首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The affinity and specificity of a ligand for its DNA site is a function of the conformational changes between the isolated and complexed states. Although the structures of a hydroxypyrrole-imidazole-pyrrole polyamide dimer with 5'-CCAGTACTGG-3' and the trp repressor recognizing the sequence 5'-GTACT-3' are known, the baseline conformation of the DNA site would contribute to our understanding of DNA recognition by these ligands. The 0.74 A resolution structure of a B-DNA double helix, 5'-CCAGTACTGG-3', has been determined by X-ray crystallography. Six of the nine phosphates, two of four bound calcium ions and networks of water molecules hydrating the oligonucleotide have alternate conformations. By contrast, nine of the ten bases have a single, unique conformation with hydrogen atoms visible in most cases. The polyamide molecules alter the geometry of the phosphodiester backbone, and the water molecules mediating contacts in the trp repressor/operator complex are conserved in the unliganded DNA. Furthermore, the multiple conformational states, ions and hydration revealed by this ultrahigh resolution structure of a B-form oligonucleotide are potentially general considerations for understanding DNA-binding affinity and specificity by ligands.  相似文献   

2.
Many regulatory RNAs undergo large changes in structure upon recognition of proteins and ligands, but the mechanism by which this occurs remains poorly understood. Using NMR residual dipolar coupling (RDCs), we characterized Na+-induced changes in the structure and dynamics of the bulge-containing HIV-1 transactivation response element (TAR) RNA that mirrors changes induced by small molecules bearing a different number of cationic groups. Increasing the Na+ concentration from 25 to 320 mM led to a continuous reduction in the average inter-helical bend angle (from 46 degrees to 22 degrees ), inter-helical twist angle (from 66 degrees to -18 degrees ), and inter-helix flexibility (as measured by an increase in the internal generalized degree of order from 0.56 to 0.74). Similar conformational changes were observed with Mg2+, indicating that nonspecific electrostatic interactions drive the conformational transition, although results also suggest that Na+ and Mg2+ may associate with TAR in distinct modes. The transition can be rationalized on the basis of a population-weighted average of two ensembles comprising an electrostatically relaxed bent and flexible TAR conformation that is weakly associated with counterions and a globally rigid coaxial conformation that has stronger electrostatic potential and association with counterions. The TAR inter-helical orientations that are stabilized by small molecules fall around the metal-induced conformational pathway, indicating that counterions may help predispose the TAR conformation for target recognition. Our results underscore the intricate sensitivity of RNA conformational dynamics to environmental conditions and demonstrate the ability to detect subtle conformational changes using NMR RDCs.  相似文献   

3.
Riboswitches are a novel class of genetic control elements that function through the direct interaction of small metabolite molecules with structured RNA elements. The ligand is bound with high specificity and affinity to its RNA target and induces conformational changes of the RNA''s secondary and tertiary structure upon binding. To elucidate the molecular basis of the remarkable ligand selectivity and affinity of one of these riboswitches, extensive all-atom molecular dynamics simulations in explicit solvent (≈1 μs total simulation length) of the aptamer domain of the guanine sensing riboswitch are performed. The conformational dynamics is studied when the system is bound to its cognate ligand guanine as well as bound to the non-cognate ligand adenine and in its free form. The simulations indicate that residue U51 in the aptamer domain functions as a general docking platform for purine bases, whereas the interactions between C74 and the ligand are crucial for ligand selectivity. These findings either suggest a two-step ligand recognition process, including a general purine binding step and a subsequent selection of the cognate ligand, or hint at different initial interactions of cognate and noncognate ligands with residues of the ligand binding pocket. To explore possible pathways of complex dissociation, various nonequilibrium simulations are performed which account for the first steps of ligand unbinding. The results delineate the minimal set of conformational changes needed for ligand release, suggest two possible pathways for the dissociation reaction, and underline the importance of long-range tertiary contacts for locking the ligand in the complex.  相似文献   

4.
Human leukocyte antigen (HLA)-E is a non-classical major histocompatibility complex class I molecule that binds peptides derived from the leader sequences of other HLA class I molecules. Natural killer cell recognition of these HLA-E molecules, via the CD94-NKG2 natural killer family, represents a central innate mechanism for monitoring major histocompatibility complex expression levels within a cell. The leader sequence-derived peptides bound to HLA-E exhibit very limited polymorphism, yet subtle differences affect the recognition of HLA-E by the CD94-NKG2 receptors. To better understand the basis for this peptide-specific recognition, we determined the structure of HLA-E in complex with two leader peptides, namely, HLA-Cw*07 (VMAPRALLL), which is poorly recognised by CD94-NKG2 receptors, and HLA-G*01 (VMAPRTLFL), a high-affinity ligand of CD94-NKG2 receptors. A comparison of these structures, both of which were determined to 2.5-Å resolution, revealed that allotypic variations in the bound leader sequences do not result in conformational changes in the HLA-E heavy chain, although subtle changes in the conformation of the peptide within the binding groove of HLA-E were evident. Accordingly, our data indicate that the CD94-NKG2 receptors interact with HLA-E in a manner that maximises the ability of the receptors to discriminate between subtle changes in both the sequence and conformation of peptides bound to HLA-E.  相似文献   

5.
Soybean beta-amylase (EC 3.2.1.2) has been crystallized both free and complexed with a variety of ligands. Four water molecules in the free-enzyme catalytic cleft form a multihydrogen-bond network with eight strategic residues involved in enzyme-ligand hydrogen bonds. We show here that the positions of these four water molecules are coincident with the positions of four potential oxygen atoms of the ligands within the complex. Some of these waters are displaced from the active site when the ligands bind to the enzyme. How many are displaced depends on the shape of the ligand. This means that when one of the four positions is not occupied by a ligand oxygen atom, the corresponding water remains. We studied the functional/structural role of these four waters and conclude that their presence means that the conformation of the eight side chains is fixed in all situations (free or complexed enzyme) and preserved from unwanted or forbidden conformational changes that could hamper the catalytic mechanism. The water structure at the active pocket of beta-amylase is therefore essential for providing the ligand recognition process with plasticity. It does not affect the protein active-site geometry and preserves the overall hydrogen-bonding network, irrespective of which ligand is bound to the enzyme. We also investigated whether other enzymes showed a similar role for water. Finally, we discuss the potential use of these results for predicting whether water molecules can mimic ligand atoms in the active center.  相似文献   

6.
J Reed  V Kinzel  B E Kemp  H C Cheng  D A Walsh 《Biochemistry》1985,24(12):2967-2973
A limiting requirement for substrate specificity of the cAMP-dependent protein kinase is the presence of one or two basic residues located to the N-terminal side of the target substrate serine. Furthermore, circular dichroic (CD) studies have shown that binding of protein substrate involves a series of at least two independent conformational changes in the enzyme, each of which is initiated by a recognition signal on the substrate protein. The present study attempts to elucidate further the complete sequence of enzyme/ligand interactions by using the synthetic substrate peptide Kemptide and analogues differing from it at crucial points in the sequence: the Ala-peptide, where alanine is substituted for the target serine, and D-Ser-Kemptide, where the target serine is in the D rather than the L configuration. Examination of the effects of binding of these substrates on the intrinsic UV CD of the enzyme and the induced CD in the presence of Blue Dextran has revealed a third step in the substrate/enzyme binding interaction. Although sections of the conformational change at the active site are dependent on the basic subsite and the serine hydroxyl group on the peptide, respectively, the complete conformational change requires that the substrate be bound in random coil conformation. Where this does not occur, the kinetics show that the peptide will not act either as substrate or as inhibitor of the enzyme. Further, the interaction between the serine hydroxyl group and an enzyme tyrosine residue, previously observed, appears to be dependent on the correct orientation as well as the mere presence of the target -OH group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The control of expression in genetic regulation is a fundamental process for cell life. In RNA‐mediated silencing, human Argonaute‐2 protein (hAgo2) uses sequence information encoded in small RNAs (guide) to identify complementary sites in messenger RNAs (target) for repression. The specificity of this molecular recognition lies at the basis of the mechanisms that control the expression of thousands of genes, which necessarily requires a fine tuning of complex events. Among these, the binding of the first nucleotide of the target RNA (t1) is emerging as an important modulator of hAgo2‐mediated machinery. Using atomistic molecular dynamics‐derived analyses, we address the mechanism behind t1‐dependent regulation and study the impact of different t1 nucleotides (t1A, t1C, t1G, t1U) on the conformational dynamics of both hAgo2 and guide–target RNAs. Only when an adenine is found at this position, t1 directly interacts with a specific hAgo2 binding pocket, favoring the stabilization of target binding. Our findings show that hAgo2 exploits a dynamic recognition mechanism of the t1‐target thanks to a modulation of RNA conformations. Here, t1‐adenine is the only nucleobase endowed with a dual binding mode: a T‐shape and a co‐planar conformation, respectively, orthogonal and parallel to the following base‐pairs of guide–target duplex. This triggers a composite set of molecular interactions that stabilizes distinctive conformational ensembles. Our comparative analyses show characteristic traits of local and global dynamic interplay between hAgo2 and the RNA molecules and highlight how t1A binding acts as a molecular switch for target recognition and complex stabilization. Implications for future mechanistic studies are discussed.  相似文献   

8.
A central question is how the conformational changes of proteins affect their function and the inhibition of this function by drug molecules. Many enzymes change from an open to a closed conformation upon binding of substrate or inhibitor molecules. These conformational changes have been suggested to follow an induced-fit mechanism in which the molecules first bind in the open conformation in those cases where binding in the closed conformation appears to be sterically obstructed such as for the HIV-1 protease. In this article, we present a general model for the catalysis and inhibition of enzymes with induced-fit binding mechanism. We derive general expressions that specify how the overall catalytic rate of the enzymes depends on the rates for binding, for the conformational changes, and for the chemical reaction. Based on these expressions, we analyze the effect of mutations that mainly shift the conformational equilibrium on catalysis and inhibition. If the overall catalytic rate is limited by product unbinding, we find that mutations that destabilize the closed conformation relative to the open conformation increase the catalytic rate in the presence of inhibitors by a factor exp(ΔΔGC/RT) where ΔΔGC is the mutation-induced shift of the free-energy difference between the conformations. This increase in the catalytic rate due to changes in the conformational equilibrium is independent of the inhibitor molecule and, thus, may help to understand how non-active-site mutations can contribute to the multi-drug-resistance that has been observed for the HIV-1 protease. A comparison to experimental data for the non-active-site mutation L90M of the HIV-1 protease indicates that the mutation slightly destabilizes the closed conformation of the enzyme. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.  相似文献   

9.
10.
The mechanism by which G protein-coupled receptors (GPCRs) translate extracellular signals into cellular changes initially was envisioned as a simple linear model: activation of the receptor by agonist binding leads to dissociation of the heterotrimeric GTP-binding G protein into its alpha and betagamma subunits, both of which can activate or inhibit various downstream effector molecules. The plethora of recently described multidomain scaffolding proteins and accessory/chaperone molecules that interact with GPCR, including GPCR themselves as homo- or heterodimers, provides for diverse molecular mechanisms for ligand recognition, signalling specificity, and receptor trafficking. This review will summarize the recently described GPCR-interacting proteins and their individual functional roles, as understood. Implicit in the search for the functional relevance of these interactions is the expectation that enhancement or disruption of target cell-specific events could serve as highly selective therapeutic opportunities.  相似文献   

11.
Occupancy of integrin receptors induces conformational changes in the receptor, resulting in exposure of novel interactive sites termed ligand-induced binding sites (LIBS). We report here that Fab fragments of certain antibodies against LIBS on integrin alpha IIb beta 3 (platelet glycoprotein IIb-IIIa) block platelet aggregation. Thus, certain LIBS or the regions surrounding them may participate in events required for platelet aggregation. In addition, certain anti-alpha IIb beta 3 LIBS Fab fragments stimulated platelet aggregation. This was due to induction of fg binding to alpha IIb beta 3, apparently by shifting a conformational equilibrium between a "resting" and an "activated" state of alpha IIb beta 3. Some of the activating anti-LIBS Fab fragments also induced high affinity fibronectin binding to alpha IIb beta 3, whereas others did not. Thus, changes in the conformation of this integrin modulate both the specificity and affinity of ligand recognition.  相似文献   

12.
Proteins are dynamic molecules that often undergo conformational changes while performing their specific functions, such as target recognition, ligand binding and catalysis. NMR spectroscopy is uniquely suited to study protein dynamics, because site-specific information can be obtained for motions that span a broad range of time scales. The information obtained from NMR dynamics experiments has provided insights into specific structural changes or conformational energetics associated with molecular function. In the last decade, a number of new advancements in NMR methodologies have further extended our ability to characterize protein dynamics. Here, we present an overview of current NMR technology that is used to monitor the dynamic properties of proteins.  相似文献   

13.
Riboswitches are ligand-dependent RNA genetic regulators that control gene expression by altering their structures. The elucidation of riboswitch conformational changes before and after ligand recognition is crucial to understand how riboswitches can achieve high ligand binding affinity and discrimination against cellular analogs. The detailed characterization of riboswitch folding pathways suggest that they may use their intrinsic conformational dynamics to sample a large array of structures, some of which being nearly identical to ligand-bound molecules. Some of these structural conformers can be "captured" upon ligand binding, which is crucial for the outcome of gene regulation. Recent studies about the SAM-I riboswitch have revealed unexpected and previously unknown RNA folding mechanisms. For instance, the observed helical twist of the P1 stem upon ligand binding to the SAM-I aptamer adds a new element in the repertoire of RNA strategies for recognition of small metabolites. From an RNA folding perspective, these findings also strongly indicate that the SAM-I riboswitch could achieve ligand recognition by using an optimized combination of conformational capture and induced-fit approaches, a feature that may be shared by other RNA regulatory sequences.  相似文献   

14.
The interaction of the cell surface proteins plays a key role in the process of transmembrane signaling. Receptor clustering and changes in their conformation are often essential factors in the final outcome of ligand receptor interactions. Fluorescence resonance energy transfer (FRET) is an excellent tool for determining distance relationships and supramolecular organization of cell surface molecules. This paper reviews the theoretical background of fluorescence resonance energy transfer, its flow cytometric and microscopic applications (including the intensity based and photobleaching versions), and provides a critical evaluation of the methods as well. In order to illustrate the applicability of the method, we summarize a few biological results: clustering of lectin receptors, cell surface distribution of hematopoietic cluster of differentiation (CD) molecules, and that of the receptor tyrosine kinases, conformational changes of Major Histocompatibility Complex (MHC) I molecules upon membrane potential change and ligand binding.  相似文献   

15.
Elucidation of the mechanism of biomacromolecular recognition events has been a topic of intense interest over the past century. The inherent dynamic nature of both protein and ligand molecules along with the continuous reshaping of the energy landscape during the binding process renders it difficult to characterize this process at atomic detail. Here, we investigate the recognition dynamics of ubiquitin via microsecond all-atom molecular dynamics simulation providing both thermodynamic and kinetic information. The high-level of consistency found with respect to experimental NMR data lends support to the accuracy of the in silico representation of the conformational substates and their interconversions of free ubiquitin. Using an energy-based reweighting approach, the statistical distribution of conformational states of ubiquitin is monitored as a function of the distance between ubiquitin and its binding partner Hrs-UIM. It is found that extensive and dense sampling of conformational space afforded by the μs MD trajectory is essential for the elucidation of the binding mechanism as is Boltzmann sampling, overcoming inherent limitations of sparsely sampled empirical ensembles. The results reveal a population redistribution mechanism that takes effect when the ligand is at intermediate range of 1-2 nm from ubiquitin. This mechanism, which may be depicted as a superposition of the conformational selection and induced fit mechanisms, also applies to other binding partners of ubiquitin, such as the GGA3 GAT domain.  相似文献   

16.
Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of protein–ligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i) prediction of enzyme specificity altering mutations and (ii) prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art “fixed backbone” design methods perform poorly on these tests, we develop a new “coupled moves” design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein – ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution.  相似文献   

17.
The ligand-binding head region of integrin beta subunits contains a von Willebrand factor type A domain (betaA). Ligand binding activity is regulated through conformational changes in betaA, and ligand recognition also causes conformational changes that are transduced from this domain. The molecular basis of signal transduction to and from betaA is uncertain. The epitopes of mAbs 15/7 and HUTS-4 lie in the beta(1) subunit hybrid domain, which is connected to the lower face of betaA. Changes in the expression of these epitopes are induced by conformational changes in betaA caused by divalent cations, function perturbing mAbs, or ligand recognition. Recombinant truncated alpha(5)beta(1) with a mutation L358A in the alpha7 helix of betaA has constitutively high expression of the 15/7 and HUTS-4 epitopes, mimics the conformation of the ligand-occupied receptor, and has high constitutive ligand binding activity. The epitopes of 15/7 and HUTS-4 map to a region of the hybrid domain that lies close to an interface with the alpha subunit. Taken together, these data suggest that the transduction of conformational changes through betaA involves shape shifting in the alpha7 helix region, which is linked to a swing of the hybrid domain away from the alpha subunit.  相似文献   

18.
Weikl TR  von Deuster C 《Proteins》2009,75(1):104-110
The binding of a ligand molecule to a protein is often accompanied by conformational changes of the protein. A central question is whether the ligand induces the conformational change (induced-fit), or rather selects and stabilizes a complementary conformation from a pre-existing equilibrium of ground and excited states of the protein (selected-fit). We consider here the binding kinetics in a simple four-state model of ligand-protein binding. In this model, the protein has two conformations, which can both bind the ligand. The first conformation is the ground state of the protein when the ligand is off, and the second conformation is the ground state when the ligand is bound. The induced-fit mechanism corresponds to ligand binding in the unbound ground state, and the selected-fit mechanism to ligand binding in the excited state. We find a simple, characteristic difference between the on- and off-rates in the two mechanisms if the conformational relaxation into the ground states is fast. In the case of selected-fit binding, the on-rate depends on the conformational equilibrium constant, whereas the off-rate is independent. In the case of induced-fit binding, in contrast, the off-rate depends on the conformational equilibrium, while the on-rate is independent. Whether a protein binds a ligand via selected-fit or induced-fit thus may be revealed by mutations far from the protein's binding pocket, or other "perturbations" that only affect the conformational equilibrium. In the case of selected-fit, such mutations will only change the on-rate, and in the case of induced-fit, only the off-rate.  相似文献   

19.
《Journal of molecular biology》2019,431(19):3845-3859
The rules governing sequence-specific DNA–protein recognition are under a long-standing debate regarding the prevalence of base versus shape readout mechanisms to explain sequence specificity and of the conformational selection versus induced fit binding paradigms to explain binding-related conformational changes in DNA. Using a combination of atomistic simulations on a subset of representative sequences and mesoscopic simulations at the protein–DNA interactome level, we demonstrate the prevalence of the shape readout model in determining sequence-specificity and of the conformational selection paradigm in defining the general mechanism for binding-related conformational changes in DNA. Our results suggest that the DNA uses a double mechanism to adapt its structure to the protein: it moves along the easiest deformation modes to approach the bioactive conformation, while final adjustments require localized rearrangements at the base-pair step and backbone level. Our study highlights the large impact of B-DNA dynamics in modulating DNA–protein binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号