首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marek's disease virus (MDV) encodes a protein exhibiting high amino acid similarity to the US3 protein of herpes simplex virus type 1 and the gene 66 product of varicella-zoster virus. The MDV US3 orthologue was replaced with a kanamycin resistance gene in the infectious bacterial artificial chromosome clone BAC20. After transfection of US3-negative BAC20 DNA (20DeltaUS3), the resulting recombinant 20DeltaUS3 virus exhibited markedly reduced growth kinetics. Virus titers on chicken embryo cells were reduced by approximately 10-fold, and plaque sizes were significantly smaller (65% reduction) compared to parental BAC20 virus. The defect of the US3-negative MDV was completely restored in a revertant virus (20US3*) expressing a US3 protein with a carboxy-terminal FLAG tag. Electron microscopical studies revealed that the defect of the 20DeltaUS3 mutant to efficiently spread from cell to cell was concomitant with an accumulation in the perinuclear space of primarily enveloped virions in characteristic vesicles containing several virus particles, which resulted in reduced numbers of particles in the cytoplasm. The formation of these vesicles was not observed in cells infected with either parental BAC20 virus or the 20US3* revertant virus. The role of the MDV US3 protein in actin stress fiber breakdown was investigated by visualizing actin with phalloidin-Alexa 488 after infection or transfection of a US3 expression plasmid. Addition of the actin-depolymerizing drug cytochalasin D to cells transfected or infected with BAC20 resulted in complete inhibition of plaque formation with as little as 50 nM of the drug, while concentrations of nocodazole as high as 50 microM only had a relatively minor effect on MDV plaque formation. The results indicated that the MDV US3 serine-threonine protein kinase is transiently involved in MDV-mediated stress fiber breakdown and that polymerization of actin, but not microtubules, plays an important role in MDV cell-to-cell spread.  相似文献   

2.
Bartonellae are Gram-negative facultative-intracellular pathogens that use a type-IV-secretion system (T4SS) to translocate a cocktail of Bartonella effector proteins (Beps) into host cells to modulate diverse cellular functions. BepC was initially reported to act in concert with BepF in triggering major actin cytoskeletal rearrangements that result in the internalization of a large bacterial aggregate by the so-called ‘invasome’. Later, infection studies with bepC deletion mutants and ectopic expression of BepC have implicated this effector in triggering an actin-dependent cell contractility phenotype characterized by fragmentation of migrating cells due to deficient rear detachment at the trailing edge, and BepE was shown to counterbalance this remarkable phenotype. However, the molecular mechanism of how BepC triggers cytoskeletal changes and the host factors involved remained elusive. Using infection assays, we show here that T4SS-mediated transfer of BepC is sufficient to trigger stress fiber formation in non-migrating epithelial cells and additionally cell fragmentation in migrating endothelial cells. Interactomic analysis revealed binding of BepC to a complex of the Rho guanine nucleotide exchange factor GEF-H1 and the serine/threonine-protein kinase MRCKα. Knock-out cell lines revealed that only GEF-H1 is required for mediating BepC-triggered stress fiber formation and inhibitor studies implicated activation of the RhoA/ROCK pathway downstream of GEF-H1. Ectopic co-expression of tagged versions of GEF-H1 and BepC truncations revealed that the C-terminal ‘Bep intracellular delivery’ (BID) domain facilitated anchorage of BepC to the plasma membrane, whereas the N-terminal ‘filamentation induced by cAMP’ (FIC) domain facilitated binding of GEF-H1. While FIC domains typically mediate post-translational modifications, most prominently AMPylation, a mutant with quadruple amino acid exchanges in the putative active site indicated that the BepC FIC domain acts in a non-catalytic manner to activate GEF-H1. Our data support a model in which BepC activates the RhoA/ROCK pathway by re-localization of GEF-H1 from microtubules to the plasma membrane.  相似文献   

3.
Xu D  Kishi H  Kawamichi H  Kajiya K  Takada Y  Kobayashi S 《FEBS letters》2007,581(27):5227-5233
Lysophosphatidic acid (LPA) and sphingosylphosphorylcholine (SPC) activated Fyn tyrosine kinase and induced stress fiber formation, which was blocked by pharmacological inhibition of Fyn, gene silencing of Fyn, or dominant negative Fyn. Overexpressed constitutively active Fyn localized at both ends of F-actin bundles and triggered stress fiber formation, only the latter of which was abolished by Rho-kinase (ROCK) inhibition. SPC, but not LPA, induced filopodia-like protrusion formation, which was not mediated by Fyn and ROCK. Thus, Fyn appears to act downstream of LPA and SPC to specifically stimulate stress fiber formation mediated by ROCK in fibroblasts.  相似文献   

4.
The US3 of HSV encodes a serine/threonine protein kinase that is highly conserved among members of the alphaherpesviruses. It is an accessory gene that is not required for viral replication in cultured cells but appears essential for viral survival in humans. Although accumulating in vitro evidence suggested that the viral protein kinase is multifunctional, little information is available about its functions in vivo. Several reports point out that, upon invasion into the peripheral nervous system, HSV blocks virus-induced neuronal apoptosis, while presumably subverting host immune responses, largely through actions of the US3 protein kinase. In addition, the US3 protein kinase confers the viral neurovirulence. In the present article, functions of the HSV US3 protein kinase are briefly reviewed, with special attention given to its role in regulating host responses and neurovirulence.  相似文献   

5.
6.
We previously reported the establishment of an HEp2 cell line which expresses the US3 protein kinase (PK) of herpes simplex virus type 2 (HSV-2) upon induction with IPTG. Here we report that expression, phosphorylation and ubiquitination of cytokeratin 17 (CK17) are enhanced in US3-expressing HEp2 cells. In vitro kinase and co-immunoprecipitation assays provided evidence that US3 PK directly phosphorylates CK17. Expression of US3 PK caused a significant decrease in filamentous staining of CK17, suggesting that phosphorylation of CK17 by US3 PK causes a disruption of intermediate filaments. Our observations suggest a role for US3 in the regulation of CKs and intermediate filaments in cells. Moreover, we found that infection of a keratinocyte-derived cell line, A431, with a US3-deficient virus, results in cytopathic effects that are morphologically distinct from those induced by wild-type and revertant viruses, suggesting that US3 PK may be important for interaction between HSV-2 and peripheral epithelial cells.  相似文献   

7.
Phorbol esters are involved in neurotransmitter release and hormone secretion via activation of protein kinase C (PKC). In addition, it has been recently reported to enhance neurotransmitter release in a PKC-independent manner. However, the exocytotic machinery is not fully clarified. Nowadays members of the RasGRP family are being identified as novel molecules binding to diacylglycerol and calcium, representing a new class of guanine nucleotide exchange factor that activates small GTPases including Ras and Rap1. In the present study, we demonstrated that RasGRP3 is expressed in endocrine tissues and mediates phorbol ester-induced exocytosis. Furthermore, the effects were partially blocked by PKC inhibitor but not mitogen-activated protein kinase kinase inhibitor, although both significantly suppressed the phorbol ester-induced phosphorylation of extracellular signal-regulated kinase 1/2. These results indicate that RasGRP3 is implicated in phorbol ester-induced, PKC-independent exocytosis.  相似文献   

8.
Sun L  Wang H  Wang Z  He S  Chen S  Liao D  Wang L  Yan J  Liu W  Lei X  Wang X 《Cell》2012,148(1-2):213-227
The receptor-interacting serine-threonine kinase 3 (RIP3) is a key signaling molecule in the programmed necrosis (necroptosis) pathway. This pathway plays important roles in a variety of physiological and pathological conditions, including development, tissue damage response, and antiviral immunity. Here, we report the identification of a small molecule called (E)-N-(4-(N-(3-methoxypyrazin-2-yl)sulfamoyl)phenyl)-3-(5-nitrothiophene-2-yl)acrylamide--hereafter referred to as necrosulfonamide--that specifically blocks necrosis downstream of RIP3 activation. An affinity probe derived from necrosulfonamide and coimmunoprecipitation using anti-RIP3 antibodies both identified the mixed lineage kinase domain-like protein (MLKL) as the interacting target. MLKL was phosphorylated by RIP3 at the threonine 357 and serine 358 residues, and these phosphorylation events were critical for necrosis. Treating cells with necrosulfonamide or knocking down MLKL expression arrested necrosis at a specific step at which RIP3 formed discrete punctae in cells. These findings implicate MLKL as a key mediator of necrosis signaling downstream of the kinase RIP3.  相似文献   

9.
10.
F C Purves  D Spector    B Roizman 《Journal of virology》1991,65(11):5757-5764
Earlier studies have shown that a herpes simplex virus 1 (HSV-1) open reading frame, US3, encodes a novel protein kinase and have characterized the cognate amino acid sequence which is phosphorylated by this enzyme. This report identifies an apparently essential viral phosphoprotein whose posttranslational processing involves the viral protein kinase. Analyses of viral proteins phosphorylated in the course of productive infection revealed a phosphoprotein whose mobility was viral protein kinase and serotype dependent. Thus, the corresponding HSV-1 and HSV-2 phosphoproteins differ in their electrophoretic mobilities, and the phosphoprotein specified by the HSV-1 mutant deleted in US3 (R7041) differs from that of the corresponding HSV-1 and HSV-2 proteins. Analyses of HSV-1 x HSV-2 recombinants mapped the phosphoprotein between 0.42 and 0.47 map units on the prototype HSV-1 DNA map. Within this region, the UL34 open reading frame was predicted to encode a protein of appropriate molecular weight which would also contain the consensus target site for phosphorylation by the viral protein kinase as previously defined with synthetic peptides. Replacement of the native UL34 gene with a UL34 gene tagged with a 17-amino-acid epitope from the alpha 4 protein identified this gene as encoding the phosphoprotein. Finally, mutagenesis of the predicted phosphorylation site on UL34 in the viral genome, and specifically the substitution of threonine or serine with alanine in the product of the UL34 gene, yielded phosphoproteins whose electrophoretic mobilities could not be differentiated from that of the US3- mutant. We conclude that the posttranslational processing of the UL34 gene product to its wild-type phenotype requires the participation of the viral protein kinase. While the viral protein kinase is not essential for viral replication in cells in culture, the UL34 gene product itself may not be dispensable.  相似文献   

11.
Understanding collagen and stress fiber remodeling is essential for the development of engineered tissues with good functionality. These processes are complex, highly interrelated, and occur over different time scales. As a result, excessive computational costs are required to computationally predict the final organization of these fibers in response to dynamic mechanical conditions. In this study, an analytical approximation of a stress fiber remodeling evolution law was derived. A comparison of the developed technique with the direct numerical integration of the evolution law showed relatively small differences in results, and the proposed method is one to two orders of magnitude faster.  相似文献   

12.
Based on the critical role of actin in the maintenance of synaptic function, we examined whether expression of familial beta-amyloid precursor protein APP-V642I (IAPP) or mutant presenilin-1 L286V (mPS1) affects actin polymerization in rat septal neuronal cells. Expression of either IAPP or mPS1 but not wild-type amyloid precursor protein or presenilin-1induced formation of actin stress fibers in SN1 cells, a septal neuronal cell line. Treatment with beta-amyloid (Abeta) peptide also caused formation of actin stress fibers in SN1 cells and primary cultured hippocampal neurons. Treatment with a gamma-secretase inhibitor completely blocked formation of actin stress fibers, indicating that overproduction of Abeta peptide induces actin stress fibers. Because activation of the p38 mitogen-activated protein kinase (p38MAPK)-mitogen-associated protein kinase-associated protein kinase (MAPKAPK)-2-heat-shock protein 27 signaling pathway mediates actin polymerization, we explored whether Abeta peptide activates p38MAPK and MAPKAPK-2. Expression of IAPP or mPS1 induced activation of p38MAPK and MAPKAPK-2. Treatment with a p38MAPK inhibitor completely inhibited formation of actin stress fibers mediated by Abeta peptide, IAPP or mPS1. Moreover, treatment with a gamma-secretase inhibitor completely blocked activation of p38MAPK and MAPKAPK-2. In summary, our data suggest that overproduction of Abeta peptide induces formation of actin stress fibers through activation of the p38MAPK signaling pathway in septal neuronal cells.  相似文献   

13.
In order to determine the ability of herpes simplex virus type 2 (HSV-2) to suppress apoptosis, we examined the effect of HSV-2 infection on apoptosis induced in HEp-2 cells by treatment with 1 M sorbitol. Although a wild-type strain of HSV-2 induced apoptosis in a significant fraction of the infected cells, HSV-2 could suppress sorbitol-induced apoptosis in a manner similar to that of herpes simplex virus type 1 (HSV-1), indicating that HSV-2, like HSV-1, has an antiapoptosis gene. Characterization of the cells infected with a US3-deletion mutant of HSV-2 revealed the necessity of a US3 gene in the antiapoptotic activity of this virus.  相似文献   

14.
An earlier report showed that the U(S)3 protein kinase blocked the apoptosis induced by the herpes simplex virus 1 (HSV-1) d120 mutant at a premitochondrial stage. Further studies revealed that the kinase also blocks programmed cell death induced by the proapoptotic protein BAD. Here we report the effects of the U(S)3 protein kinase on the function and state of a murine BAD protein. Specifically, (i) in uninfected cells, BAD was processed by at least two proteolytic cleavages that were blocked by a general caspase inhibitor. The untreated transduced cells expressed elevated caspase 3 activity. (ii) In cells cotransduced with the U(S)3 protein kinase, the BAD protein was not cleaved and the caspase 3 activity was not elevated. (iii) Inasmuch as the U(S)3 protein kinase blocked the proapoptotic activity and cleavage of a mutant (BAD3S/A) in which the codons for the regulatory serines at positions 112, 136, and 155 were each replaced with alanine codons, the U(S)3 protein kinase does not act by phosphorylation of these sites nor was the phosphorylation of these sites required for the antiapoptotic function of the U(S)3 protein kinase. (iv) The U(S)3 protein kinase did not enable the binding of the BAD3S/A mutant to the antiapoptotic proteins 14-3-3. Finally, (v) whereas cleavage of BAD at ASP56 and ASP61 has been reported and results in the generation of a more effective proapoptotic protein with an M(r) of 15,000, in this report we also show the existence of a second caspase-dependent cleavage site most likely at the ASP156 that is predicted to inactivate the proapoptotic activity of BAD. We conclude that the primary effect of U(S)3 was to block the caspases that cleave BAD at either residue 56 or 61 predicted to render the protein more proapoptotic or at residue 156, which would inactivate the protein.  相似文献   

15.
A cotton fiber is a single and highly elongated ovule epidermal cell. However, the mechanism that governs the development of fiber traits remains unclear. In this study, we cloned a calcium-dependent protein kinase (GhCPK1) and an actin depolymerizing factor (GhADF1) from Gossypium hirsutum. Real-time PCR analyses indicated that the expression of GhCPK1 and GhADF1 correlated with the elongation pattern of cotton fibers. Yeast two-hybrid assays using full-length GhCPK1 and truncated forms of GhCPK1 as baits identified GhADF1 as an interactor of GhCPK1. Furthermore, GhCPK1 is capable of phosphorylating GhADF1 in vitro in a calcium-dependent manner, and the phosphorylation of GhADF1 by GhCPK1 occurs on the Ser-6 of GhADF1. In addition, we observed that the heterologous expression of the GhCPK1 gene induced longitudinal growth of the host cells by 3.18-fold, with no apparent effect on other aspects of the host cells. The results strongly suggest that GhCPK1 may regulate the function of GhADF1 by phosphorylating this protein during cotton fiber elongation.  相似文献   

16.
A role for the US3 protein kinase of herpes simplex virus (HSV) in regulating virus-induced neuronal apoptosis was investigated in an experimental mouse system, in which wild-type HSV invades the central nervous system (CNS) via the olfactory and vomeronasal systems upon intranasal infection. Wild-type HSV-2 strain 186 infected a fraction of olfactory and vomeronasal chemosensory neurons without inducing apoptosis and was transmitted to the CNS, precipitating lethal encephalitis. In sharp contrast, an US3-disrupted mutant, L1BR1, induced neuronal apoptosis in these peripheral conduits upon infection, blocking viral transmission to the CNS and causing no signs of disease. An US3-repaired mutant, L1B(-)11, behaved similarly to the wild-type virus. Only 5 p.f.u. of L1BR1 was sufficient to compromise mice when the mutant virus was introduced directly into the olfactory bulb, a viral entry site of the CNS. These results suggest that the US3 protein kinase of HSV regulates virus-induced neuronal apoptosis in peripheral conduits and determines the neuroinvasive phenotype of HSV. Furthermore, virus-induced neuronal apoptosis of peripheral nervous system cells may be a protective host response that blocks viral transmission to the CNS.  相似文献   

17.
Luo Y  Xu X  Lele T  Kumar S  Ingber DE 《Journal of biomechanics》2008,41(11):2379-2387
Stress fibers are contractile bundles in the cytoskeleton that stabilize cell structure by exerting traction forces on the extracellular matrix. Individual stress fibers are molecular bundles composed of parallel actin and myosin filaments linked by various actin-binding proteins, which are organized end-on-end in a sarcomere-like pattern within an elongated three-dimensional network. While measurements of single stress fibers in living cells show that they behave like tensed viscoelastic fibers, precisely how this mechanical behavior arises from this complex supramolecular arrangement of protein components remains unclear. Here we show that computationally modeling a stress fiber as a multi-modular tensegrity network can predict several key behaviors of stress fibers measured in living cells, including viscoelastic retraction, fiber splaying after severing, non-uniform contraction, and elliptical strain of a puncture wound within the fiber. The tensegrity model can also explain how they simultaneously experience passive tension and generate active contraction forces; in contrast, a tensed cable net model predicts some, but not all, of these properties. Thus, tensegrity models may provide a useful link between molecular and cellular scale mechanical behaviors and represent a new handle on multi-scale modeling of living materials.  相似文献   

18.
The dynamic responses of actin stress fibers within a cell's cytoskeleton are central to the development and maintenance of healthy tissues and organs. Disturbances to these underlie a broad range of pathologies. Because of the importance of these responses, extensive experiments have been conducted in vitro to characterize actin cytoskeleton dynamics of cells cultured upon two-dimensional substrata, and the first experiments have been conducted for cells within three-dimensional tissue models. Three mathematical models exist for predicting the dynamic behaviors observed. Surprisingly, despite differing viewpoints on how actin stress fibers are stabilized or destabilized, all of these models are predictive of a broad range of available experimental data. Coarsely, the models of Kaunas and co-workers adopt a strategy whereby mechanical stretch can hasten the depolymerization actin stress fibers that turn over constantly, while the models of Desphande and co-workers adopt a strategy whereby mechanical stress is required to activate the formation of stress fibers and subsequently stabilize them. In three-dimensional culture, elements of both approaches appear necessary to predict observed phenomena, as embodied by the model of Lee et al. After providing a critical review of existing models, we propose lines of experimentation that might be able to test the different principles underlying their kinetic laws.  相似文献   

19.
Extracellular signal-regulated kinase (ERK) is important for various cellular processes, including cell migration. However, the detailed molecular mechanism by which ERK promotes cell motility remains elusive. Here we characterize epithelial protein lost in neoplasm (EPLIN), an F-actin cross-linking protein, as a novel substrate for ERK. ERK phosphorylates Ser360, Ser602, and Ser692 on EPLIN in vitro and in intact cells. Phosphorylation of the C-terminal region of EPLIN reduces its affinity for actin filaments. EPLIN colocalizes with actin stress fibers in quiescent cells, and stimulation with platelet-derived growth factor (PDGF) induces stress fiber disassembly and relocalization of EPLIN to peripheral and dorsal ruffles, wherein phosphorylation of Ser360 and Ser602 is observed. Phosphorylation of these two residues is also evident during wound healing at the leading edge of migrating cells. Moreover, expression of a non-ERK-phosphorylatable mutant, but not wild-type EPLIN, prevents PDGF-induced stress fiber disassembly and membrane ruffling and also inhibits wound healing and PDGF-induced cell migration. We propose that ERK-mediated phosphorylation of EPLIN contributes to actin filament reorganization and enhanced cell motility.  相似文献   

20.
Intracellular stress transmission through subcellular structural components has been proposed to affect activation of localized mechano-sensing sites such as focal adhesions in adherent cells. Previous studies reported that physiological extracellular forces produced heterogeneous spatial distributions of cytoplasmic strain. However, mechanical signaling pathway involved in intracellular force transmission through basal actin stress fibers (SFs), a mechano-responsive cytoskeletal structure, remains elusive. In the present study, we investigated force balance within the basal SFs of cultured smooth muscle cells and endothelial cells by (i) removing the cell membrane and cytoplasmic constituents except for materials physically attaching to the substrate (i.e., SF-focal adhesion complexities) or (ii) dislodging either mechanically or chemically the cell processes of the cells expressing fluorescent proteins-labeled actin and focal adhesions in order, to examine stress-release-induced deformation of the basal SFs. The result showed that a removal of mechanical restrictions for SFs resulted in a decrease in the length of the remaining SFs, which means SFs bear tension. In addition, a release of the preexisting tension in a single SF was transmitted to another SF physically linked to the former, but not transmitted to the other ones physically independent of the former, suggesting that the prestress is balanced in tensed SF networks. These results support a hypothesis regarding cell structural architecture that physiological extracellular forces can produce in the basal SF network a directional intracellular stress or strain distribution. Therefore, consideration of the coexistence of the directional stretching strain along the axial direction of SFs and the heterogeneous strain in the other cytoplasmic region will be essential for understanding intracellular stress transmission in the adherent cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号