首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sleeping Beauty (SB) is the most active Tc1/ mariner-type transposon in vertebrates. SB contains two transposase-binding sites (DRs) at the end of each terminal inverted repeat (IR), a feature termed the IR/DR structure. We investigated the involvement of cellular proteins in the regulation of SB transposition. Here, we establish that the DNA-bending, high-mobility group protein, HMGB1 is a host-encoded cofactor of SB transposition. Transposition was severely reduced in mouse cells deficient in HMGB1. This effect was rescued by transient over-expression of HMGB1, and was partially complemented by HMGB2, but not with the HMGA1 protein. Over-expression of HMGB1 in wild-type mouse cells enhanced transposition, indicating that HMGB1 can be a limiting factor of transposition. SB transposase was found to interact with HMGB1 in vivo, suggesting that the transposase may recruit HMGB1 to transposon DNA. HMGB1 stimulated preferential binding of the transposase to the DR further from the cleavage site, and promoted bending of DNA fragments containing the transposon IR. We propose that the role of HMGB1 is to ensure that transposase–transposon complexes are first formed at the internal DRs, and subsequently to promote juxtaposition of functional sites in transposon DNA, thereby assisting the formation of synaptic complexes.  相似文献   

2.
Site-directed transposon integration in human cells   总被引:2,自引:1,他引:1       下载免费PDF全文
The Sleeping Beauty (SB) transposon is a promising gene transfer vector that integrates nonspecifically into host cell genomes. Herein, we attempt to direct transposon integration into predetermined DNA sites by coupling a site-specific DNA-binding domain (DBD) to the SB transposase. We engineered fusion proteins comprised of a hyperactive SB transposase (HSB5) joined via a variable-length linker to either end of the polydactyl zinc-finger protein E2C, which binds a unique sequence on human chromosome 17. Although DBD linkage to the C-terminus of SB abolished activity in a human cell transposition assay, the N-terminal addition of the E2C or Gal4 DBD did not. Molecular analyses indicated that these DBD-SB fusion proteins retained DNA-binding specificity for their respective substrate molecules and were capable of mediating bona fide transposition reactions. We also characterized transposon integrations in the presence of the E2C-SB fusion protein to determine its potential to target predefined DNA sites. Our results indicate that fusion protein-mediated tethering can effectively redirect transposon insertion site selection in human cells, but suggest that stable docking of integration complexes may also partially interfere with the cut-and-paste mechanism. These findings illustrate the feasibility of directed transposon integration and highlight potential means for future development.  相似文献   

3.
Transposon vectors are widely used in prokaryotic and lower eukaryotic systems. However, they were not available for use in vertebrate animals until the recent reconstitution of a synthetic fish transposon, Sleeping Beauty (SB). The reacquisition of transposability of the SB transposase fostered great enthusiasm for using transposon vectors as tools in vertebrate animals, particularly for gene transfer to facilitate accelerated integration of transgenes into chromosomes. Here, we report the effects of insert sizes on transposition efficiency of SB. A significant effect of insert size on efficiency of transposition by SB was found. The SB transposase enhanced the integration efficiency effectively for SB transposon up to approximately 5.6 kb, but lost its ability to enhance the integration efficiency when the transposon size was increased to 9.1 kb. This result indicates that the SB transposon system is highly applicable for transferring small genes, but may not be applicable for transferring very large genes. Received October 20, 2000; accepted December 15, 2000.  相似文献   

4.
Transposons are discrete segments of DNA that have the distinctive ability to move and replicate within genomes across the tree of life. ‘Cut and paste’ DNA transposition involves excision from a donor locus and reintegration into a new locus in the genome. We studied molecular events following the excision steps of two eukaryotic DNA transposons, Sleeping Beauty (SB) and piggyBac (PB) that are widely used for genome manipulation in vertebrate species. SB originates from fish and PB from insects; thus, by introducing these transposons to human cells we aimed to monitor the process of establishing a transposon-host relationship in a naïve cellular environment. Similarly to retroviruses, neither SB nor PB is capable of self-avoidance because a significant portion of the excised transposons integrated back into its own genome in a suicidal process called autointegration. Barrier-to-autointegration factor (BANF1), a cellular co-factor of certain retroviruses, inhibited transposon autointegration, and was detected in higher-order protein complexes containing the SB transposase. Increasing size sensitized transposition for autointegration, consistent with elevated vulnerability of larger transposons. Both SB and PB were affected similarly by the size of the transposon in three different assays: excision, autointegration and productive transposition. Prior to reintegration, SB is completely separated from the donor molecule and followed an unbiased autointegration pattern, not associated with local hopping. Self-disruptive autointegration occurred at similar frequency for both transposons, while aberrant, pseudo-transposition events were more frequently observed for PB.  相似文献   

5.
6.
The inverted repeat (IR) sequences delimiting the left and right ends of many naturally active mariner DNA transposons are non-identical and have different affinities for their transposase. We have compared the preferences of two active mariner transposases, Mos1 and Mboumar-9, for their imperfect transposon IRs in each step of transposition: DNA binding, DNA cleavage, and DNA strand transfer. A 3.1 Å resolution crystal structure of the Mos1 paired-end complex containing the pre-cleaved left IR sequences reveals the molecular basis for the reduced affinity of the Mos1 transposase DNA-binding domain for the left IR as compared with the right IR. For both Mos1 and Mboumar-9, in vitro DNA transposition is most efficient when the preferred IR sequence is present at both transposon ends. We find that this is due to the higher efficiency of cleavage and strand transfer of the preferred transposon end. We show that the efficiency of Mboumar-9 transposition is improved almost 4-fold by changing the 3′ base of the preferred Mboumar-9 IR from guanine to adenine. This preference for adenine at the reactive 3′ end for both Mos1 and Mboumar-9 may be a general feature of mariner transposition.  相似文献   

7.
Using the Sleeping Beauty (SB) transposon system, we have developed a simple method for the generation of Xenopus laevis transgenic lines. The transgenesis protocol is based on the co-injection of the SB transposase mRNA and a GFP-reporter transposon into one-cell stage embryos. Transposase-dependent reporter gene expression was observed in cell clones and in hemi-transgenic animals. We determined an optimal ratio of transposase mRNA versus transposon-carrying plasmid DNA that enhanced the proportion of hemi-transgenic tadpoles. The transgene is integrated into the genome and may be transmitted to the F1 offspring depending on the germline mosaicism. Although the transposase is necessary for efficient generation of transgenic Xenopus, the integration of the transgene occurred by an non-canonical transposition process. This was observed for two transgenic lines analysed. The transposon-based technique leads to a high transgenesis rate and is simple to handle. For these reasons, it could present an attractive alternative to the classical Restriction Enzyme Mediated Integration (REMI) procedure.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

8.
Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes.  相似文献   

9.
Translocation of Sleeping Beauty (SB) transposon requires specific binding of SB transposase to inverted terminal repeats (ITRs) of about 230 bp at each end of the transposon, which is followed by a cut-and-paste transfer of the transposon into a target DNA sequence. The ITRs contain two imperfect direct repeats (DRs) of about 32 bp. The outer DRs are at the extreme ends of the transposon whereas the inner DRs are located inside the transposon, 165-166 bp from the outer DRs. Here we investigated the roles of the DR elements in transposition. Although there is a core transposase-binding sequence common to all of the DRs, additional adjacent sequences are required for transposition and these sequences vary in the different DRs. As a result, SB transposase binds less tightly to the outer DRs than to the inner DRs. Two DRs are required in each ITR for transposition but they are not interchangeable for efficient transposition. Each DR appears to have a distinctive role in transposition. The spacing and sequence between the DR elements in an ITR affect transposition rates, suggesting a constrained geometry is involved in the interactions of SB transposase molecules in order to achieve precise mobilization. Transposons are flanked by TA dinucleotide base-pairs that are important for excision; elimination of the TA motif on one side of the transposon significantly reduces transposition while loss of TAs on both flanks of the transposon abolishes transposition. These findings have led to the construction of a more advanced transposon that should be useful in gene transfer and insertional mutagenesis in vertebrates.  相似文献   

10.
The V(D)J recombination reaction in jawed vertebrates is catalyzed by the RAG1 and RAG2 proteins, which are believed to have emerged approximately 500 million years ago from transposon-encoded proteins. Yet no transposase sequence similar to RAG1 or RAG2 has been found. Here we show that the approximately 600-amino acid “core” region of RAG1 required for its catalytic activity is significantly similar to the transposase encoded by DNA transposons that belong to the Transib superfamily. This superfamily was discovered recently based on computational analysis of the fruit fly and African malaria mosquito genomes. Transib transposons also are present in the genomes of sea urchin, yellow fever mosquito, silkworm, dog hookworm, hydra, and soybean rust. We demonstrate that recombination signal sequences (RSSs) were derived from terminal inverted repeats of an ancient Transib transposon. Furthermore, the critical DDE catalytic triad of RAG1 is shared with the Transib transposase as part of conserved motifs. We also studied several divergent proteins encoded by the sea urchin and lancelet genomes that are 25%−30% identical to the RAG1 N-terminal domain and the RAG1 core. Our results provide the first direct evidence linking RAG1 and RSSs to a specific superfamily of DNA transposons and indicate that the V(D)J machinery evolved from transposons. We propose that only the RAG1 core was derived from the Transib transposase, whereas the N-terminal domain was assembled from separate proteins of unknown function that may still be active in sea urchin, lancelet, hydra, and starlet sea anemone. We also suggest that the RAG2 protein was not encoded by ancient Transib transposons but emerged in jawed vertebrates as a counterpart of RAG1 necessary for the V(D)J recombination reaction.  相似文献   

11.
Generation of an inducible and optimized piggyBac transposon system   总被引:1,自引:1,他引:0  
Genomic studies in the mouse have been slowed by the lack of transposon-mediated mutagenesis. However, since the resurrection of Sleeping Beauty (SB), the possibility of performing forward genetics in mice has been reinforced. Recently, piggyBac (PB), a functional transposon from insects, was also described to work in mammals. As the activity of PB is higher than that of SB11 and SB12, two hyperactive SB transposases, we have characterized and improved the PB system in mouse ES cells. We have generated a mouse codon-optimized version of the PB transposase coding sequence (CDS) which provides transposition levels greater than the original. We have also found that the promoter sequence predicted in the 5′-terminal repeat of the PB transposon is active in the mammalian context. Finally, we have engineered inducible versions of the optimized piggyBac transposase fused with ERT2. One of them, when induced, provides higher levels of transposition than the native piggyBac CDS, whereas in the absence of induction its activity is indistinguishable from background. We expect that these tools, adaptable to perform mouse-germline mutagenesis, will facilitate the identification of genes involved in pathological and physiological processes, such as cancer or ES cell differentiation.  相似文献   

12.
13.
Copy‐out/paste‐in transposition is a major bacterial DNA mobility pathway. It contributes significantly to the emergence of antibiotic resistance, often by upregulating expression of downstream genes upon integration. Unlike other transposition pathways, it requires both asymmetric and symmetric strand transfer steps. Here, we report the first structural study of a copy‐out/paste‐in transposase and demonstrate its ability to catalyze all pathway steps in vitro. X‐ray structures of ISC th4 transposase, a member of the IS 256 family of insertion sequences, bound to DNA substrates corresponding to three sequential steps in the reaction reveal an unusual asymmetric dimeric transpososome. During transposition, an array of N‐terminal domains binds a single transposon end while the catalytic domain moves to accommodate the varying substrates. These conformational changes control the path of DNA flanking the transposon end and the generation of DNA‐binding sites. Our results explain the asymmetric outcome of the initial strand transfer and show how DNA binding is modulated by the asymmetric transposase to allow the capture of a second transposon end and to integrate a circular intermediate.  相似文献   

14.
Integrating and expressing stably a transgene into the cellular genome remain major challenges for gene-based therapies and for bioproduction purposes. While transposon vectors mediate efficient transgene integration, expression may be limited by epigenetic silencing, and persistent transposase expression may mediate multiple transposition cycles. Here, we evaluated the delivery of the piggyBac transposase messenger RNA combined with genetically insulated transposons to isolate the transgene from neighboring regulatory elements and stabilize expression. A comparison of piggyBac transposase expression from messenger RNA and DNA vectors was carried out in terms of expression levels, transposition efficiency, transgene expression and genotoxic effects, in order to calibrate and secure the transposition-based delivery system. Messenger RNA reduced the persistence of the transposase to a narrow window, thus decreasing side effects such as superfluous genomic DNA cleavage. Both the CTF/NF1 and the D4Z4 insulators were found to mediate more efficient expression from a few transposition events. We conclude that the use of engineered piggyBac transposase mRNA and insulated transposons offer promising ways of improving the quality of the integration process and sustaining the expression of transposon vectors.  相似文献   

15.
The maize transposon Ac can move to a new location within the genome to create knockout mutants in transgenic plants. In rice, Ac transposon is very active but sometimes undergoes further transposition and leaves an empty mutated gene. Therefore, we developed a one-time transposon system by locating one end of the transposon in the intron of the Ac transposase gene, which is under the control of the inducible promoter (PR-1a). Treatment with salicylic acid induced transposition of this transposon, COYA, leading to transposase gene breakage in exons. The progeny plants inheriting the transposition events become stable knockout mutants, because no functional transposase could be yielded. The behavior of COYA was analyzed in single-copy transgenic rice plants. We determined the expression of the modified transposase gene and its ability to trigger transposition events in transgenic rice plants. The COYA element thus exhibits potential for development of an inducible transposon system suitable for gene isolation in heterologous plant species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The maize Ac/Ds transposon family was the first transposable element system identified and characterized by Barbara McClintock. Ac/Ds transposons belong to the hAT family of class II DNA transposons. We and others have shown that Ac/Ds elements can undergo a process of alternative transposition in which the Ac/Ds transposase acts on the termini of two separate, nearby transposons. Because these termini are present in different elements, alternative transposition can generate a variety of genome alterations such as inversions, duplications, deletions, and translocations. Moreover, Ac/Ds elements transpose preferentially into genic regions, suggesting that structural changes arising from alternative transposition may potentially generate chimeric genes at the rearrangement breakpoints. Here we identified and characterized 11 independent cases of gene fusion induced by Ac alternative transposition. In each case, a functional chimeric gene was created by fusion of two linked, paralogous genes; moreover, each event was associated with duplication of the ∼70-kb segment located between the two paralogs. An extant gene in the maize B73 genome that contains an internal duplication apparently generated by an alternative transposition event was also identified. Our study demonstrates that alternative transposition-induced duplications may be a source for spontaneous creation of diverse genome structures and novel genes in maize.  相似文献   

17.
An efficient insertion mutagenesis strategy for bacterial genomes based on the phage Mu DNA transposition reaction was developed. Incubation of MuA transposase protein with artificial mini-Mu transposon DNA in the absence of divalent cations in vitro resulted in stable but inactive Mu DNA transposition complexes, or transpososomes. Following delivery into bacterial cells by electroporation, the complexes were activated for DNA transposition chemistry after encountering divalent metal ions within the cells. Mini-Mu transposons were integrated into bacterial chromosomes with efficiencies ranging from 104 to 106 CFU/μg of input transposon DNA in the four species tested, i.e., Escherichia coli, Salmonella enterica serovar Typhimurium, Erwinia carotovora, and Yersinia enterocolitica. Efficiency of integration was influenced mostly by the competence status of a given strain or batch of bacteria. An accurate 5-bp target site duplication flanking the transposon, a hallmark of Mu transposition, was generated upon mini-Mu integration into the genome, indicating that a genuine DNA transposition reaction was reproduced within the cells of the bacteria studied. This insertion mutagenesis strategy for microbial genomes may be applicable to a variety of organisms provided that a means to introduce DNA into their cells is available.  相似文献   

18.
Mos1 and other mariner/Tc1 transposons move horizontally during evolution, and when transplanted into heterologous species can transpose in organisms ranging from prokaryotes to protozoans and vertebrates. To further develop the Drosophila Mos1 mariner system as a genetic tool and to probe mechanisms affecting the regulation of transposition activity, we developed an in vitro system for Mos1 transposition using purified transposase and selectable Mos1 derivatives. Transposition frequencies of nearly 10–3/target DNA molecule were obtained, and insertions occurred at TA dinucleotides with little other sequence specificity. Mos1 elements containing only the 28 bp terminal inverted repeats were inactive in vitro, while elements containing a few additional internal bases were fully active, establishing the minimal cis-acting requirements for transposition. With increasing transposase the transposition frequency increased to a plateau value, in contrast to the predictions of the protein overexpression inhibition model and to that found recently with a reconstructed Himar1 transposase. This difference between the ‘natural’ Mos1 and ‘reconstructed’ Himar1 transposases suggests an evolutionary path for down-regulation of mariner transposition following its introduction into a naïve population. The establishment of the cis and trans requirements for optimal mariner transposition in vitro provides key data for the creation of vectors for in vitro mutagenesis, and will facilitate the development of in vivo systems for mariner transposition.  相似文献   

19.
Large-scale sequencing of human cancer genomes and mouse transposon-induced tumors has identified a vast number of genes mutated in different cancers. One of the outstanding challenges in this field is to determine which genes, when mutated, contribute to cellular transformation and tumor progression. To identify new and conserved genes that drive tumorigenesis we have developed a novel cancer model in a distantly related vertebrate species, the zebrafish, Danio rerio. The Sleeping Beauty (SB) T2/Onc transposon system was adapted for somatic mutagenesis in zebrafish. The carp ß-actin promoter was cloned into T2/Onc to create T2/OncZ. Two transgenic zebrafish lines that contain large concatemers of T2/OncZ were isolated by injection of linear DNA into the zebrafish embryo. The T2/OncZ transposons were mobilized throughout the zebrafish genome from the transgene array by injecting SB11 transposase RNA at the 1-cell stage. Alternatively, the T2/OncZ zebrafish were crossed to a transgenic line that constitutively expresses SB11 transposase. T2/OncZ transposon integration sites were cloned by ligation-mediated PCR and sequenced on a Genome Analyzer II. Between 700–6800 unique integration events in individual fish were mapped to the zebrafish genome. The data show that introduction of transposase by transgene expression or RNA injection results in an even distribution of transposon re-integration events across the zebrafish genome. SB11 mRNA injection resulted in neoplasms in 10% of adult fish at ∼10 months of age. T2/OncZ-induced zebrafish tumors contain many mutated genes in common with human and mouse cancer genes. These analyses validate our mutagenesis approach and provide additional support for the involvement of these genes in human cancers. The zebrafish T2/OncZ cancer model will be useful for identifying novel and conserved genetic drivers of human cancers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号