillin sensitivity gene on the shuttle vector was identified by the recovery of ampicillin-resistant plasmids after Hirt extraction and transformation into Escherichia coli host cells. Gamma irradiation increased homologous shuttle vector-chromosome recombination, whereas UV light did not increase the frequency of recombinant plasmids detected. Introducing specific double-strand breaks in the plasmid or prolonging the time of plasmid residence in the mammalian host cells also enhanced plasmid-chromosome recombination. In contrast, plasmid mutagenesis was increased by UV irradiation of the plasmid but did not change with time. The ampicillin-resistant recombinant plasmid molecules analyzed appeared to rise mostly from nonconservative exchanges that involved both homologous and possibly nonhomologous interactions with the host chromosome. The observation that similar recombinant structures were obtained from all the plasmid treatments and host cells used suggests a common mechanism for plasmid-chromosome recombination in these mammalian cells.  相似文献   

12.
Segments of African green monkey DNA containing sequences of the highly reiterated cryptic satellite DNA called α-satellite were selected from a library in λ bacteriophage. This λ library was constructed to enrich for monkey segments that contain (1) irregular regions of α-satellite and (2) α-satellite linked to other monkey sequences. At least 11 of 15 cloned monkey segments between 13 × 103 and 16 × 103 base-pairs in length, selected by hybridization to α-satellite, also include other monkey sequences.In general, α-satellite sequences close to the junctions with non-α-satellite DNA contain an abundance of divergent forms compared to the average frequency of such forms within total α-satellite. Many of the cloned segments are missing some of the HinIII sites that occur once in most monomer units of α-satellite, and likewise several of the cloned segments contain restriction sites that rarely occur in α-satellite as a whole. In some segments HinIII sites occur that are spaced at distances other than the basic multiple of 172 base-pairs. At least one of the cloned segments, however, is composed mainly of typical 172 base-pair long α-satellite monomer units.Several of these cloned DNAs have been mapped by restriction endonuclease digestion and Southern blot analysis and the arrangements of α-satellite and non-α-satellite sequences have been determined. In addition to segments that contain a boundary where satellite meets other types of sequence, some contain two such boundaries and thus satellite flanks a non-α-satellite segment. Further, two different types of non-α-satellite sequence appear to be common to more than one phage, perhaps indicating some recurring organization at boundaries.  相似文献   

13.
Individual monomer and dimer units of the highly repeated alpha-component DNA of African Green monkeys were isolated and amplified by molecular cloning in pBR322. The purified sequences were characterized by digestion with restriction endonucleases and by primary nucleotide sequence analysis. Comparison of the cloned units with the 172 base pair long sequence representing the most abundant nucleotide at each position in the set of sequences comprising alpha-component allows the following conclusions. The set of sequences comprising alpha-component is made up of a very large number of related but slightly divergent sequences. Two neighboring repeats of the monomer unit are not necessarily more similar to one another than are randomly isolated monomers.  相似文献   

14.
Centromeres of mammalian chromosomes are rich in repetitive DNAs that are packaged into specialized nucleoprotein structures called heterochromatin. In humans, the major centromeric repetitive DNA, alpha-satellite DNA, has been extensively sequenced and shown to contain binding sites for CENP-B, an 80-kDa centromeric autoantigen. The present report reveals that African green monkey (AGM) cells, which contain extensive alpha-satellite arrays at centromeres, appear to lack the well-characterized CENP-B binding site (the CENP-B box). We show that AGM cells express a functional CENP-B homolog that binds to the CENP-B box and is recognized by several independent anti-CENP-B antibodies. However, three independent assays fail to reveal CENP-B binding sites in AGM DNA. Methods used include a gel mobility shift competition assay using purified AGM alpha-satellite, a novel kinetic electrophoretic mobility shift assay competition protocol using bulk genomic DNA, and bulk sequencing of 76 AGM alpha-satellite monomers. Immunofluorescence studies reveal the presence of significant levels of CENP-B antigen dispersed diffusely throughout the nuclei of interphase cells. These experiments reveal a paradox. CENP-B is highly conserved among mammals, yet its DNA binding site is conserved in human and mouse genomes but not in the AGM genome. One interpretation of these findings is that the role of CENP-B may be in the maintenance and/or organization of centromeric satellite DNA arrays rather than a more direct involvement in centromere structure.  相似文献   

15.
Arrangement of chromatin in intact chicken erythrocyte nuclei was investigated by small angle neutron scattering. The scattering spectra have revealed that on the scales between 15 nm and 1.5 microm the interior of the nucleus exhibited properties of a mass fractal. The fractal dimension of the protein component of cell nucleus held constant at approximately 2.5, while the DNA organization was biphasic, with the fractal dimension slightly higher than 2 on the scales smaller than 300 nm and approaching 3 on the larger scales.  相似文献   

16.
The distribution of the ribosomal RNA (rRNA) genes and three classes of highly repetitive DNA in the chromatin of interphase nuclei of Arabidopsis thaliana was studied for the first time through non-isotopic in situ hybridization and luminescence digital imaging microscopy. Each of the three classes of highly repetitive DNA exhibited a characteristic hybridization pattern, and one class was seen to be primarily localized on two chromocentres, which would allow it to distinguish a particular chromosome. The rDNA was consistently localized on the two largest chromocentres and on one or two smaller chromocentres. A limited number of nuclei exhibited more than four labelled chromocentres, indicative of either polypoidy or differential amplification of the rDNA. In nuclei where the nucleolus could be clearly observed, the nucleolar associated chromocentres (NACs) were seen to be labelled by the ribosomal DNA (rDNA) probe.by W. Hennig  相似文献   

17.
18.
The data presented confirm the possibility of enzymatic formation of discrete DNA-fragments appearing during fractionation of nuclear DNA by FIGE. Teniposide-dependent pattern of DNA-fragments as well as occurrence of protein-linked DNA breaks suggest that discrete cleavage of intact nuclear DNA is modulated by DNA topoisomerase II. The possible relationship between discrete DNA-fragments and the higher order chromatin folding are discussed.  相似文献   

19.
20.
The ionic strength dependences of yeast and chicken erythrocyte chromatin structure have been examined by analysis of nuclear DNase I and Staphylococcal nuclease digestions done under various salt and divalent cation concentrations. The basic features of yeast DNase I profiles (intracore/intercore patterns and their 5-base pair offset) remain present under all conditions tested. However, there are changes in specific parts of the patterns. In very low salt, the intercore DNase I pattern is enhanced; even very small intercore bands can be detected. Staphylococcal nuclease intracore cleavage becomes prominent. Increasing salt enhances the large DNase I intracore bands and the frequency of spacer cleavage for both nucleases. Thus, yeast has a salt-dependent higher order structure: a chromatin fiber with a prominent spacer/core distinction in (physiological) salt; a fiber with a decreased distinction between spacer and core, i.e. a more uniform fiber, in very low salt. The salt-dependent bulk changes resemble single gene chromatin changes during gene expression and may provide a model for that process. Above bands 16.5-17.5, chicken and yeast intercore patterns are coincident. Thus, at least a fraction of chicken chromatin has discrete length spacers like yeast does. This fraction may be significant, for the prominence of the intercore pattern, and hence the apparent abundance of discrete spacers, can be significantly enhanced by digestion in very low salt. The major differences between the two chromatins are in the intracore/intercore transition region: the region is larger and more complex in chicken; ionic strength changes affect the chicken transition region more strongly. Since this region of the profile corresponds to digestion near the ends of the core, that part of the nucleosome must differ in structure and in conformational flexibility in the two chromatins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号