首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron deficiency anemia and zinc deficiency are major health concerns across the world and can be addressed by biofortification breeding of higher mineral concentration in staple crops, such as common bean. Wild common beans have for the most part had higher average seed mineral concentration than cultivars of this species but have small un-commercial seeds. A logical approach for the transfer of the seed mineral trait from wild beans to cultivated beans is through the advanced backcross breeding approach. The goal of this study was to analyze a population of 138 BC(2)F(3:5) introgression lines derived from the very high iron wild genotype G10022 backcrossed into the genetic background of the commercial-type variety 'Cerinza', a large-red seeded bush bean cultivar of the Andean genepool. In addition to measuring seed mineral accumulation traits and the quantitative trait loci (QTL) controlling these traits we were interested in simultaneously testing the adaptation of the introgression lines in two replicated yield trials. We found the cross to have high polymorphism and constructed an anchored microsatellite map for the population that was 1,554-cM long and covered all 11 linkage groups of the common bean genome. Through composite interval mapping (CIM) and single point analysis (SPA), we identified associations of markers and mineral traits on b01, b06, b07, b08, b10 and b11 for seed iron concentration, and markers on b01, b04 and b10 for seed zinc concentration. The b07 and b08 QTL aligned with previous QTL for iron concentration. A large number of QTL were found for seed weight (9 with CIM and 36 with SPA analysis) and correlations between seed size and mineral content affected the identification of iron and zinc contents' QTL on many linkage groups. Segregation distortion around domestication genes made some areas difficult to introgress. However, in conclusion, the advanced backcross program produced some introgression lines with high mineral accumulation traits using a wild donor parent.  相似文献   

2.
Biofortification of foods, achieved by increasing the concentrations of minerals such as iron (Fe) and zinc (Zn), is a goal of plant scientists. Understanding genes that influence seed mineral concentration in a model plant such as Arabidopsis could help in the development of nutritionally enhanced crop cultivars. Quantitative trait locus (QTL) mapping for seed concentrations of calcium (Ca), copper (Cu), Fe, potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and Zn was performed using two recombinant inbred line (RIL) populations, Columbia (Col) x Landsberg erecta (Ler) and Cape Verde Islands (Cvi) x Ler, grown on multiple occasions. QTL mapping was also performed using data from silique hulls and the ratio of seed:hull mineral concentration of the Cvi x Ler population. Over 100 QTLs that affected seed mineral concentration were identified. Twenty-nine seed QTLs were found in more than one experiment, and several QTLs were found for both seed and hull mineral traits. A number of candidate genes affecting seed mineral concentration are discussed. These results indicate that A. thaliana is a suitable and convenient model for discovery of genes that affect seed mineral concentration. Some strong QTLs had no obvious candidate genes, offering the possibility of identifying unknown genes that affect mineral uptake and translocation to seeds.  相似文献   

3.
Increased concentrations of important nutrients in edible parts of plants could result in biofortified foods. Soybean [Glycine max (L.) Merr.] is a major legume crop and an important source of certain nutrients, including protein and minerals, in human and animal diets. Understanding the underlying genetic basis of seed composition is crucial to improving seed nutrient composition. In this study we used three soybean recombinant inbred line mapping populations derived from the crosses Williams 82 × DSR-173, Williams 82 × NKS19-90 and Williams 82 × Vinton 81, and constructed a joint linkage map from these populations. Forty quantitative trait loci (QTLs) were detected for 18 traits: seed weight, seed magnesium, sulfur, calcium, manganese, potassium, iron, cobalt, nickel, copper, zinc, selenium, molybdenum, cadmium and arsenic concentrations, total nitrogen:total sulfur (N:S) ratio, cysteine and methionine concentrations. Using the joint linkage map, we detected nine QTLs that were not identified in the individual populations. We identified several candidate genes that might contribute to these traits, including transporters and genes involved in nitrogen and amino acid metabolism. Some strong QTLs had no obvious candidate genes, offering the possibility that subsequent confirmation of these QTLs may result in identification of new genes affecting seed nutrients in soybean. Seed weight and seed mineral concentrations were not highly correlated, suggesting the possibility of improving seed mineral concentrations without significant changes in seed weight. An inverse relationship between N:S ratio and most other minerals suggests the possibility of using N:S ratio as an indirect measure of seed mineral concentration in soybean breeding programs.  相似文献   

4.
Iron and zinc deficiencies are human health problems found throughout the world and biofortification is a plant breeding-based strategy to improve the staple crops that could address these dietary constraints. Common bean is an important legume crop with two major genepools that has been the focus of genetic improvement for seed micronutrient levels. The objective of this study was to evaluate the inheritance of seed iron and zinc concentrations and contents in an intra-genepool Mesoamerican × Mesoamerican recombinant inbred line population grown over three sites in Colombia and to identify quantitative trait loci (QTL) for each mineral. The population had 110 lines and was derived from a high-seed iron and zinc climbing bean genotype (G14519) crossed with a low-mineral Carioca-type, prostrate bush bean genotype (G4825). The genetic map for QTL analysis was created from SSR and RAPD markers covering all 11 chromosomes of the common bean genome. A set of across-site, overlapping iron and zinc QTL was discovered on linkage group b06 suggesting a possibly pleiotropic locus and common physiology for mineral uptake or loading. Other QTL for mineral concentration or content were found on linkage groups b02, b03, b04, b07, b08 and b11 and together with the b06 cluster were mostly novel compared to loci found in previous studies of the Andean genepool or inter-genepool crosses. The discovery of an important new locus for seed iron and zinc concentrations may facilitate crop improvement and biofortification using the high-mineral genotype especially within the Mesoamerican genepool.  相似文献   

5.
Condensed tannins are major flavonoid end products that affect the nutritional quality of many legume seeds. They chelate minerals and interact with proteins, thus reducing their bioavailability. Tannins also contribute to seed coat color and pigment distribution or intensity. The objective of this study was to analyze the relationship between quantitative trait loci (QTL) for seed tannin concentration in common bean and Mendelian genes for seed coat color and pattern. Three populations of recombinant inbred lines, derived from crosses between the Andean and Mesoamerican genepools were used for QTL identification and for mapping STS markers associated with seed color loci. Seed coat condensed tannins were determined with a butanol–HCl method and a total of 12 QTL were identified on separate linkage groups (LGs) in each of the populations with individual QTL explaining from 10 to 64% of the phenotypic variation for this trait. Loci on linkage groups B3 and B10 were associated with the Mendelian genes Z and Bip for partly colored seed coat pattern, while a QTL on linkage group B7 was associated with the P gene which is the primary locus for the control of color expression in beans. In conclusion, this study found that the inheritance of tannin concentration fits an oligogenic model and identifies novel putative alleles at seed coat color and pattern genes that control tannin accumulation. The results will be important for the genetic improvement of nutritionally enhanced or biofortified beans that have health promoting effects from higher polyphenolics or better iron bioavailability.  相似文献   

6.
Compared to maize and temperate grasses, sorghum has received less attention in terms of improving cell wall components. The objectives of this study were to identify quantitative trait loci (QTL) with main effects, epistatic and pleiotropic effects along with QTL × environment (QE) interactions controlling fibre-related traits in sorghum. Neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, fresh leaf mass, stripped stalk mass, dry stalk mass, fresh biomass and dry biomass were analysed from a population of 188 grain × sweet sorghum recombinant inbred lines. A genetic map consisting of 157 DNA markers was constructed, and QTL were detected using composite interval mapping (CIM). CIM detected more than 5 additive QTL per trait explaining 7.1–24.7% of the phenotypic variation. Abundant co-localization of these QTL was observed across all chromosomes, and the highest cluster was identified on chromosome 6. Searching for candidate genes using the confidence interval of our QTL clusters reveals that these clusters might comprise a set of genes that are tightly linked. Some QTL showed multiple effects; however, the allele for each trait was favouring the parent with the increasing effect. QE interactions were observed for QTL showing multiple effects. Additive × additive interaction was observed for 7 out of 10 traits, indicating the importance of epistatic analysis. However, the phenotypic variation explained by digenic interactions was lower compared to the individual QTL. Our results indicate that various genetic components contribute to fibre-related traits and should be considered during the enhancement of sorghum for lignocellulosic biomass.  相似文献   

7.
A complex network of trade-offs exists between wheat quality and nutritional traits. We investigated the correlated relationships among several milling and baking traits as well as mineral density in refined white and whole grain flour. Our aim was to determine their pleiotropic genetic control in a multi-parent population over two trial years with direct application to practical breeding. Co-location of major quantitative trait loci (QTL) and principal component based multi-trait QTL mapping increased the power to detect QTL and revealed pleiotropic effects explaining many complementary and antagonistic trait relationships. High molecular weight glutenin subunit genes explained much of the heritable variation in important dough rheology traits, although additional QTL were detected. Several QTL, including one linked to the TaGW2 gene, controlled grain size and increased flour extraction rate. The semi-dwarf Rht-D1b allele had a positive effect on Hagberg falling number, but reduced grain size, specific weight, grain protein content and flour water absorption. Mineral nutrient concentrations were lower in Rht-D1b lines for many elements, in wholemeal and white flour, but potassium concentration was higher in Rht-D1b lines. The presence of awns increased calcium content without decreasing extraction rate, despite the negative correlation between these traits. QTL were also found that affect the relative concentrations of key mineral nutrients compared to phosphorus which may help increase bioavailability without associated anti-nutritional effects of phytic acid. Taken together these results demonstrate the potential for marker-based selection to optimise trait trade-offs and enhance wheat nutritional value by considering pleiotropic genetic effects across multiple traits.Subject terms: Plant breeding, Quantitative trait, Genetic variation  相似文献   

8.
Common bean (Phaseolus vulgaris L.) is an important, high-quality staple food that provides large amounts of protein and mineral micronutrients to the diets of people in many countries. Phytates are a storage form of organic phosphorus which is used by the plant in various stages of growth and development but can have certain anti-nutrient properties due to chelation of minerals such as iron and zinc. At the same time, phytates provide certain health benefits and therefore are the subject of both mutagenesis and breeding programs for functional foods. The objective of this study was to evaluate the quantitative trait loci (QTL) associated with seed phytate and seed phosphorus concentration and content on a per-seed basis and to develop functional molecular markers for genes from the phytic acid synthesis pathway. We used a well-characterized mapping population, DOR364?×?G19833, in three field experiments with three repetitions each and two levels of soil phosphorus fertilization, as well as a large set of previously and newly developed primer pairs for the genes myo-inositol (3)P1 synthase, myo-inositol kinase and various inositol kinases. We identified an association of phytate concentration QTL with one of two paralogs of the myo-inositol (3)P1 synthase gene family, located on linkage group b01 and expressed in common bean seed rather than in vegetative tissues. We also identified QTL for phytate concentration on linkage group b06 and phytate content on linkage groups b03, b04 and b10. We provide a synteny analysis based on common bean versus soybean genome comparisons of all the phytic acid pathway genes that were genetically mapped and indicate flanking markers that can be used for marker-assisted selection when the genes themselves are not polymorphic as PCR amplicons. We can conclude that natural variability in phytate levels is controlled by the seed-expressed myo-inositol (3)P1 synthase gene (MIPS) as well as other loci in the common bean genome. This means that breeding of phytate levels in common bean must take into account allele variability at certain candidate genes, such as this seed MIPS gene, a recently cloned ABC trasnporter and additional QTL for the trait, which underlie the oligogenic inheritance for phytate concentration in common bean.  相似文献   

9.
Seed size traits in soybean—length, width and thickness—and their corresponding ratios—length-to-width, length-to-thickness and width-to-thickness—play a crucial role in determining seed appearance, quality and yield. In this study, an attempt was made to detect quantitative trait loci (QTL) for the aforementioned seed size traits in F2:3, F2:4 and F2:5 populations from the direct and reciprocal crosses of Lishuizhongzihuang with Nannong 493-1, using multi-QTL joint analysis (MJA) along with composite interval mapping (CIM). A total of 121 main-effect QTL (M-QTL), six environmental effects, eight environment-by-QTL interactions, five cytoplasmic effects and 92 cytoplasm-by-QTL interactions were detected. Fifty-two common M-QTL across MJA and CIM, 21 common M-QTL in more than two populations and 5 M-QTL in all three populations showed the stability of the results. Five M-QTL had higher heritability, greater than 20%. In addition, 28 cytoplasm-by-QTL and 4 environment-by-QTL interactions were confirmed by CIM. Most M-QTL were clustered in eight chromosomal regions. Our results provide a good foundation for fine mapping, cloning and designed molecular breeding of favorable genes related to soybean seed size traits.  相似文献   

10.
Micronutrients are essential elements needed in small amounts for adequate human nutrition and include the elements iron and zinc. Both of these minerals are essential to human well-being and an adequate supply of iron and zinc help to prevent iron deficiency anemia and zinc deficiency, two prevalent health concerns of the developing world. The objective of this study was to determine the inheritance of seed iron and zinc accumulation in a recombinant inbred line (RIL) population of common beans from a cross of low × high mineral genotypes (DOR364 × G19833) using a quantitative trait locus (QTL) mapping approach. The population was grown over two trial sites and two analytical methods (Inductively Coupled Plasma Spectrometry and Atomic Absorption Spectroscopy) were used to determine iron and zinc concentration in the seed harvested from these trials. The variability in seed mineral concentration among the lines was larger for iron (40.0–84.6 ppm) than for zinc (17.7–42.4 ppm) with significant correlations between trials, between methods and between minerals (up to r = 0.715). A total of 26 QTL were identified for the mineral × trial × method combinations of which half were for iron concentration and half for zinc concentration. Many of the QTL (11) for both iron (5) and zinc (6) clustered on the upper half of linkage group B11, explaining up to 47.9% of phenotypic variance, suggesting an important locus useful for marker assisted selection. Other QTL were identified on linkage groups B3, B6, B7, and B9 for zinc and B4, B6, B7, and B8 for iron. The relevance of these results for breeding common beans is discussed especially in light of crop improvement for micronutrient concentration as part of a biofortification program.  相似文献   

11.
12.
Legumes provide essential micronutrients that are found only in low amounts in the cereals or root crops. An ongoing project at CIAT has shown that the legume common bean is variable in the amount of seed minerals (iron, zinc, and other elements), vitamins, and sulfur amino acids that they contain and that these traits are likely to be inherited quantitatively. In this study we analyzed iron and zinc concentrations in an Andean recombinant inbred line (RIL) population of 100 lines derived from a cross between G21242, a Colombian cream-mottled climbing bean with high seed iron/zinc and G21078, an Argentinean cream seeded climbing bean with low seed iron/zinc. The population was planted across three environments; seed from each genotype was analyzed with two analytical methods, and quantitative trait loci (QTL) were detected using composite interval mapping and single-point analyses. A complete genetic map was created for the cross using a total of 74 microsatellite markers to anchor the map to previously published reference maps and 42 RAPD markers. In total, nine seed mineral QTL were identified on five linkage groups (LGs) with the most important being new loci on b02 and other QTL on b06, b08, and b07 near phaseolin. Seed weight QTL were associated with these on b02 and b08. These Andean-derived QTL are candidates for marker-assisted selection either in combination with QTL from the Mesoamerican genepool or with other QTL found in inter and intra-genepool crosses, and the genetic map can be used to anchor other intra-genepool studies.  相似文献   

13.
We constructed a linkage map for the population QDH, which was derived from a cross between an oilseed rape cultivar and a resynthesised Brassica napus. The linkage map included ten markers linked to loci orthologous to those encoding fatty acid biosynthesis genes in Arabidopsis thaliana. The QDH population contains a high level of allelic variation, particularly in the C genome. We conducted quantitative trait locus (QTL) analyses, using field data obtained over 3 years, for the fatty acid composition of seed oil. The population segregates for the two major loci controlling erucic acid content, on linkage groups A8 and C3, which quantitatively affect the content of other fatty acids and is a problem generally encountered when crossing “wild” germplasm with cultivated “double low” oilseed rape cultivars. We assessed three methods for QTL analysis, interval mapping, multiple QTL mapping and single marker regression analysis of the subset of lines with low erucic acid. We found the third of these methods to be most appropriate for our main purpose, which was the study of the genetic control of the desaturation of 18-carbon fatty acids. This method enabled us to decouple the effect of the segregation of the erucic acid-controlling loci and identify 34 QTL for fatty acid content of seed oil, 14 in the A genome and 20 in the C genome. The QTL indicate the presence of 13 loci with novel alleles inherited from the progenitors of the resynthesised B. napus that might be useful for modulating the content or extent of desaturation of polyunsaturated fatty acids, only one of which coincides with the anticipated position of a candidate gene, an orthologue of FAD2.  相似文献   

14.
Soya bean is a major source of edible oil and protein for human consumption as well as animal feed. Understanding the genetic basis of different traits in soya bean will provide important insights for improving breeding strategies for this crop. A genome‐wide association study (GWAS) was conducted to accelerate molecular breeding for the improvement of agronomic traits in soya bean. A genotyping‐by‐sequencing (GBS) approach was used to provide dense genome‐wide marker coverage (>47 000 SNPs) for a panel of 304 short‐season soya bean lines. A subset of 139 lines, representative of the diversity among these, was characterized phenotypically for eight traits under six environments (3 sites × 2 years). Marker coverage proved sufficient to ensure highly significant associations between the genes known to control simple traits (flower, hilum and pubescence colour) and flanking SNPs. Between one and eight genomic loci associated with more complex traits (maturity, plant height, seed weight, seed oil and protein) were also identified. Importantly, most of these GWAS loci were located within genomic regions identified by previously reported quantitative trait locus (QTL) for these traits. In some cases, the reported QTLs were also successfully validated by additional QTL mapping in a biparental population. This study demonstrates that integrating GBS and GWAS can be used as a powerful complementary approach to classical biparental mapping for dissecting complex traits in soya bean.  相似文献   

15.

Key message

Seed weight QTL identified in different populations were synthesized into consensus QTL which were shown to harbor candidate genes by in silico mapping. Allelic variation inferred would be useful in breeding B. juncea lines with high seed weight.

Abstract

Seed weight is an important yield influencing trait in oilseed Brassicas and is a multigenic trait. Among the oilseed Brassicas, Brassica juncea harbors the maximum phenotypic variation wherein thousand seed weight varies from around 2.0 g to more than 7.0 g. In this study, we have undertaken quantitative trait locus/quantitative trait loci (QTL) analysis of seed weight in B. juncea using four bi-parental doubled-haploid populations. These four populations were derived from six lines (three Indian and three east European lines) with parental phenotypic values for thousand seed weight ranging from 2.0 to 7.6 g in different environments. Multi-environment QTL analysis of the four populations identified a total of 65 QTL ranging from 10 to 25 in each population. Meta-analysis of these component QTL of the four populations identified six ‘consensus’ QTL (C-QTL) in A3, A7, A10 and B3 by merging 33 of the 65 component Tsw QTL from different bi-parental populations. Allelic diversity analysis of these six C-QTL showed that Indian lines, Pusajaikisan and Varuna, hold the most positive allele in all the six C-QTL. In silico mapping of candidate genes with the consensus QTL localized 11 genes known to influence seed weight in Arabidopsis thaliana and also showed conserved crucifer blocks harboring seed weight QTL between the A subgenomes of B. juncea and B. rapa. These findings pave the way for a better understanding of the genetics of seed weight in the oilseed crop B. juncea and reveal the scope available for improvement of seed weight through marker-assisted breeding.
  相似文献   

16.
Abtract  Analysis of near-isogenic lines (NILs) that differ at quantitative trait loci (QTL) can be an effective approach for the detailed mapping and characterization of individual loci. Although NILs are useful for genetic and physiological studies, the time and effort required to develop these lines have limited their use. Here we describe a procedure to identify NILs for any region of the genome that can be analyzed with molecular or other genetic markers. The procedure utilizes molecular markers to identify heterogeneous inbred families (HIFs) that segregate for a genomic region of interest. Each HIF is isogenic at the majority of loci in the genome, but NILs differing for markers linked to QTL of interest can be extracted from segregating families. The application of this procedure is described for two QTL associated with seed weight in sorghum. A population of 98 HIFs was screened with two RAPD markers from different linkage groups that were associated with seed weight. Three segregating families were identified for each marker. The progeny of these HIFs were characterized for the segregation of seed weight and other yield components and for markers flanking each QTL. NILs derived from each HIF had significantly different seed weights confirming the presence of at least two loci that influence seed weight in sorghum. Received: 16 September 1996 / Accepted: 25 April 1997  相似文献   

17.
Mineral nutrients are essential for plant cell function, and understanding the genetic and physiological basis of mineral concentration is therefore important for the development of nutrient-efficient crop varieties that can cope with a shortage of mineral resources. In the present study, we investigated the profiles of B, Ca, Fe, Cu, Mg, P and Zn concentrations in shoots and analyzed the genetic variation in a rapeseed (Brassica napus) double haploid population at normal and deficient boron (B) levels in hydroponic conditions. Significant correlations between the concentrations of different minerals, such as Ca and Mg, Ca and P, and Cu and Fe, existed in both B environments. A total of 35 quantitative trait loci (QTL) and 74 epistatic interaction pairs for mineral concentrations were identified by whole genome analysis of QTL and epistatic interactions. The individual phenotypic contributions of the QTL ranged from 4.4% to 19.0%, and the total percentage of genetic variance that was due to QTL and epistatic interactions varied from 10.4% to 82.4%. Most of these QTL corresponded specifically to one of the two B conditions except for one stable main-effect P-QTL across the B environments. Three QTL for Ca and Mg were found to co-localize under normal B condition. These results revealed that genetic factors control mineral homeostasis in plants and multigenes involving ion transport are required to regulate mineral balance in plants under conditions of diverse nutrient stress. In addition, 26 genes involved in ion uptake and transport in Arabidopsis thaliana were in silico mapped onto the QTL intervals of B. napus by comparative genomic analysis. These candidate orthologous genes in B. napus allowed the selection of genes involved in the controlling mineral concentration that may account for the identified QTL.  相似文献   

18.
Low temperature is among the critical environmental factors that limit soybean production. To elucidate the genetic basis for chilling tolerance and identify useful markers, we conducted quantitative trait loci (QTL) analysis of seed-yielding ability at low temperature in soybean (Glycine max), using artificial climatic environments at usual and low temperatures and recombinant inbred lines derived from a cross between two contrasting cultivars in terms of chilling tolerance. We identified a QTL of a large effect (LOD > 15, r 2 > 0.3) associated with seed-yielding ability only at low temperature. The QTL was mapped near marker Sat_162 on linkage group A2, where no QTL for chilling tolerance has previously been identified. The tolerant genotype did not increase the pod number but maintained the seed number per pod and single seed weight, namely, the efficiency of seed development at low temperature. The effect of the QTL was confirmed in a segregating population of heterogeneous inbred families, which provided near-isogenic lines. The genomic region containing the QTL also influenced the node and pod numbers regardless of temperature condition, although this effect was not primarily associated with chilling tolerance. These results suggest the presence of a new major genetic factor that controls seed development specifically at low temperature. The findings will be useful for marker-assisted selection as well as for understanding of the mechanism underlying chilling tolerance in reproductive organs.  相似文献   

19.
20.

Key message

Twelve meta-QTL for seed Fe and Zn concentration and/or content were identified from 87 QTL originating from seven population grown in sixteen field trials. These meta-QTL include 2 specific to iron, 2 specific to zinc and 8 that co-localize for iron and zinc concentrations and/or content.

Abstract

Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption worldwide and it is an important source of microelements, especially iron and zinc. Bean biofortification breeding programs develop new varieties with high levels of Fe and Zn targeted for countries with human micronutrient deficiencies. Biofortification efforts thus far have relied on phenotypic selection of raw seed mineral concentrations in advanced generations. While numerous quantitative trait loci (QTL) studies have been conducted to identify genomic regions associated with increased Fe and Zn concentration in seeds, these results have yet to be employed for marker-assisted breeding. The objective of this study was to conduct a meta-analysis from seven QTL studies in Andean and Middle American intra- and inter-gene pool populations to identify the regions in the genome that control the Fe and Zn levels in seeds. Two meta-QTL specific to Fe and two meta-QTL specific to Zn were identified. Additionally, eight Meta QTL that co-localized for Fe and Zn concentration and/or content were identified across seven chromosomes. The Fe and Zn shared meta-QTL could be useful candidates for marker-assisted breeding to simultaneously increase seed Fe and Zn. The physical positions for 12 individual meta-QTL were identified and within five of the meta-QTL, candidate genes were identified from six gene families that have been associated with transport of iron and zinc in plants.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号