首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor blood vessels play an important role in tumor progression and metastasis. It has been reported that tumor endothelial cells (TECs) exhibit highly angiogenic phenotypes compared with those of normal endothelial cells (NECs). TECs show higher proliferative and migratory abilities than those NECs, together with upregulation of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2). Furthermore, compared with NECs, stem cell markers such as Sca-1, CD90, and multidrug resistance 1 are upregulated in TECs, suggesting that stem-like cells exist in tumor blood vessels. In this study, to reveal the biological role of stem-like TECs, we analyzed expression of the stem cell marker aldehyde dehydrogenase (ALDH) in TECs and characterized ALDHhigh TECs. TECs and NECs were isolated from melanoma-xenografted nude mice and normal dermis, respectively. ALDH mRNA expression and activity were higher in TECs than those in NECs. Next, ALDHhigh/low TECs were isolated by fluorescence-activated cell sorting to compare their characteristics. Compared with ALDHlow TECs, ALDHhigh TECs formed more tubes on Matrigel-coated plates and sustained the tubular networks longer. Furthermore, VEGFR2 expression was higher in ALDHhigh TECs than that in ALDHlow TECs. In addition, ALDH was expressed in the tumor blood vessels of in vivo mouse models of melanoma and oral carcinoma, but not in normal blood vessels. These findings indicate that ALDHhigh TECs exhibit an angiogenic phenotype. Stem-like TECs may have an essential role in tumor angiogenesis.  相似文献   

2.
CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44high cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44high population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44high population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44high population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of multiple cancer stem-like cell markers and suitable procedures for cell isolation in order that the correct populations are assayed.  相似文献   

3.
Side population (SP) cells within tumors are a small fraction of cancer cells with stem-like properties that can be identified by flow cytometry analysis based on their high ability to export certain compounds such as Hoechst 33342 and chemotherapeutic agents. The existence of stem-like SP cells in tumors is considered as a key factor contributing to drug resistance, and presents a major challenge in cancer treatment. Although it has been recognized for some time that tumor tissue niches may significantly affect cancer stem cells (CSCs), the role of key nutrients such as glucose in the microenvironment in affecting stem-like cancer cells and their metabolism largely remains elusive. Here we report that SP cells isolated from human cancer cells exhibit higher glycolytic activity compared to non-SP cells. Glucose in the culture environment exerts a profound effect on SP cells as evidenced by its ability to induce a significant increase in the percentage of SP cells in the overall cancer cell population, and glucose starvation causes a rapid depletion of SP cells. Mechanistically, glucose upregulates the SP fraction through ATP-mediated suppression of AMPK and activation of the Akt pathway, leading to elevated expression of the ATP-dependent efflux pump ABCG2. Importantly, inhibition of glycolysis by 3-BrOP significantly reduces SP cells in vitro and impairs their ability to form tumors in vivo. Our data suggest that glucose is an essential regulator of SP cells mediated by the Akt pathway, and targeting glycolysis may eliminate the drug-resistant SP cells with potentially significant benefits in cancer treatment.  相似文献   

4.
Glioblastoma (GBM) is the most malignant primary brain tumor, with an average survival rate of 15 months. GBM is highly refractory to therapy, and such unresponsiveness is due, primarily, but not exclusively, to the glioma stem-like cells (GSCs). This subpopulation express stem-like cell markers and is responsible for the heterogeneity of GBM, generating multiple differentiated cell phenotypes. However, how GBMs maintain the balance between stem and non-stem populations is still poorly understood. We investigated the GBM ability to interconvert between stem and non-stem states through the evaluation of the expression of specific stem cell markers as well as cell communication proteins. We evaluated the molecular and phenotypic characteristics of GSCs derived from differentiated GBM cell lines by comparing their stem-like cell properties and expression of connexins. We showed that non-GSCs as well as GSCs can undergo successive cycles of gain and loss of stem properties, demonstrating a bidirectional cellular plasticity model that is accompanied by changes on connexins expression. Our findings indicate that the interconversion between non-GSCs and GSCs can be modulated by extracellular factors culminating on differential expression of stem-like cell markers and cell-cell communication proteins. Ultimately, we observed that stem markers are mostly expressed on GBMs rather than on low-grade astrocytomas, suggesting that the presence of GSCs is a feature of high-grade gliomas. Together, our data demonstrate the utmost importance of the understanding of stem cell plasticity properties in a way to a step closer to new strategic approaches to potentially eliminate GSCs and, hopefully, prevent tumor recurrence.  相似文献   

5.
Human glioblastomas (GBM) are thought to be initiated by glioma stem-like cells (GSLCs). GSLCs also participate in tumor neovascularization by transdifferentiating into vascular endothelial cells. Here, we report a critical role of GSLCs in the formation of vasculogenic mimicry (VM), which defines channels lined by tumor cells to supply nutrients to early growing tumors and tumor initiation. GSLCs preferentially expressed vascular endothelial growth factor receptor-2 (VEGFR-2) that upon activation by VEGF, mediated chemotaxis, tubule formation and increased expression of critical VM markers by GSLCs. Knockdown of VEGFR-2 in GSLCs by shRNA markedly reduced their capacity of self-renewal, forming tubules, initiating xenograft tumors, promoting vascularization and the establishment of VM. Our study demonstrates VEGFR-2 as an essential molecule to sustain the “stemness” of GSLCs, their capacity to initiate tumor vasculature, and direct initiation of tumor.  相似文献   

6.
There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33–60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate.  相似文献   

7.
The aim of the present study was to determine whether angiogenic cytokines, which induce neovascularization in the blood vascular system, might also be operative in the lymphatic system. In an assay of spontaneous in vitro angiogenesis, endothelial cells isolated from bovine lymphatic vessels retained their histotypic morphogenetic properties by forming capillary-like tubes. In a second assay, in which endothelial cells could be induced to invade a three-dimensional collagen gel within which they formed tube-like structures, lymphatic endothelial cells responded to basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) in a manner similar to what has previously been observed with endothelial cells derived from the blood vascular system. Finally, since angiogenesis is believed to require extracellular proteolytic activity, we investigated the effects of bFGF and VEGF on lymphatic endothelial cell proteolytic properties by focussing on the plasminogen activator (PA) system. bFGF and VEGF increased urokinase, urokinase receptor, and tissue-type PA expression. This was accompanied by an increase in PA inhibitor-l, which is thought to play an important permissive role in angiogenesis by protecting the extracellular matrix against excessive proteolytic degradation. Taken together, these results demonstrate that with respect to in vitro morphogenetic and proteolytic properties, lymphatic endothelial cells respond to the previously described angiogenic factors, bFGF and VEGF, in a manner very similar to what has been described for endothelial cells derived from the blood vascular system.  相似文献   

8.
9.
Mesenchymal stem cells can give rise to several cell types, but varying results depending on isolation methods and tissue source have led to controversies about their usefulness in clinical medicine. Here we show that vascular endothelial cells can transform into multipotent stem-like cells by an activin-like kinase-2 (ALK2) receptor-dependent mechanism. In lesions from individuals with fibrodysplasia ossificans progressiva (FOP), a disease in which heterotopic ossification occurs as a result of activating ALK2 mutations, or from transgenic mice expressing constitutively active ALK2, chondrocytes and osteoblasts expressed endothelial markers. Lineage tracing of heterotopic ossification in mice using a Tie2-Cre construct also suggested an endothelial origin of these cell types. Expression of constitutively active ALK2 in endothelial cells caused endothelial-to-mesenchymal transition and acquisition of a stem cell-like phenotype. Similar results were obtained by treatment of untransfected endothelial cells with the ligands transforming growth factor-β2 (TGF-β2) or bone morphogenetic protein-4 (BMP4) in an ALK2-dependent manner. These stem-like cells could be triggered to differentiate into osteoblasts, chondrocytes or adipocytes. We suggest that conversion of endothelial cells to stem-like cells may provide a new approach to tissue engineering.  相似文献   

10.
Chronic lymphocytic leukemia (CLL) cells feature a pronounced apoptotic resistance. The vascular endothelial growth factor (VEGF) possesses a role in this apoptotic block, although underlying functional mechanisms and the involvement of the microenvironment are unclear. In this study, the VEGF status in CLL was assessed by enzyme-linked immunosorbent assay and immunofluorescence. VEGF receptor 2 (VEGFR2) phosphorylation was determined flow cytometrically and by immunofluorescence. For co-culture, CLL cells were cultivated on a monolayer of the bone marrow-derived stromal cell (BMSC) line HS5. Secreted VEGF was neutralized using the monoclonal antibody mAb293 (R&D Systems, Minneapolis, MN, USA). To block protein secretion, we used Brefeldin A. VEGF was downregulated in BMSCs by small interfering RNA (siRNA), and we assessed survival by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. CLL cells express and secrete VEGF and possess phosphorylated VEGFR2. This positive VEGF status is not sufficient to prevent spontaneous apoptosis in vitro. Coculture with BMSCs, which secrete vast amounts of VEGF, maintains in vitro CLL cell survival. Blockage of secreted VEGF using the monoclonal antibody mAb293 significantly reduced the survival support for cocultured CLL cells. Both general blockage of protein secretion by Brefeldin A in BMSCs, but not in CLL cells, and siRNA-mediated downregulation of VEGF in BMSCs, significantly reduced the coculture-mediated survival support for CLL cells. It can be concluded that BMSC-derived proteins and VEGF, in particular, but not CLL cell-derived VEGF, is essentially involved in the coculture-mediated survival support for CLL cells. Hence, therapeutic targeting of VEGF signaling might be a promising approach to overcome the apoptotic resistance CLL cells feature within their natural microenvironment.  相似文献   

11.
The aim of this study is to identify the phenotype of resistant oral tumors, and to delineate the contribution of immune effectors to resistance of oral tumors. UCLA-1 oral tumors which were resistant to NK cell mediated cytotoxicity secreted increased amounts of IL-6, IL-1β, GM-CSF, and IL-8 when cultured with or without immune effectors. In addition, the levels of vascular endothelial growth factor (VEGF) secretion in the co-cultures of naïve immune effectors with UCLA-1 rose significantly when compared to tumor cells alone. IL-2 activated NK cells decreased VEGF secretion in all tumor cells. However, NK cells which were induced to undergo cell death with anti-CD16 antibody were not only unable to decrease VEGF secretion, but they also contributed further to the increase in VEGF secretion by oral tumors. Overall, we show in this paper that naïve as well as non-viable immune effectors may contribute to the growth and resistance of oral tumors by triggering the secretion of key tumor cell growth factors.  相似文献   

12.
13.
Glioma stem-like cells constitute one of the potential origins of gliomas, and therefore, their elimination is an essential factor for the development of efficient therapeutic strategies. Cannabinoids are known to exert an antitumoral action on gliomas that relies on at least two mechanisms: induction of apoptosis of transformed cells and inhibition of tumor angiogenesis. However, whether cannabinoids target human glioma stem cells and their potential impact in gliomagenesis are unknown. Here, we show that glioma stem-like cells derived from glioblastoma multiforme biopsies and the glioma cell lines U87MG and U373MG express cannabinoid type 1 (CB(1)) and type 2 (CB(2)) receptors and other elements of the endocannabinoid system. In gene array experiments, CB receptor activation altered the expression of genes involved in the regulation of stem cell proliferation and differentiation. The cannabinoid agonists HU-210 and JWH-133 promoted glial differentiation in a CB receptor-dependent manner as shown by the increased number of S-100beta- and glial fibrillary acidic protein-expressing cells. In parallel, cannabinoids decreased the cell population expressing the neuroepithelial progenitor marker nestin. Moreover, cannabinoid challenge decreased the efficiency of glioma stem-like cells to initiate glioma formation in vivo, a finding that correlated with decreased neurosphere formation and cell proliferation in secondary xenografts. Gliomas derived from cannabinoid-treated cancer stem-like cells were characterized with a panel of neural markers and evidenced a more differentiated phenotype and a concomitant decrease in nestin expression. Overall, our results demonstrate that cannabinoids target glioma stem-like cells, promote their differentiation, and inhibit gliomagenesis, thus giving further support to their potential use in the management of malignant gliomas.  相似文献   

14.
Glioblastoma, the most frequent and aggressive malignant brain tumor, has a very poor prognosis of approximately 1-year. The associated aggressive phenotype and therapeutic resistance of glioblastoma is postulated to be due to putative brain tumor stem-like cells (BTSC). The best hope for improved therapy lies in the ability to understand the molecular biology that controls BTSC behavior. The tumor vascular microenvironment of brain tumors has emerged as important regulators of BTSC behavior. Emerging data have identified the vascular microenvironment as home to a multitude of cell types engaged in various signaling that work collectively to foster a supportive environment for BTSCs. Characterization of the signaling pathways and intercellular communication between resident cell types in the microvascular niche of brain tumors is critical to the identification of potential BTSC-specific targets for therapy.Key words: glioblastoma, perivascular niche, brain tumor, cancer stem-like cells, microenvironment  相似文献   

15.
The anti-angiogenic activity of pigment epithelium-derived factor (PEDF) has recently been discovered on the basis of its inhibition of ischemia-induced retinal neovascularization in an animal model of retinopathy of the premature. Moreover PEDF inhibits the migration and proliferation of various endothelial cells maintained in culture with FGF(2). Since vascular endothelial growth factor (VEGF) is the main angiogenic factor expressed in hypervascularized retinas, we investigated the functions of PEDF on retinal endothelial cells whose angiogenic phenotype is controlled or not by long term exposure to VEGF as observed in human pathologies such as diabetic retinopathy. Here, we observed that PEDF exerts opposite effects on endothelial cells depending on their phenotype. We determined that when PEDF inhibits endothelial cell growth, it inhibits VEGF-induced MAPK activation. However, in endothelial cells cultured with VEGF, PEDF has a synergistic action on cell proliferation with VEGF, and this corresponds to increased MAPK activation.  相似文献   

16.
The vascular endothelial growth factor (VEGF) is a critical factor for development of the vascular system in physiological and pathological angiogenesis. This growth factor exists under at least three isoforms, VEGF120/121, VEGF164/165 and VEGF188/189 which are generated by alternative splicing. VEGF isoforms have different affinities for heparan sulphate as well as for VEGF receptors, and may play distinct roles in vascular development. The role of VEGF189 as an endothelial mitogen, however, remains controversial. VEGF189 is almost entirely bound to the cell surface or extracellular matrix, and is considered active after its cleavage and release from its extracellular binding site. In the present study, we demonstrate that VEGF189 induces endothelial cell proliferation and migration in vitro. The 30-60% increase observed with VEGF189 (10 ng/ml) in HUVEC proliferation was similar to that observed with VEGF165. However, the proliferative effect observed with VEGF189 appeared dependent on the origin of the endothelial cell, since the proliferation was clearly observed with HUVEC but not with BAEC or capillary endothelial cells from dermis (HMEC). The effect of VEGF189 on endothelial cell migration was also analyzed using the wound healing and the Boyden chamber assays. The migration effect was observed with BAEC which do not proliferate with VEGF189, suggesting that different mechanisms are involved in proliferation and migration. In addition, VEGF189 as well as VEGF165 induced a 2-fold increase of Flk-1/KDR expression in HUVEC, the receptor involved in proliferation and migration of endothelial cells. In the Matrigel plug assay in vivo, both VEGF189 and 165 (100 ng/ml) increased the infiltration of endothelial cells. These data suggest that VEGF189 induced endothelial cell migration and proliferation under certain circumstances.  相似文献   

17.
Cell function is profoundly affected by the geometry of the extracellular environment confining the cell. Whether and how cells plated on a two-dimensional matrix or embedded in a three-dimensional (3D) matrix mechanically sense the dimensionality of their environment is mostly unknown, partly because individual cells in an extended matrix are inaccessible to conventional cell-mechanics probes. Here we develop a functional assay based on multiple particle tracking microrheology coupled with ballistic injection of nanoparticles to measure the local intracellular micromechanical properties of individual cells embedded inside a matrix. With our novel assay, we probe the mechanical properties of the cytoplasm of individual human umbilical vein endothelial cells (HUVECs) embedded in a 3D peptide hydrogel in the presence or absence of vascular endothelial growth factor (VEGF). We found that VEGF treatment, which enhances endothelial migration, increases the compliance and reduces the elasticity of the cytoplasm of HUVECs in a matrix. This VEGF-induced softening response of the cytoplasm is abrogated by specific Rho-kinase (ROCK) inhibition. These results establish combined particle-tracking microrheology and ballistic injection as the first method able to probe the micromechanical properties and mechanical response to agonists and/or drug treatments of individual cells inside a matrix. These results suggest that ROCK plays an essential role in the regulation of the intracellular mechanical response to VEGF of endothelial cells in a 3D matrix.  相似文献   

18.
19.
Lymph node blood vessels play important roles in the support and trafficking of immune cells. The blood vasculature is a component of the vascular-stromal compartment that also includes the lymphatic vasculature and fibroblastic reticular cells (FRCs). During immune responses as lymph nodes swell, the blood vasculature undergoes a rapid proliferative growth that is initially dependent on CD11c(+) cells and vascular endothelial growth factor (VEGF) but is independent of lymphocytes. The lymphatic vasculature grows with similar kinetics and VEGF dependence, suggesting coregulation of blood and lymphatic vascular growth, but lymphatic growth has been shown to be B cell dependent. In this article, we show that blood vascular, lymphatic, and FRC growth are coordinately regulated and identify two distinct phases of vascular-stromal growth--an initiation phase, characterized by upregulated vascular-stromal proliferation, and a subsequent expansion phase. The initiation phase is CD11c(+) cell dependent and T/B cell independent, whereas the expansion phase is dependent on B and T cells together. Using CCR7(-/-) mice and selective depletion of migratory skin dendritic cells, we show that endogenous skin-derived dendritic cells are not important during the initiation phase and uncover a modest regulatory role for CCR7. Finally, we show that FRC VEGF expression is upregulated during initiation and that dendritic cells can stimulate increased fibroblastic VEGF, suggesting the scenario that lymph node-resident CD11c(+) cells orchestrate the initiation of blood and lymphatic vascular growth in part by stimulating FRCs to upregulate VEGF. These results illustrate how the lymph node microenvironment is shaped by the cells it supports.  相似文献   

20.
The presence of a vascular endothelial cell growth factor (VEGF) in the retina was reported in a previous study. The present experiments show that VEGF exhibits a pronounced synergism with the serum-derived factor and the vascular endothelium (VE) effectors in stimulating the proliferation of vascular VE cells. VEGF shows a chromatographic multiplicity with the 25,000-D component as the smallest subunit. Mg2+ is the specific divalent cation that retains the VEGF molecule in the aggregated form and enhances the activity, both total and specific. In addition, VEGF is highly specific for endothelial cells and is distinctly different from FGF, EGF, and insulin in terms of molecular weight (MW) and cell specificity. Under our assay conditions, VEGF has no stimulatory effect on other cell lines examined, including lens epithelial cells, corneal epithelial cells, corneal keratocytes, Walker 256 carcinoma, and fibroblasts. These findings indicate that VEGF possesses characteristic properties not reported for other growth factors, and that VEGF is distinctly different from the growth factors isolated from the retina in other laboratories. The present study suggests that VEGF in the retina represents a new type of growth factor. The need to employ a highly defined assay condition could have eluded the detection of this factor in other laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号