首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The majority of sediment dweller foraminifera are deposit feeders. They use their pseudopodia to gather sediment with associated algae, organic detritus and bacteria. Uptake of bacteria by foraminifera have been observed but rarely quantified. We measured uptake of bacteria by the common foraminifera Ammonia tepida using 15N pre-enriched bacteria as tracers. In intertidal flats, seasonal, tidal and circadian cycles induce strong variations in environmental parameters. Grazing experiments were performed in order to measure effects of abiotic (temperature, salinity and irradiance) and biotic (bacterial and algal abundances) factors on uptake rates of bacteria. In mean conditions, A. tepida grazed 78 pgC ind− 1 h− 1 during the first eight hours of incubation, after which this uptake rate decreased. Uptake of bacteria was optimal at 30 °C, decreased with salinity and was unaffected by light. Above 7 × 108 bacteria ml wt sed− 1, uptake of bacteria remained unchanged when bacterial abundance increased. Algal abundance strongly affected algal uptake but did not affect uptake of bacteria. As uptake of bacteria represented 8 to 19% of microbes (algae plus bacteria) uptake, Ammonia seemed to be mainly dependant on algal resource.  相似文献   

2.
We present measurements of the maximum diameter of the planktonic foraminifer Neogloboquadrina pachyderma sin. from six sediment cores (Ocean Drilling Program sites 643, 644, 907, 909, 985 and 987) from the Norwegian–Greenland Sea. Our data show a distinct net increase in mean shell size of N. pachyderma sin. at all sites during the last 1.3 Ma, with largest shell sizes reached after 0.4 Ma. External factors such as glacial–interglacial variability and carbonate dissolution alone cannot account for the observed variation in mean shell size of N. pachyderma sin. We consider the observed shell size increase to mirror an evolutionary trend towards better adaptation of N. pachyderma sin. to the cold water environment after 1.1–1.0 Ma. Probably, the Mid Pleistocene climate shift and the associated change of amplitude and frequency of glacial–interglacial fluctuations have triggered the evolution of this planktonic foraminifer. Oxygen and carbon stable isotope analyses of different shell size classes indicate that the observed shell size increase could not be explained by the functional concept that larger shells promote increasing sinking velocities during gametogenesis. For paleoceanographic reconstructions, the evolutionary adaptation of Neogloboquadrina pachyderma sin. to the cold water habitat has significant implications. Carbonate sedimentation in highest latitudes is highly dependent on the presence of this species. In the Norwegian–Greenland Sea, carbonate-poor intervals before 1.1 Ma are, therefore, not necessarily related to severe glacial conditions. They are probably attributed to the absence of this not yet polar-adapted species. Further, transfer function and modern analog techniques used for the reconstruction of surface water conditions in high latitudes could, therefore, contain a large range of errors if they were applied to samples older than 1.1–1.0 Myrs.  相似文献   

3.
The benthic environment in the Gulf of Cadiz, north-eastern Atlantic, is strongly affected by the Mediterranean outflow water undercurrent (MOW) which flows northwards along the western Iberian Margin at 500–1500 m water depth. Foraminiferal census counts of living and dead assemblages from 27 surface samples ranging from 103 to 1917 m water depth, and the examination of hard substrates reveal a close correlation of the fauna with the local hydrography and sediment facies. Four different faunal groups are separated by factor analysis of the living fauna. Assemblage 1 contains typical lower slope species and dominates samples from the lower MOW core layer and in the North Atlantic deep water below. Shelf edge foraminifera are common in assemblage 2a which shows the highest proportions in samples from 103 to 272 m. Assemblage 2b is dominated by upper slope species and suspension-feeders that are frequent in the upper MOW core layer and in distal settings between 396 and 901 m. Species from assemblage 3 prefer epibenthic habitats and are recorded with high proportions exclusively in the immediate flow paths of the upper MOW between 496 and 881 m. Colonisation structures and species composition of epibenthic assemblages from the proximal facies largely differ from those in distal settings. In general, epibenthic foraminifers only use elevated substrates under the influence of near-bottom flow. Under high current velocities, epibenthic foraminifers prefer large and heavy objects. They colonise high attachment levels where a maximum yield of advected food particles can be achieved. In distal settings at lower flow velocities, the elevation height does not exceed 20 mm above the surrounding sediment surface. This level is related to a hydrologic transition layer with high concentrations of suspended particles. The comparison of microhabitat preferences and faunal structure under high and low current velocities reveal that substrate stability may be a confining environmental variable for endobenthic and shallow epibenthic foraminifers. The observations also indicate that the preferential settling height of epibenthic foraminifera is related to the highest lateral flux rates of food particles within reach from the sea floor. A dynamic selection of elevated microhabitats is only used by 7.8% of all species recognised in the Gulf of Cadiz area.  相似文献   

4.
The population dynamics of Marginopora kudakajimensis Gudmundsson, a dinoflagellate endosymbiont-bearing soritid foraminifer, was studied in the Ryukyu Islands, the subtropical northwest Pacific. Macroalgal samples were collected monthly between November 1995 and November 1996 at a 1-m-deep lagoonal site colonized by this species. Monthly variations in the size–frequency distributions and population density indicate that this foraminiferal population replaces itself in one year. Asexual reproduction occurs twice a year, in late spring and winter; in late spring, some of the adult individuals reproduce by multiple fission simultaneously. As a result, two cohorts (a late spring and a winter cohort) are found in the population during a year. Life span of the former cohort is up to one year, while that of the latter cohort is up to six months. Megalospheric specimens comprise up to 99% of the population with a few microspheric individuals throughout the year. The life tables and survivorship curves revealed that size-specific mortality rates were very low during the first several size classes and increased thereafter, indicating low juvenile mortality with high mortality later in life. The carbonate production rate by this Marginopora population is approximately 5 kg CaCO3 m−2 yr−1, which is extremely higher than those reported for other larger foraminiferal species.  相似文献   

5.
In this paper, we present an integrated study of a 115‐m‐thick section that spans the Ypresian/Lutetian boundary at Agost (Betic Cordillera, SE Spain). Our study includes magnetostratigraphic results and biostratigraphic and palaeoenvironmental data derived from planktic foraminifera, small and larger benthic foraminifera, and calcareous nannofossils. Our results demonstrate that the Agost section is continuous and spans from Zones P9 to P12 (E7 to E10), Zones CP11 to CP14a (NP13 to NP16), Zones SBZ11 to SBZ15, and Chrons C22n to C19r. The first occurrence (FO) of H. nuttalli (base of P10) and the FO of G. nuttalli (base of E8) are found within Chron C20r, at a much younger age (3–5 Myr) than previously considered in standard calibration schemes. Similarly, the boundary between SBZ12 and SBZ13 is located within Chron C21n, also at a younger age than previously considered. On the contrary, the FO of B. inflatus (base of CP12b) is found within Chron C21r, which conforms to the magnetostratigraphically calibrated age of ca. 48 Ma (middle part of C21r) considered in standard calibration schemes. These results corroborate earlier studies and indicate that all the events that have been proposed to mark the Ypresian/Lutetian boundary appear at different stratigraphic intervals and have different ages. Based on our results from Agost and on data from other sections elsewhere, we suggest that the Ypresian/Lutetian boundary might be approximated by the FO of B. inflatus (base of CP12b). The Agost section might be considered as a potential candidate to locate the Global Stratotype Section and Point (GSSP) of the base of the Lutetian Stage, because it includes all the events that might be selected as marker events for the Ypresian/Lutetian boundary and it fulfils most of the geological, biostratigraphic and infrastructure requirements demanded for definition of a GSSP.  相似文献   

6.
Live (Rose Bengal stained) benthic foraminifera were investigated in surface sediment samples from the Okhotsk Sea to reveal the relationship between faunal characteristics and environmental parameters. Live benthic foraminifera were quantified in the size fraction > 125 µm in the upper 8 cm of replicate sediment cores, recovered with a multicorer at five stations along the Sakhalin margin, and at three stations on the southwestern Kamchatka slope. The stations are from water depths between 625 to 1752 m, located close or within the present Okhotsk Sea oxygen minimum zone, with oxygen levels between 0.3 and 1.5 ml l- 1. At the high-productivity and ice-free Kamchatka stations, live benthic foraminifera are characterized by maximal standing stocks (about 1700-3700 individuals per 50 cm2), strong dominance of calcareous species (up to 87-91% of total live faunas), and maximal habitat depths (down to 5.2-6.7 cm depth). Vertical distributions of total faunal abundances exhibit a clear subsurface maximum in sediments. At the Sakhalin stations, which are seasonally ice-covered and less productive, live benthic foraminifera show lower standing stocks (about 200-1100 individuals per 50 cm2), lower abundance of calcareous species (10-64% of total live faunas), and shallower habitat depths (down to 2.5-5.4 cm depth). Faunal vertical distributions are characterized by maximum in the uppermost surface sediments. It is suggested that 1) lower and strongly seasonal organic matter flux, caused by the seasonal sea ice cover and seasonal upwelling, 2) lower bottom water oxygenation (0.3-1.1 ml l- 1), and 3) more pronounced influence of carbonate undersaturated bottom water along the Sakhalin margin are the main factors responsible for the observed faunal differences. According to species downcore distributions and average living depths, common calcareous species were identified as preferentially shallow, intermediate and deep infaunal. Foraminiferal microhabitat occupation correlates with the organic matter flux and the depth of the oxygenated layer in sediments.  相似文献   

7.
We studied Upper Cretaceous and Lower Paleogene benthic foraminifera from the Agost section (southeastern Spain) to infer paleobathymetrical changes and paleoenvironmental turnover across the Cretaceous/Paleogene (K/P) transition. Benthic foraminifera indicate uppermost bathyal depths at Agost during the Abathomphalus mayaroensis Biochron (from about 400 kyr before the K/P boundary) through the early Plummerita hantkeninoides Biochron (about 120–150 kyr before that boundary). The depth increased to middle bathyal for the remainder of the Cretaceous, and remained so for the Danian part of the studied section (Parasubbotina pseudobulloides Biochron, at least 200 kyr after the K/P boundary). There were no perceivable bathymetrical changes at the K/P boundary, where 5% of the species became extinct, and the species composition of the benthic foraminiferal fauna changed considerably. Below the boundary, infaunal morphogroups constitute up to 65–73% of the faunas. Directly above the boundary, in the black clays of the lower Guembelitria cretacea Biozone, benthic foraminifera are rare. Several opportunistic taxa (e.g. the agglutinant Haplophragmoides sp.) have short peaks in relative abundance, possibly reflecting low-oxygen conditions as well as environmental instability, with benthos receiving food from short-lived, local blooms of primary producers. Above the clays through the end of the studied interval, epifaunal morphogroups dominate (up to 70% of the assemblages) or there is an even mixture or epifaunal and infaunal morphogroups. Infaunal groups do not recover to pre-extinction relative abundances, indicating that the food supply to the benthos did not recover fully over the studied interval (about 200 kyr after the K/P boundary). The benthic foraminiferal faunal changes are compatible with the direct and indirect effects of an asteroid impact, which severely destabilized primary producers and the oceanic food web that was dependent upon them.  相似文献   

8.
Summary Smaller benthic and planktonic foraminifera from the clastic sediments of the Pazin Basin (Istria, Croatia) were studied in order to obtain more data about paleoceanographic conditions that existed in the Middle Eocene Dinaric foreland basin. The succession investigated corresponds to the Middle Eocene planktonic foraminiferal zones Globigerapsis kugleri/Morozovella aragonensis (P11), Morozovella lehneri (P12), and Globigerapsis beckmanni (P13). Benthic foraminiferal assemblages from the clastic succession are dominated by epifaunal trochospiral genera suggesting oligotrophic to mesotrophic conditions and moderately oxygenated bottom waters. Planktonic foraminiferal assemblages indicate mesotrophic to eutrophic conditions of the surface waters, with increased eutrophication in the upper part of the section. Water depth, based on the ratio between planktonic and epifaunal benthic foraminifera and on the recognized species of cosmopolitan benthic foraminifera, was estimated to have been between about 900 and 1200 m. The basin was elongated and open to marine currents on both sides allowing good circulation and ventilation of the bottom water.  相似文献   

9.
The fossil record of planktonic foraminifera is a key source of data on the evolution of marine plankton. One of the most distinctive groups of Cretaceous foraminifera, the rotaliporids, widely used as a stratigraphic index, has always been considered to be a monophyletic clade. New data on the coiling direction and persistent morphological features of the late rotaliporids from the Upper Cenomanian of the Western Interior Seaway, USA, and the Vocontian Basin of southeast France is used as a phylogenetic proxy. Dealing with key morphological features, the coiling pattern of these keeled morphotypes proves that the rotaliporids group is polyphyletic and composed of Thalmanninella, that displays a dextral-coiling preference, and Rotalipora s.s., that have a proportionate-coiling mode. The stratigraphically youngest rotaliporids with keels co-occur with globular forms; and all morphologies transitional between these morphotypes are observed. The ontogenetic relationships between them are investigated, indicating that loss of the keel was a selective advantage that enabled those rotaliporids to remain in the surface water, thereby avoiding the expansion of the oxygen minimum zone. Two species are observed: Thalmanninella multiloculata and Rotalipora planoconvexa. These species are interpreted as having arisen by neoteny from Thalmanninella greenhornensis and Rotalipora cushmani respectively.  相似文献   

10.
New findings of combination coccospheres bearing heterococcoliths of Calcidiscus leptoporus and holococcoliths of Crystallolithus rigidus are documented. These findings confirm previous suggestions that these two “species” are separate phases of the life-cycle of a single species.  相似文献   

11.
12.
A time‐resolved record of inhabited water depth, metabolic rate and trophic behaviour of the orange roughy Hoplostethus atlanticus was recovered from combined stable‐isotope analyses of otolith and muscle tissue. The results demonstrate that H. atlanticus from the north‐east Atlantic Ocean have a complex life history with three distinct depth‐stratified life stages. Early juvenile H. atlanticus occupy relatively shallow habitats, juvenile H. atlanticus show a deep‐demersal phase, rising at sexual maturity, and adult H. atlanticus exploit increasingly deep habitats with increasing age. At all sampled sizes, H. atlanticus muscle tissues have an isotopic composition suggesting a benthic rather than benthopelagic or pelagic diet. Isotopic measures of relative metabolic rate provide an insight into energy partitioning throughout ontogeny. Hoplostethus atlanticus have relatively low metabolic rates compared to coexisting deep‐water benthic fishes, consistent with their unusually high longevity. Surprisingly, lifetime fastest growth rates are achieved during juvenile stages when otolith isotopes imply deep‐water residency and relatively low metabolic rates. Fast growth may be sustained during a period of high efficiency associated with reduced metabolic costs of prey capture or predator evasion. The stable‐isotope approach can be applied to any teleost and provides a rapid, cost‐effective technique for studying deep‐water fish communities.  相似文献   

13.
14.
We studied bromeliad selection by calling males of Phyllodytes melanomystax. The study site was a restinga environment in the northeastern state of Bahia, northeastern Brazil. We sampled 202 bromeliads, 101 with and 101 without calling males. We used multiple logistic regression analysis and Wald test to identify which of nine environmental variables investigated could explain the occurrence of calling males within bromeliads. The presence/absence of calling males in bromeliads was influenced by the number of bromeliads in a 2 m radius and the amount of debris inside the rosettes, while physical variables of bromeliads and the volume of stored water inside their rosettes had no influence. The mark-recapture procedure of P. melanomystax revealed site fidelity. This study is the first to explain the pattern of bromeliad selection by a species of the bromeliad-dwelling frog genus Phyllodytes.  相似文献   

15.
The germination requirements of sexually reproducing plants are regulated by environmental factors such as temperature. Those factors acting at the germination phase are part of the regeneration niche, which is fundamental in the processes that contribute to habitat suitability and geographic distribution. We tested the hypothesis that rarity is associated with regeneration niche in three species of plants in the family Gesneriaceae (tribe Sinningieae), Sinningia rupicola (Mart.) Wiehler, Paliavana sericiflora Benth and Sinningia allagophylla (Mart.) Wiehler, which vary in their distribution and habitat specificity but share a small zone of sympatry in rocky fields south of Belo Horizonte in Minas Gerais, Brazil. The regeneration niche was tested using a seed germination experiment under controlled light conditions at seven fixed temperatures (10–40°C at 5°C intervals). Each of the three species germinated differently at the various temperatures. The species with the smallest geographic range, S. rupicola, also had the most restricted germination: germination peaked at 15°C when relatively few seeds germinated (45%), and even fewer germinated at other temperatures. The regeneration niche was wider in P. sericiflora and wider still in S. allagophylla, with germination greater than 90% between 15–25°C and greater than 80% between 15–30°C, respectively. Our germination results provide qualified support for the hypothesis of correlation of the regeneration niche with geographic distribution of related plant taxa, with important conservation implications for rare and endangered species.  相似文献   

16.
《Palaeoworld》2023,32(1):156-173
During the Rupelian–Burdigalian (early Oligocene–early Miocene), the Qom Formation was deposited along the northeastern margin of the Tethyan Seaway in the Sanandaj–Sirjan, Urumieh–Dokhtar, and Central Iran basins. The biostratigraphic data from a total of 1152 thin sections from 10 outcrop sections along over 1000 km of the Tethyan Seaway margin are presented. A larger benthic foraminiferal (LBF) biozonation, consisting of five biozones, is proposed for dating the Rupelian–Burdigalian Qom Formation. It is correlated with global planktonic zones, LBF zones, southeastern Asian “Letter Stages”, shallow benthic foraminiferal zones (SB-zones) of southern European basins, and newly revised zones of the Asmari Formation in southwestern Iran. This biozonation subdivides the Rupelian stage into “early Rupelian” and “late Rupelian”, based on the first appearances of lepidocyclinids in the latter one. The early Rupelian strata are characterized by the presence of Nummulites without lepidocyclinids which are reported merely from southwestern and southern Kashan, where the thickest Rupelian deposits of the Qom Formation are recorded. The basal layers of the Qom Formation in southeasternmost outcrops (northwestern Jazmurian Lake) are late Rupelian in age based on the co-occurrence of lepidocyclinids and Nummulites spp. By comparison of the well-documented transgression of the Tethyan Seaway over the Iranian plate (from southeast to northwest) and the limitation of all reported early Rupelian strata of the Qom Formation to southwestern and southern Kashan, the following scenarios can be supposed: 1) the oldest deposits could be deposited in southeastern Iran, but they have not been reported, yet; 2) during early Rupelian, there was a transgression from the Zagros Basin to southwestern and southern Kashan areas, then the transgression progressed both northwestward and southeastward.  相似文献   

17.
Paleontological and biostratigraphical studies on carbonate platform succession from southwest Iran documented a great diversity of shallow-water benthic foraminifera during the Oligocene–Miocene. Larger foraminifera are the main means for the stratigraphic zonation of carbonate sediments. The distributions of larger benthic foraminifera in two outcrop sections (Abolhayat and Lali) in the Zagros Basin, Iran, are used to determine the age of the Asmari Formation. Four assemblage zones have been recognized by distribution of the larger benthic foraminifera in the study areas. Assemblage 3 (Aquitanian age) and 4 (Burdigalian age) have not been recognized in the Abolhayat section (Fars area), due to sea-level fall. The end Chattian sea-level fall restricted marine deposition in the Abolhayat section and Asmari Formation replaced laterally by the Gachsaran Formation. This suggests that the Miocene part of the formation as recognized in the Lali section (Khuzestan area) of the Zagros foreland basin is not present in the Abolhayat outcrop. The distribution of the Oligocene larger benthic foraminifera indicates that shallow marine carbonate sediments of the Asmari Formation at the study areas have been deposited in the photic zone of tropical to subtropical oceans. Based on analysis of larger benthic foraminiferal assemblages and microfacies features, three major depositional environments are identified. These include inner shelf, middle shelf and outer shelf. The inner shelf facies is characterized by wackestone–packstone, dominated by various taxa of imperforate foraminifera. The middle shelf is represented by packstone–grainstone to floatstone with a diverse assemblage of larger foraminifera with perforate wall. Basinwards is dominated by argillaceous wackestone characterized by planktonic foraminifera and large and flat nummulitidae and lepidocyclinidae. Planktonic foraminifera wackestone is the dominant facies in the outer shelf.  相似文献   

18.
The response of the Earth’s biota to global change is of fundamental interest to paleontologists, but patterns of change in paleontologic data are also of interest to a wider spectrum of Earth scientists in that those patterns are of great significance in constraining hypotheses that attempt to explain physical changes in the Earth’s environment. The Cretaceous–Tertiary (K–T) boundary is a case in point. Some paleontologists have criticized the bolide impact hypothesis, not because they deny the impact but because the proposed effects of that impact do not always conform to the available paleontological data. Benthic foraminifera are of particular interest in this context because it has been suggested for over 20 years that shallow-water benthic foraminifera were affected more severely than deep-water benthic foraminifera by events at the K–T boundary. This observation adds to the fact of planktonic foraminiferal extinction and indicates that K–T boundary environmental effects were largely restricted to shallow waters. In this paper I review all published works on smaller benthic foraminifera at the K–T boundary and conclude the following. (1) Shallow-water benthic foraminifera were not more severely affected than deeper dwelling species. True extinction, as opposed to local extinction and/or mass mortality, is generally quite low no matter what the water depth. (2) The data are not sufficient in quality, quantity and geographic range to conclude that there is a latitudinal pattern of extinction. (3) In general, biotic changes (such as they are) begin before the boundary in shallow and intermediate depth waters and at the boundary in deep water. Disagreements about the placement of the boundary and the presence, absence and duration of hiatuses hinder more precise conclusions. (4) There appears to be preferential survivorship of epifaunal species into the early Danian with a short interval dominated by infaunal taxa in the earliest Danian. This pattern can best be explained by short-lived input of increased amounts of organic matter at the boundary followed by a sudden collapse of primary productivity and, hence, major reduction or cessation of organic flux to the seafloor. In summary, based on the current dataset, smaller benthic foraminifera, no matter whether they lived in shallow or deep waters, high or low latitudes, or infaunal or epifaunal microhabitats, survived the environmental events across the K–T boundary quite well. Mass extinction does not characterize this group of organisms at this time.  相似文献   

19.
Knowledge of the assemblage composition of large benthic foraminifera (LBF) in relation to environmental conditions is needed to interpret fossil records. In this study the assemblage composition of LBF is described for a carbonate shelf with a barrier reef system and some reefs outside the barrier. In a total of 140 samples, 34–35 species of LBF were found. Four clusters, roughly corresponding to substrate type were identified. Several small groups of samples were recognized that were collected locally inside, on, or outside the barrier. Microscale environmental gradients within the substrate or in the benthic boundary layer resulted in spatial differentiation of the microhabitat of each species.  相似文献   

20.
One hundred and thirty-one samples were collected on the shelf and on the uppermost slope (down to 180 m) off Northern Senegal, between 14 °50′ and 16 °20′ N latitude.Two hundred and three species of benthic foraminifers were recognized. Most of them were reported in previous works, along the coast of Africa. Twenty seven species are selected for detailed analysis and distribution maps are given for each of them. Q mode and R mode statistical analyses were performed on these selected species. The distribution is mainly related to depth; the second factor of distribution is the nature of the sediments: about 30% of the study area is covered by the muddy sediments of the pro-delta of the Senegal river. Hierarchical analysis shows that the main limit in the pattern of change of these 27 species with depth is about 60–65 m.A depth index Di, calculated on the basis of twelve selected species, gives a depth indication with a precision of about 40 m over the shelf. It is possible to envisage a possible use of this index for the investigation of Quaternary sea-level changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号