首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improved method for electroporation of Staphylococcus aureus   总被引:19,自引:0,他引:19  
We have developed a significantly improved method for the electroporation of plasmid DNA into Staphylococcus aureus. The highest transformation efficiency achieved with this procedure was 4.0 x 10(8) transformants per microgram of plasmid pSK265 DNA. This represents a 530-fold improvement over the previously reported optimum efficiency of 7.5 x 10(5) transformants per microgram of plasmid DNA after electroporation of S. aureus cells [9]. Identical results were obtained when electrocompetent cells, which had been stored frozen at -80 degrees C, were used. The improved efficiency is due primarily to the use of a modified medium (designated as B2 medium) and secondarily to the use of 0.1-cm cuvettes. Several other plasmids (pI258, pMH109, and pSK270) were also electrotransformed into competent cells using our procedure, and for each plasmid, the transformation efficiency was significantly reduced compared to that observed when pSK265 DNA was used. With respect to plasmid pI258, the transformation efficiency was 3500-fold higher than that reported previously for transformation of this plasmid into S. aureus RN4220 [9]. The optimized electroporation procedure was less successful in transforming other staphylococci. Electrocompetent cells of S. aureus ATCC 29213 and S. epidermidis ATCC 12228 produced 5.5 x 10(5) and 5 x 10(3) transformants per microgram of pSK265 DNA, respectively.  相似文献   

2.
Electroporation was used to facilitate transformation of Listeria species with plasmid DNA. Optimal conditions for transformation of L. monocytogenes were a field strength of 8.5 kV/cm, 200 Ohms resistance, 25 microF capacitor with a time constant of 5 ms. With these conditions, 3.9 x 10(6) transformants/micrograms DNA were obtained. Under the same conditions, L. innocua and L. ivanovii exhibited a frequency of transformation similar to that of L. monocytogenes but a somewhat lower level was obtained with L. seeligeri.  相似文献   

3.
To apply recombinant DNA techniques for genetic manipulation of the industrially important lactococci, an efficient and reliable high-frequency transformation system must be available. High-voltage electric pulses have been demonstrated to enhance uptake of DNA into protoplasts and intact cells of numerous gram-negative and gram-positive microorganisms. The objective of this study was to develop a system for electroporating intact cells of Lactococcus lactis subsp. lactis LM0230 (previously designated Streptococcus lactis LM0230) with a commercially available electroporation unit (BTX Transfector 100; BTX, Inc., San Diego, Calif.). Parameters which influenced the efficiency of transformation included growth phase and final concentration of cells, ionic strength of the suspending medium, concentration of plasmid DNA, and the amplitude and duration of the pulse. Washed suspensions of intact cells suspended in deionized distilled water were subjected to one high-voltage electric pulse varying in voltage (300 to 900 V corresponding to field strengths of 5 to 17 kV/cm) and duration (100 microseconds to 1 s). Transformation efficiencies of 10(3) transformants per microgram of DNA were obtained when dense suspensions (final concentration, 5 x 10(10) CFU/ml) of stationary-phase cells were subjected to one pulse with a peak voltage of 900 V (field strength, 17 kV/cm) and a pulse duration of 5 ms in the presence of plasmid DNA. Dilution of porated cells in broth medium followed by an expression period of 2 h at 30 degrees C was beneficial in enhancing transformation efficiencies. Plasmids ranging in size from 9.8 to 30.0 kilobase pairs could be transformed by this procedure.  相似文献   

4.
To apply recombinant DNA techniques for genetic manipulation of the industrially important lactococci, an efficient and reliable high-frequency transformation system must be available. High-voltage electric pulses have been demonstrated to enhance uptake of DNA into protoplasts and intact cells of numerous gram-negative and gram-positive microorganisms. The objective of this study was to develop a system for electroporating intact cells of Lactococcus lactis subsp. lactis LM0230 (previously designated Streptococcus lactis LM0230) with a commercially available electroporation unit (BTX Transfector 100; BTX, Inc., San Diego, Calif.). Parameters which influenced the efficiency of transformation included growth phase and final concentration of cells, ionic strength of the suspending medium, concentration of plasmid DNA, and the amplitude and duration of the pulse. Washed suspensions of intact cells suspended in deionized distilled water were subjected to one high-voltage electric pulse varying in voltage (300 to 900 V corresponding to field strengths of 5 to 17 kV/cm) and duration (100 microseconds to 1 s). Transformation efficiencies of 10(3) transformants per microgram of DNA were obtained when dense suspensions (final concentration, 5 x 10(10) CFU/ml) of stationary-phase cells were subjected to one pulse with a peak voltage of 900 V (field strength, 17 kV/cm) and a pulse duration of 5 ms in the presence of plasmid DNA. Dilution of porated cells in broth medium followed by an expression period of 2 h at 30 degrees C was beneficial in enhancing transformation efficiencies. Plasmids ranging in size from 9.8 to 30.0 kilobase pairs could be transformed by this procedure.  相似文献   

5.
The following factors were found to improve the efficiency of transformation of Clostridium perfringens 3624A Rifr Strr: (1) a reduction in cuvette sample volume (DNA and cell suspension) to 0.8 ml, (2) use of a 1 microgram/ml concentration of transforming DNA, (3) use of late-logarithmic phase cells, (4) 3-fold concentration of cell density (3.0 x 10(8) CFU/ml), and (5) a reduction in the pH of the expression and selective plating medium to 6.4. Application of the improved conditions resulted in transformation efficiencies for C. perfringens 3624A Rifr Strr ranging from 7.1 transformants/microgram DNA for plasmic pIP401 to 9.2 x 10(4) transformants per microgram DNA for plasmid pAK201. The greatest transformation efficiency obtained using pAK201 was 9.8 x 10(6) transformants/micrograms DNA for C. perfringens strain 13. Using the improved protocol, pAM beta 1 was transformed at a 42-fold greater level when compared with the values reported earlier [1]. In addition to C. perfringens 3624A Rifr Strr, strains 13, 10543A, 3628C, NTG-4, and 3624A were successfully transformed. Nuclease does not appear to be a factor in the C. perfringens strain-specific electro-transformation protocol.  相似文献   

6.
Factors affecting the PEG-mediated transformation and electrotransformation of Streptomyces avermitilis protoplasts, an industrial avermectin high-producer, were evaluated. The maximum protoplast transformation efficiency under optimum conditions with PEG was 3 x 106 transformants per microg plasmid pIJ702 DNA. The efficiency of electrotransformation with the same plasmid the intact cells grown in medium with 0.5 mmol/L CaCl2, suspended in buffer with 0.5 mol/L sucrose +1 mmol/L MgCl2, and pulsed at an electric field strength of 10 kV/cm, 800 ohms, 25 microF, was of 2 x 10(3) transformants per microg DNA. When the cells were electroporated after mild lysozyme-treatment, the efficiency was up to 10(4) transformants per microg DNA. Electroporation of protoplasts and germlings had a lower efficiency (10(2) transformants per microg DNA). We report that electroporation under optimum conditions can be used for direct transfer of nonconjugative plasmid pIJ699 between two different Streptomyces species, S. avermitilis and S. lividans.  相似文献   

7.
Plasmid transformation in Leuconostoc carnosum 4010 was analyzed. A successful transformation protocol for L. carnosum was established by modifying an existing protocol for Lactococcus lactis. Several parameters, including the number of generations that the cells had grown at the time of harvest, glycine concentration, the time of incubation for phenotypic expression, and the electrical field strength, were investigated and proved to have influence on the transformation frequency. Electrocompetence was found to be transient and to peak in the early exponential growth phase. Optimized conditions resulted in transformation frequencies of up to 6.7 x 10(5) transformants per microgram of plasmid DNA. A total of five plasmids in L. carnosum were successfully introduced and maintained. Interestingly, we discovered that DNA uptake was of a frequency of 3 x 10(-6) to 19 x 10(-6) transformants per CFU in the absence of an applied electrical field. We concluded that L. carnosum is naturally competent.  相似文献   

8.
Under optimal conditions, the cyanobacterium Anacystis nidulans R2 was transformed to ampicillin resistance at frequencies of greater than 10(7) transformants per microgram of plasmid (pCH1) donor DNA. No stringent period of competency was detected, and high frequencies of transformation were achieved with cultures at various growth stages. Transformation increased with time after addition of donor DNA up to 15 to 18 h. The peak of transformation efficiency (transformants/donor molecule) occurred at plasmid concentrations of 125 to 325 ng/ml with an ampicillin resistance donor plasmid (pCH1) and 300 to 625 ng/ml for chloramphenicol resistance conferred by plasmid pSG111. The efficiency of transformation was enhanced by excluding light during the incubation or by blocking photosynthesis with the electron transport inhibitor 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea (DCMU) or the uncoupler carbonyl cyanide-m-chlorophenyl hydrazone. Preincubation of cells in darkness for 15 to 18 h before addition of donor DNA significantly decreased transformation efficiency. Growth of cells in iron-deficient medium before transformation enhanced efficiency fourfold. These results were obtained with selection for ampicillin (pCH1 donor plasmid)- or chloramphenicol (pSG111 donor plasmid)-resistant transformants. Approximately 1,000 transformants per microgram were obtained when chromosomal DNA from an herbicide (DCMU)-resistant mutant was used as donor DNA. DCMU resistance was also transferred to recipient cells by using restriction fragments of chromosomal DNA from DCMU-resistant mutants. This procedure allowed size classes of fragments to be assayed for the presence of the DCMU resistance gene.  相似文献   

9.
P T Scott  J I Rood 《Gene》1989,82(2):327-333
A reliable and efficient method has been developed for the electroporation-mediated transformation of Clostridium perfringens with plasmid DNA. Transformation of vegetative cells of C. perfringens strain 13 with the 7.9-kb Escherichia coli-C. perfringens shuttle plasmid pHR 106 required pretreatment with lysostaphin (2 to 20 micrograms/ml) for 1 h at 37 degrees C. Cells harvested early in the logarithmic stage of growth were transformed more efficiently than cells at other growth phases. The transformation frequency increased with the DNA concentration, to a saturating level at 5 to 10 micrograms DNA/ml. The transformation frequency was proportional to the field strength and time constant of the electroporation pulse; however, the field strength was a far more important parameter. A cell density between 1 x 10(8) and 5 x 10(8) cells/ml proved to be optimal for transformation. The procedure was capable of generating up to 3.0 x 10(5) transformants per micrograms DNA. The potential value of the method for the cloning of C. perfringens genes was demonstrated by the cloning of the clostridial tetracycline-resistance determinant, tetP, from the E. coli recombinant plasmid pJIR71, into C. perfringens strain 13.  相似文献   

10.
We constructed a cloning vector for use in the plant pathogenic bacterium Clavibacter michiganense subsp. michiganense. The vector pDM100 consists of a 3.2-kb restriction fragment of the Clavibacter plasmid pCM1 joined to a pBR325 derivative carrying the neomycin phosphotransferase of transposon Tn5 and the gentamicin acetyltransferase of Tn1696. Both antibiotic resistance genes are efficiently expressed in C. michiganense subsp. michiganense. Although polyethylene glycol-mediated transfection of spheroplasts with the DNA of the C. michiganense subsp. michiganense-specific bacteriophage CMP1 yielded about 3 x 10(3) transfectants per microgram of DNA, in transformations with plasmid DNA only a very few transformants were obtained. However, the transformation efficiency could be improved by electroporation of intact cells, giving about 2 x 10(3) transformants per microgram of plasmid DNA. Since a transformation procedure and a cloning vector are now available, pathogenicity in C. michiganense subsp. michiganense can now be analyzed genetically.  相似文献   

11.
12.
An efficient protoplast transformation system was established for Bacillus stearothermophilus NUB3621 using thermophilic plasmid pTHT15 Tcr (4.5 kb) and mesophilic plasmid pLW05 Cmr (3 kb), a spontaneous deletion derivative of pPL401 Cmr Kmr. The efficiency of transformation of NUB3621 with pLW05 and pTHT15 was 2 x 10(7) to 4 x 10(8) transformants per micrograms DNA. The transformation frequency (transformants per regenerant) was 0.5 to 1.0. Chloramphenicol-resistant and tetracycline-resistant transformants were obtained when competent cells of Bacillus subtilis were transformed with pLW05 [2.5 x 10(5) transformants (microgram DNA)-1] and pTHT15 [1.8 x 10(5) transformants (micrograms DNA)-1], respectively. Thus, these plasmids are shuttle vectors for mesophilic and thermophilic bacilli. Plasmid pLW05 Cmr was not stably maintained in cultures growing at temperatures between 50 and 65 degrees C but the thermostable chloramphenicol acetyltransferase was active in vivo at temperatures up to 70 degrees C. In contrast, thermophilic plasmid pTHT15 Tcr was stable in cultures growing at temperatures up to 60 degrees C but the tetracycline resistance protein was relatively thermolabile at higher temperatures. The estimated copy number of pLW05 in cells of NUB3621 growing at 50, 60, and 65 degrees C was 69, 18, and 1 per chromosome equivalent, respectively. The estimated copy number of pTHT15 in cells of NUB3621 growing at 50 or 60 degrees C was about 41 to 45 per chromosome equivalent and 12 in cells growing at 65 degrees C.  相似文献   

13.
M V Norgard  K Keem  J J Monahan 《Gene》1978,3(4):279-292
The susceptibility of E. coli strain chi1776 to transformation by pBR322 plasmid DNA was examined and optimized. Maximum transformation to tetracycline (Tc) resistance was achieved when cells were harvested from L broth at 5.0--6.0 . 10(7) cfu/ml, followed by washing twice in cold 0.1 M NaCl + 5 mM MgCl2 + 5 mM Tris, pH 7.6. Cells grown in the presence of D-cycloserine (Cyc) rather than nalidixic acid (Nx) transformed markedly better. The presence of 5 mM Mg2+ ions in washing and CaCl2 solutions stimulated transformation about 2-fold. Optimal conditions for transformation included a pH range of 7.25-7.75 and a cell-to-DNA ratio of about 1.6 . 10(8) cfu/ng plasmid DNA. The frequency of transformation was highest when cells were exposed to 100 mM CaCl2 in 250 mM KCl + 5 mM MgCl2 + 5 mM Tris, pH 7.6, before mixing with DNA. A 60 min incubation period for cell + DNA mixtures held on ice produced the maximum number of Tcr transformants. In our hands, heat shocks at 37 degrees C or 42 degrees C for various times all decreased transformation to about one-half of optimal levels. Furthermore, the recovery of transformants was best when cell + DNA mixtures were plated on precooled (4 degrees C) Tc agar plates. The efficiency of plating was optimum when only 5 microliter of cell + DNA mixture was spread per plate, suggesting that non-viable background chi1776 cells on selective medium inhibited the recovery of transformants. It was also found that the presence of linear DNA molecules in cell + DNA mixtures markedly inhibited the transformation of chi1776 by pBR322 plasmid DNA. On the basis of these findings, a new procedure for the plasmid-specific transformation of E. coli chi1776 by pBR322 plasmid DNA is proposed. The use of this technique has allowed us to attain transformation frequencies in excess of 10(7) transformants/microgram pBR322 plasmid DNA.  相似文献   

14.
R Lal  S Lal  E Grund    R Eichenlaub 《Applied microbiology》1991,57(3):665-671
A new plasmid, pA387, has been isolated from "Amycolatopsis sp." (DSM 43387). This plasmid could be isolated from liquid culture as well as mycelium from agar plates by a modified procedure. Plasmid pA387 is about 29.6 kb and can be cured at low frequency by protoplasting and ethidium bromide and heat treatment. Hybridization experiments showed that this plasmid is present in free form and does not integrate into the chromosome. A hybrid plasmid was constructed by cloning a 5.1-kb fragment of pA387 into the Escherichia coli vector pDM10. This hybrid plasmid, termed pRL1, could be transformed into Amycolatopsis mediterranei and A. orientalis by electroporation. A transformation frequency of 2.2 x 10(3) transformants per micrograms of DNA at 12.5 kV/cm and a pulse duration of 10.8 ms was obtained in A. mediterranei, whereas 1.1 x 10(5) transformants per microgram of DNA were obtained at a field strength of 7.5 kV/cm and a pulse duration of 7.6 ms in A. orientalis. Plasmid pRL1 is the first hybrid plasmid which could be used successfully for the transformation of A. mediterranei. The plasmid has a rather high copy number, is genetically stable, and can be easily reisolated from A. mediterranei. Plasmid pRL1 will be useful for further construction of a shuttle vector for E. coli and A. mediterranei and becomes the basis for the development of gene cloning techniques in Amycolatopsis spp.  相似文献   

15.
A new plasmid, pA387, has been isolated from "Amycolatopsis sp." (DSM 43387). This plasmid could be isolated from liquid culture as well as mycelium from agar plates by a modified procedure. Plasmid pA387 is about 29.6 kb and can be cured at low frequency by protoplasting and ethidium bromide and heat treatment. Hybridization experiments showed that this plasmid is present in free form and does not integrate into the chromosome. A hybrid plasmid was constructed by cloning a 5.1-kb fragment of pA387 into the Escherichia coli vector pDM10. This hybrid plasmid, termed pRL1, could be transformed into Amycolatopsis mediterranei and A. orientalis by electroporation. A transformation frequency of 2.2 x 10(3) transformants per micrograms of DNA at 12.5 kV/cm and a pulse duration of 10.8 ms was obtained in A. mediterranei, whereas 1.1 x 10(5) transformants per microgram of DNA were obtained at a field strength of 7.5 kV/cm and a pulse duration of 7.6 ms in A. orientalis. Plasmid pRL1 is the first hybrid plasmid which could be used successfully for the transformation of A. mediterranei. The plasmid has a rather high copy number, is genetically stable, and can be easily reisolated from A. mediterranei. Plasmid pRL1 will be useful for further construction of a shuttle vector for E. coli and A. mediterranei and becomes the basis for the development of gene cloning techniques in Amycolatopsis spp.  相似文献   

16.
Interspecies electro-transformation in Corynebacteria   总被引:7,自引:0,他引:7  
Plasmid DNA was efficiently electro-transformed into intact cells of nine Corynebacteria strains belonging to Brevibacterium lactofermentum, Brevibacterium flavum, Corynebacterium glutamicum and Corynebacterium melassecola. Relationships were explored between transformation efficiency and parameters such as electric field strength and pulse length, DNA concentration, physiological state and concentration of the cells. In optimal conditions, more than 10(7) transformants per microgram of DNA could be obtained. Electro-transformation with plasmid DNA isolated from different sources indicates that DNA modification may play a role in transformation efficiency.  相似文献   

17.
Plasmid DNAs were introduced by electroporation into Bacillus subtilis PB1424 as an alternative to competent-cell or protoplast transformation. The maximum electroporation efficiency was 10(4) transformants/microgram DNA. Parameters including growth phase of cells, ionic strength of the suspending medium, concentration and size of plasmid DNAs, amplitude and duration of the pulse, were evaluated in order to determine conditions that improved transformation efficiency.  相似文献   

18.
A transformation system for Enterococcus faecalis was developed which uses untreated (i.e., non-protoplasted) cells and the electroporation technique. The optimized protocol resulted in transformation efficiencies of up to 4 x 10(6) transformants per microgram of plasmid DNA. All strains of E. faecalis tested could be transformed by this method, albeit with differing transformation efficiencies. Using the protocol optimized for E. faecalis we successfully transformed Enterococcus faecium, E. hirae, E. malodoratus and E. mundtii.  相似文献   

19.
A simple and reproducible method has been developed to transform Legionella pneumophila by electroporation. Effects of different conditions, including electric field strength, pulse length, DNA quality and cell density, were evaluated. Using our method, an efficiency of up to 6 x 10(7) transformants/microg DNA was obtained. This optimized transformation procedure should efficiently facilitate gene manipulations in L. pneumophila, such as plasmid transfer, transposon mutagenesis, library transformation for complementation cloning, etc.  相似文献   

20.
The conditions for optimal formation and regeneration of protoplasts of Streptomyces clavuligerus were established. The optimal temperature for regeneration of protoplasts and for transformation was 26 degrees C in three different regeneration media. The best efficiency of transformation was obtained with 40% polyethylene glycol 1000. The efficiencies of regeneration and transformation increased greatly when protoplasts were obtained from cultures in the early stationary phase of growth. The number of transformants per assay increased linearly with rising concentrations of protoplasts. However, the number of transformants per protoplast decreased at concentrations of protoplasts above 1.5 X 10(9). The total number of transformants rose linearly at increasing plasmid DNA concentrations, but the number of the transformants per microgram of DNA became constant at concentrations above 1 microgram of DNA. Transformation frequencies as high as 5 X 10(5) transformants per microgram of DNA were obtained when plasmid pIJ702 was isolated from S. clavuligerus but not when isolated from Streptomyces lividans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号