首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manipulation of neurotrophin (NT) signalling by administration or depletion of NTs, by transgenic overexpression or by deletion of genes coding for NTs and their receptors has demonstrated the importance of NT signalling for the survival and differentiation of neurons in sympathetic and dorsal root ganglia (DRG). Combination with mutation of the proapoptotic Bax gene allows the separation of survival and differentiation effects. These studies together with cell culture analysis suggest that NT signalling directly regulates the differentiation of neuron subpopulations and their integration into neural networks. The high-affinity NT receptors trkA, trkB and trkC are restricted to subpopulations of mature neurons, whereas their expression at early developmental stages largely overlaps. trkC is expressed throughout sympathetic ganglia and DRG early after ganglion formation but becomes restricted to small neuron subpopulations during embryogenesis when trkA is turned on. The temporal relationship between trkA and trkC expression is conserved between sympathetic ganglia and DRG. In DRG, NGF signalling is required not only for survival, but also for the differentiation of nociceptors. Expression of neuropeptides calcitonin gene-related peptide and substance P, which specify peptidergic nociceptors, depends on nerve growth factor (NGF) signalling. ret expression indicative of non-peptidergic nociceptors is also promoted by the NGF-signalling pathway. Regulation of TRP channels by NGF signalling might specify the temperature sensitivity of afferent neurons embryonically. The manipulation of NGF levels “tunes” heat sensitivity in nociceptors at postnatal and adult stages. Brain-derived neurotrophic factor signalling is required for subpopulations of DRG neurons that are not fully characterized; it affects mechanical sensitivity in slowly adapting, low-threshold mechanoreceptors and might involve the regulation of DEG/ENaC ion channels. NT3 signalling is required for the generation and survival of various DRG neuron classes, in particular proprioceptors. Its importance for peripheral projections and central connectivity of proprioceptors demonstrates the significance of NT signalling for integrating responsive neurons in neural networks. The molecular targets of NT3 signalling in proprioceptor differentiation remain to be characterized. In sympathetic ganglia, NGF signalling regulates dendritic development and axonal projections. Its role in the specification of other neuronal properties is less well analysed. In vitro analysis suggests the involvement of NT signalling in the choice between the noradrenergic and cholinergic transmitter phenotype, in the expression of various classes of ion channels and for target connectivity. In vivo analysis is required to show the degree to which NT signalling regulates these sympathetic neuron properties in developing embryos and postnatally. U.E. is supported by the DFG (Er145-4) and the Gemeinnützige Hertie-Stiftung.  相似文献   

2.
A M Davies  L Minichiello    R Klein 《The EMBO journal》1995,14(18):4482-4489
Neurotrophins promote neuronal survival by signalling through Trk receptor tyrosine kinases: nerve growth factor signals through TrkA, brain-derived neurotrophic factor (BDNF) and neurotrophin (NT)4 through TrkB and NT3 through TrkC. Although studies in some, but not all, cell lines indicate that NT3 can also signal through TrkA and TrkB, it is not known if such signalling can occur in neurons. We show that NT3 can promote the in vitro survival of sensory and sympathetic neurons isolated from embryos that are homozygous for a null mutation in the trkC gene. During the mid-embryonic period, NT3 promoted the survival of as many trigeminal and nodose neurons as the preferred neurotrophins, NGF and BDNF. However, later in development, these neurons lost their ability to respond to NT3. NT3 also promoted the survival of almost all sympathetic neurons, but no decrease in effectiveness was observed during development. Trigeminal neurons from trkC-/- trkA-/- embryos did not respond to NT3 and nodose neurons from trkB-/- embryos likewise failed to respond to NT3. These results show that NT3 can signal through TrkA and TrkB in neurons at certain stages of development and may explain why the phenotype of NT3-/- mice is more severe than that of trkC-/- mice.  相似文献   

3.
4.
An important step in the development of peripheral sensory and sympathetic neurons is the onset of the survival response and dependence on the presence of nerve growth factor (NGF) or other neurotrophic factors. We have recently observed that immature sympathetic neurons from 7-day-old chick embryos are unable to become NGF-responsive in vitro and we have now used these cells to identify molecules that induce NGF-dependent neuronal survival. We found that retinoic acid (RA) induces the ability of these cells to survive in the presence of NGF. At RA concentrations of 10(-9)-10(-8)M virtually all neurons survived in the presence of NGF. RA was found to also induce the biologically active, high-affinity NGF receptor: high-affinity receptors were undetectable on dissociated E7 sympathetic neurons and were observed in vitro only in RA-treated neurons. These findings suggest that the induction of high-affinity NGF receptors may be sufficient to activate the survival response in sympathetic neurons and imply an important role for RA during neuron differentiation in the peripheral nervous system.  相似文献   

5.
6.
7.
In utero immune deprivation of the neurotrophic molecule nerve growth factor (NGF) results in the death of most, but not all, mammalian dorsal root ganglion (DRG) neurons. The recent identification of trk, trkB, and trkC as the putative high affinity receptors for NGF, brain-derived neurotrophic factor, and neurotrophin-3, respectively, has allowed an examination of whether their expression by DRG neurons correlates with differential sensitivity to immune deprivation of NGF. In situ hybridization demonstrates that virtually all neurons expressing trk are lost during in utero NGF deprivation. Most, if not all, neurons expressing trkB and trkC survive this treatment. In contrast, the low affinity NGF receptor, p75NGFR, is expressed in both NGF deprivation-resistant and -sensitive neurons. These experiments show that DRG neurons expressing trk require NGF for survival. Furthermore, at least some of the DRG neurons that do not require NGF express the high affinity receptor for another neurotrophin. Finally, these experiments provide evidence that trk, and not p75NGFR, is the primary effector of NGF action in vivo.  相似文献   

8.
The neurotrophins NGF and NT3 collaborate to support development of sympathetic neurons. Although both promote axonal extension via the TrkA receptor, only NGF activates retrograde transport of TrkA endosomes to support neuronal survival. Here, we report that actin depolymerization is essential for initiation of NGF/TrkA endosome trafficking and that?a Rac1-cofilin signaling module associated with TrkA early endosomes supports their maturation to retrograde transport-competent endosomes. These actin-regulatory endosomal components are absent from NT3/TrkA endosomes, explaining the failure of NT3 to support retrograde TrkA transport and survival. The inability of NT3 to activate Rac1-GTP-cofilin signaling is likely due to the labile nature of NT3/TrkA complexes within the acidic environment of TrkA early endosomes. Thus, TrkA endosomes associate with actin-modulatory proteins to promote F-actin disassembly, enabling their maturation into transport-competent signaling endosomes. Differential control of this process explains how NGF but not NT3 supports retrograde survival of sympathetic neurons.  相似文献   

9.
During embryogenesis, the neurons of vertebrate sympathetic and sensory ganglia become dependent on neurotrophic factors, derived from their targets, for survival and maintenance of differentiated functions. Many of these interactions are mediated by the neurotrophins NGF, BDNF, and NT3 and the receptor tyrosine kinases encoded by genes of thetrk family. Both sympathetic and sensory neurons undergo developmental changes in their responsiveness to NGF, the first neurotrophin to be identified and characterized. Subpopulations of sensory neurons do not require NGF for survival, but respond instead to BDNF or NT3 with enhanced survival. In addition to their classic effects on neuron survival, neurotrophins influence the differentiation and proliferation of neural crest-derived neuronal precursors. In both sympathetic and sensory systems, production of neurotrophins by target cells and expression of neurotrophin receptors by neurons are correlated temporally and spatially with innervation patterns. In vitro, embryonic sympathetic neurons require exposure to environmental cues, such as basic FGF and retinoic acid to acquire neurotrophin-responsiveness; in contrast, embryonic sensory neurons acquire neurotrophin-responsiveness on schedule in the absence of these molecules.  相似文献   

10.
Kuruvilla R  Ye H  Ginty DD 《Neuron》2000,27(3):499-512
NGF is a target-derived growth factor for developing sympathetic neurons. Here, we show that application of NGF exclusively to distal axons of sympathetic neurons leads to an increase in PI3-K signaling in both distal axons and cell bodies. In addition, there is a more critical dependence on PI3-K for survival of neurons supported by NGF acting exclusively on distal axons as compared to neurons supported by NGF acting directly on cell bodies. Interestingly, PI3-K signaling within both cell bodies and distal axons contributes to survival of neurons. The requirement for PI3-K signaling in distal axons for survival may be explained by the finding that inhibition of PI3-K in the distal axons attenuates retrograde signaling. Therefore, a single TrkA effector, PI3-K, has multiple roles within spatially distinct cellular locales during retrograde NGF signaling.  相似文献   

11.
12.
In this report we examine the biological and molecular basis of the control of sympathetic neuron differentiation and survival by NGF and neurotrophin-3 (NT-3). NT-3 is as efficient as NGF in mediating neuritogenesis and expression of growth-associated genes in NGF-dependent sympathetic neurons, but it is 20–40fold less efficient in supporting their survival. Both NT-3 and NGF induce similar sustained, long-term activation of TrkA, while NGF is 10-fold more efficient than NT-3 in mediating acute, short-term TrkA activity. At similar acute levels of TrkA activation, NT-3 still mediates neuronal survival two- to threefold less well than NGF. However, a mutant NT-3 that activates TrkC, but not TrkA, is unable to support sympathetic neuron survival or neuritogenesis, indicating that NT3–mediated TrkA activation is necessary for both of these responses. On the basis of these data, we suggest that NGF and NT-3 differentially regulate the TrkA receptor both with regard to activation time course and downstream targets, leading to selective regulation of neuritogenesis and survival. Such differential responsiveness to two ligands acting through the same Trk receptor has important implications for neurotrophin function throughout the nervous system.  相似文献   

13.
In the chick embryo, exogenous neurotrophin-3 (NT3) is sufficient to promote the differentiation of proprioceptive afferents even in the absence of limb muscle targets. To determine if NT3 can promote the differentiation of this phenotype in afferents with cutaneous targets, we analyzed the effects of chronic NT3 on cutaneous and muscle sensory neurons that express trkC, a receptor for NT3. In normal embryos, retrograde labeling and immunohistochemistry showed that about 75% of large-diameter muscle afferents express trkC, whereas only about 7% of large-diameter cutaneous afferents express this protein. After chronic treatment with NT3 during the cell death period, both populations of trkC(+) neurons were increased approximately twofold. Because this treatment is known to block cell death in sensory neurons, these results indicate that NT3 can promote the survival of both proprioceptive afferents and cutaneous afferents. To examine the phenotype of the cutaneous afferents rescued by NT3, we analyzed their projections and connections using transganglionic labeling and electrophysiological recording. The results indicate that exogenous NT3 neither altered the pattern of spinal projections nor caused cutaneous afferents to form monosynaptic connections with motor neurons. These results demonstrate that selective cell death does not contribute to the modality-specific pattern of spinal innervation and suggest that proprioceptive afferents may innervate muscle selectively.  相似文献   

14.
Growth factor synergism and antagonism in early neural crest development.   总被引:8,自引:0,他引:8  
This review article focuses on data that reveal the importance of synergistic and antagonistic effects in growth factor action during the early phases of neural crest development. Growth factors act in concert in different cell lineages and in several aspects of neural crest cell development, including survival, proliferation, and differentiation. Stem cell factor (SCF) is a survival factor for the neural crest stem cell. Its action is neutralized by neurotrophins, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) through apoptotic cell death. In contrast, SCF alone does not support the survival of melanogenic cells (pigment cell precursors). They require the additional presence of a neurotrophin (NGF, BDNF, or NT-3). Fibroblast growth factor-2 (FGF-2) is an important promoter of proliferation in neuronal progenitor cells. In neural crest cells, fibroblast growth factor treatment alone does not lead to cell expansion but also requires the presence of a neurotrophin. The proliferative stimulus of the fibroblast growth factor - neurotrophin combination is antagonized by transforming growth factor beta-1 (TGFbeta-1). Moreover, TGFbeta-1 promotes the concomitant expression of neuronal markers from two cell lineages, sympathetic neurons and primary sensory neurons, indicating that it acts on a pluripotent neuronal progenitor cell. Moreover, the combination of FGF-2 and NT3, but not other neurotrophins, promotes expression or activation of one of the earliest markers expressed by presumptive sympathetic neuroblasts, the norepinephrine transporter. Taken together, these data emphasize the importance of the concerted action of growth factors in neural crest development at different levels and in several cell lineages. The underlying mechanisms involve growth-factor-induced dependence of the cells on other factors and susceptibility to growth-factor-mediated apoptosis.  相似文献   

15.
The survival and growth of embryonic and postnatal sympathetic neurons is dependent on both NGF and NT3. While it has been established that adult sensory neurons survive independently of neurotrophins, the case is less clear for adult sympathetic neurons, where the studies of survival responses to neurotrophins have relied upon using long‐term cultures of embryonic neurons. We have previously established a method to culture purified young (7 day) and adult (12 week) sympathetic neurons isolated from adult rat superior cervical ganglia (SCG) in order to examine their survival and growth responses to neurotrophins. We now show that by 12 weeks after birth virtually all neurons (90%) survive for 24 h in the absence of neurotrophins. Neuron survival is unaffected by treatment with anti‐NGF antibodies (anti‐NGF) or with the tyrosine kinase inhibitor, K252a, confirming the lack of dependence on extrinsic neurotrophins. Duration of neuron survival in culture increases significantly between E19 and day 7 and week 12 posnatally, and is similarly unaffected by the presence of anti‐NGF or K252a. Saturating concentrations of NGF and NT3 are equipotent in promoting neurite extension and branching. However, we find that NGF is more potent than NT3 in promoting neurite growth, irrespective of postnatal age. The growth‐promoting effects of NGF and NT3 are almost entirely blocked by K252a, demonstrating that these effects are mediated via activation of Trk receptors, which therefore appear to remain crucial to plasticity of adult neurons. Our results indicate that maturing neurons acquire protection against cell death, induced in the absence of neurotrophin, while retaining their growth responsiveness to these factors. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 295–305, 2001  相似文献   

16.
The survival and growth of embryonic and postnatal sympathetic neurons is dependent on both NGF and NT3. While it has been established that adult sensory neurons survive independently of neurotrophins, the case is less clear for adult sympathetic neurons, where the studies of survival responses to neurotrophins have relied upon using long-term cultures of embryonic neurons. We have previously established a method to culture purified young (7 day) and adult (12 week) sympathetic neurons isolated from adult rat superior cervical ganglia (SCG) in order to examine their survival and growth responses to neurotrophins. We now show that by 12 weeks after birth virtually all neurons (90%) survive for 24 h in the absence of neurotrophins. Neuron survival is unaffected by treatment with anti-NGF antibodies (anti-NGF) or with the tyrosine kinase inhibitor, K252a, confirming the lack of dependence on extrinsic neurotrophins. Duration of neuron survival in culture increases significantly between E19 and day 7 and week 12 posnatally, and is similarly unaffected by the presence of anti-NGF or K252a. Saturating concentrations of NGF and NT3 are equipotent in promoting neurite extension and branching. However, we find that NGF is more potent than NT3 in promoting neurite growth, irrespective of postnatal age. The growth-promoting effects of NGF and NT3 are almost entirely blocked by K252a, demonstrating that these effects are mediated via activation of Trk receptors, which therefore appear to remain crucial to plasticity of adult neurons. Our results indicate that maturing neurons acquire protection against cell death, induced in the absence of neurotrophin, while retaining their growth responsiveness to these factors.  相似文献   

17.
Neurotrophins and their trk receptors constitute major classes of signaling molecules with important actions in the developing and adult nervous system. With regard to the sympathoadrenal cell lineage, which gives rise to sympathetic neurons and chromaffin cells, neurotrophin-3 (NT-3) and nerve growth factor (NGF) are thought to influence developing sympathetic neurons. Neurotrophin requirements of chromaffin cells of the adrenal medulla are less well understood than those for NGF. In order to provide the bases for understanding of putative functions of neurotrophins for the development and maintenance of chromaffin cells and their preganglionic innervation, in situ hybridization has been used to study the expression of brain-derived neurotrophic factor (BDNF) and NT-3, together with their cognate receptors trkB and trkC, in the adrenal gland and in the intermediolateral column (IML) of the spinal cord. BDNF is highly expressed in the embryonic adrenal cortex and later in cells of the cortical reticularis zone. Adrenal medullary chromaffin cells fail to express detectable levels of mRNAs for BDNF, NT-3, and their cognate receptors trkB and trkC. Neurons in the IML express BDNF and trkB, and low levels of NT-3 and trkC. Our data make it unlikely that BDNF and NT-3 serve as retrograde trophic factors for IML neurons but suggest roles of BDNF and NT-3 locally within the spinal cord and possibly for sensory nerves of the adrenal cortex.  相似文献   

18.
Sympathetic neuronal survival induced by retinal trophic factors.   总被引:5,自引:0,他引:5  
Neuronal survival in the vertebrate peripheral nervous system depends on neurotrophic factors available from target tissues. In an attempt to identify novel survival factors, we have studied the effect of secreted factors from retinal cells on the survival of chick sympathetic ganglion neurons. Embryonic day 10 sympathetic neurons undergo programmed cell death after 48 h without appropriate levels of nerve growth factor (NGF). Retina Conditioned Media (RCM) from explants of embryonic day 11 retinas maintained for 4 days in vitro supported 90% of E10 chick sympathetic neurons after 48 h. Conditioned medium from purified chick retinal Muller glial cells supported nearly 100% of E10 chick sympathetic neurons. Anti-NGF (1 microg/mL) blocked the survival effect of NGF, but did not block the trophic effect of RCM. Neither BDNF nor NT4 (0.1-50 ng/mL) supported E10 sympathetic neuron survival. Incubation of chimeric immunoglobulin-receptors TrkA, TrkB, or TrkC had no effect on RCM-induced sympathetic neuron survival. The survival effects were not blocked by anti-GDNF, anti-TGFbeta, and anti-CNTF and were not mimicked by FGFb (0.1-10 nM). LY294002 at 50 microM, but not PD098059 blocked sympathetic survival induced by RCM. Further, the combination of RCM and NGF did not result in an increase in neuronal survival compared with NGF alone (82% survival after 48 h). The secreted factor in RCM is retained in subfractions with a molecular weight above 100 kDa, binds to heparin, and is unaffected by dialysis, but is heat sensitive. Our results indicate the presence of a high-molecular weight retinal secreted factor that supports sympathetic neurons in culture.  相似文献   

19.
Two Ebp1 isoproteins, p48 and p42, regulate cell survival and differentiation distinctively. Here we show that p48 is the major isoform in hippocampal neurons and is localized throughout the entire neuron. Notably, reduction of p48 Ebp1 expression inhibited BDNF-mediated neurite outgrowth in hippocampal neurons. The p48 protein acts as a downstream effector of the Trk receptor, which mediates the functions of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in hippocampal cells. Trk receptor activation by both NGF and BDNF induced phosphorylation of Ebp1 at the S360 upon the activation of protein kinase Cδ (PKCδ) and triggered dissociation of p48 from retinoblastoma (Rb). Although both NGF and BDNF activate mitogen-activated protein kinase (MAPK; extracellular signal-related kinase (ERK)) as well as phosphatidylinositide 3-kinase (PI3K)/Akt, their activation is regulated in different time-frame upon growth factor specificity, especially, eliciting PKCδ mediated p48 S360 phosphorylation. Thus, p48 Ebp1 contributes to neuronal cell differentiation and growth factor specificity through the activation of PKCδ, acting as a crucial downstream effector of neurotrophin signaling.  相似文献   

20.
Although sympathetic neurons are a well-studied model for neuronal apoptosis, the role of the apoptosome in activating caspases in these neurons remains debated. We find that the ability of sympathetic neurons to undergo apoptosis in response to nerve growth factor (NGF) deprivation is completely dependent on having an intact apoptosome pathway. Genetic deletion of Apaf-1, caspase-9, or caspase-3 prevents apoptosis after NGF deprivation, and importantly, allows these neurons to recover and survive long-term following readdition of NGF. The inability of caspase-3 deficient sympathetic neurons to undergo apoptosis is particularly striking, as apoptosis in dermal fibroblasts and cortical neurons proceeds even in the absence of caspase-3. Our results show that in contrast to dermal fibroblasts and cortical neurons, sympathetic neurons express no detectable levels of caspase-7. The strict requirement for an intact apoptosome, coupled with a lack of effector caspase redundancy, provides sympathetic neurons with a markedly increased control over their apoptotic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号