首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytochrome c nitrite reductase NrfA is a 53?kDa pentahaem enzyme that crystallizes as a decahaem homodimer. NrfA catalyses the reduction of NO2- to NH4+ through a six electron reduction pathway that is of major physiological significance to the anaerobic metabolism of enteric and sulfate reducing bacteria. NrfA receives electrons from the 21?kDa pentahaem NrfB donor protein. This requires that redox complexes form between the NrfA and NrfB pentahaem cytochromes. The formation of these complexes can be monitored using a range of methodologies for studying protein-protein interactions, including dynamic light scattering, gel filtration, analytical ultracentrifugation and visible spectroscopy. These methods have been used to show that oxidized NrfA exists in dynamic monomer-dimer equilibrium with a Kd (dissociation constant) of 4 μM. Significantly, the monomeric and dimeric forms of NrfA are equally active for either the six electron reduction of NO2- or HSO3-. When mixed together, NrfA and NrfB exist in equilibrium with NrfAB, which is described by a Kd of 50?nM. Thus, since NrfA and NrfB are present in micromolar concentrations in the periplasmic compartment, it is likely that NrfB remains tightly associated with its NrfA redox partner under physiological conditions.  相似文献   

2.
Han D  Kim K  Oh J  Park J  Kim Y 《Proteins》2008,70(3):900-914
Escherichia coli synthesize C-type cytochromes only during anaerobic growth in media supplemented with nitrate and nitrite. The reduction of nitrate to ammonium in the periplasm of Escherichia coli involves two separate periplasmic enzymes, nitrate reductase and nitrite reductase. The nitrite reductase involved, NrfA, contains cytochrome C and is synthesized coordinately with a membrane-associated cytochrome C, NrfB, during growth in the presence of nitrite or in limiting nitrate concentrations. The genes NrfE, NrfF, and NrfG are required for the formate-dependent nitrite reduction pathway, which involves at least two C-type cytochrome proteins, NrfA and NrfB. The NrfE, NrfF, and NrfG genes (heme lyase complex) are involved in the maturation of a special C-type cytochrome, apocytochrome C (apoNrfA), to cytochrome C (NrfA) by transferring a heme to the unusual heme binding motif of the Cys-Trp-Ser-Cys-Lys sequence in apoNrfA protein. Thus, in order to further investigate the roles of NrfG in the formation of heme lyase complex (NrfEFG) and in the interaction between heme lyase complex and formate-dependent nitrite reductase (NrfA), we determined the crystal structure of NrfG at 2.05 A. The structure of NrfG showed that the contact between heme lyase complex (NrfEFG) and NrfA is accomplished via a TPR domain in NrfG which serves as a binding site for the C-terminal motif of NrfA. The portion of NrfA that binds to TPR domain of NrfG has a unique secondary motif, a helix followed by about a six-residue C-terminal loop (the so called "hook conformation"). This study allows us to better understand the mechanism of special C-type cytochrome assembly during the maturation of formate-dependent nitrite reductase, and also adds a new TPR binding conformation to the list of TPR-mediated protein-protein interactions.  相似文献   

3.
Escherichia coli can reduce nitrite to ammonium via a 120-kDa decaheme homodimeric periplasmic nitrite reductase (NrfA) complex. Recent structure-based spectropotentiometric studies are shedding light on the catalytic mechanism of NrfA; however, electron input into the enzyme has not been addressed biochemically. This study reports the first purification of NrfB, a novel 20-kDa pentaheme c-type cytochrome encoded by the nrfB gene that follows the nrfA gene in many bacterial nrf operons. Analyses by gel filtration demonstrated that NrfB purifies as a decaheme homodimer. Analysis of NrfB by UV-visible and magnetic circular dichroism spectroscopy demonstrates that all five NrfB ferric heme irons are low spin and are most likely coordinated by two axial histidine ligands. Spectropotentiometry revealed that the midpoint redox potentials of five ferric hemes were in the low potential range of 0 to -400 mV. Analysis by low temperature EPR spectroscopy revealed signals that arise from two classes of bis-His ligated low spin hemes, namely a rhombic trio at g(1,2,3) = 2.99, 2.27, and 1.5 that arises from two hemes in which the planes of histidine imidazole rings are near-parallel and a large g(max) signal at g = 3.57 that arises from three hemes in which the planes of the histidine imidazole rings are near-perpendicular. NrfB was also overexpressed as a recombinant protein, which had similar spectropotentiometric properties as the native protein. Reconstitution experiments demonstrated that the reduced decaheme NrfB dimer could serve as a direct electron donor to the oxidized decaheme NrfA dimer, thus forming a transient 20-heme [NrfB](2)[NrfA](2) electron transfer complex.  相似文献   

4.
Nitric oxide is a key element in host defense against invasive pathogens. The periplasmic cytochrome c nitrite reductase (NrfA) of Escherichia coli catalyzes the respiratory reduction of nitrite, but in vitro studies have shown that it can also reduce nitric oxide. The physiological significance of the latter reaction in vivo has never been assessed. In this study the reduction of nitric oxide by Escherichia coli was measured in strains active or deficient in periplasmic nitrite reduction. Nrf(+) cells, harvested from cultures grown anaerobically, possessed a nitric-oxide reductase activity with physiological electron donation of 60 nmol min(-1) x mg dry wt(-1), and an in vivo turnover number of NrfA of 390 NO* s(-1) was calculated. Nitric-oxide reductase activity could not be detected in Nrf(-) strains. Comparison of the anaerobic growth of Nrf(+) and Nrf(-) strains revealed a higher sensitivity to nitric oxide in the NrfA(-) strains. A higher sensitivity to the nitrosating agent S-nitroso-N-acetyl penicillamine (SNAP) was also observed in agar plate disk-diffusion assays. Oxygen respiration by E. coli was also more sensitive to nitric oxide in the Nrf(-) strains compared with the Nrf(+) parent strain. The results demonstrate that active periplasmic cytochrome c nitrite reductase can confer the capacity for nitric oxide reduction and detoxification on E. coli. Genomic analysis of many pathogenic enteric bacteria reveals the presence of nrf genes. The present study raises the possibility that this reflects an important role for the cytochrome c nitrite reductase in nitric oxide management in oxygen-limited environments.  相似文献   

5.
The decahaem homodimeric cytochrome c nitrite reductase (NrfA) is expressed within the periplasm of a wide range of Gamma-, Delta- and Epsilon-proteobacteria and is responsible for the six-electron reduction of nitrite to ammonia. This allows nitrite to be used as a terminal electron acceptor, facilitating anaerobic respiration while allowing nitrogen to remain in a biologically available form. NrfA has also been reported to reduce nitric oxide (a reaction intermediate) and sulfite to ammonia and sulfide respectively, suggesting a potential secondary role as a detoxification enzyme. The protein sequences and crystal structures of NrfA from different bacteria and the closely related octahaem nitrite reductase from Thioalkalivibrio nitratireducens (TvNir) reveal that these enzymes are homologous. The NrfA proteins contain five covalently attached haem groups, four of which are bis-histidine-co-ordinated, with the proximal histidine being provided by the highly conserved CXXCH motif. These haems are responsible for intraprotein electron transfer. The remaining haem is the site for nitrite reduction, which is ligated by a novel lysine residue provided by a CXXCK haem-binding motif. The TvNir nitrite reductase has five haems that are structurally similar to those of NrfA and three extra bis-histidine-coordinated haems that precede the NrfA conserved region. The present review compares the protein sequences and structures of NrfA and TvNir and discusses the subtle differences related to active-site architecture and Ca2+ binding that may have an impact on substrate reduction.  相似文献   

6.
The cytochrome c nitrite reductase complex (NrfHA) is the terminal enzyme in the electron transport chain catalysing nitrite respiration of Wolinella succinogenes. The catalytic subunit NrfA is a pentahaem cytochrome c containing an active site haem group which is covalently bound via the cysteine residues of a unique CWTCK motif. The lysine residue serves as the axial ligand of the haem iron. The other four haem groups of NrfA are bound by conventional haem-binding motifs (CXXCH). The nrfHAIJ locus was restored on the genome of the W. succinogenes DeltanrfAIJ deletion mutant by integration of a plasmid, thus enabling the expression of modified alleles of nrfA and nrfI. A mutant (K134H) was constructed which contained a nrfA gene encoding a CWTCH motif instead of CWTCK. NrfA of strain K134H was found to be synthesized with five bound haem groups, as judged by matrix-assisted laser-desorption/ionization (MALDI) mass spectrometry. Its nitrite reduction activity with reduced benzyl viologen was 40% of the wild-type activity. Ammonia was formed as the only product of nitrite reduction. The mutant did not grow by nitrite respiration and its electron transport activity from formate to nitrite was 5% of that of the wild-type strain. The predicted nrfI gene product is similar to proteins involved in system II cytochrome c biogenesis. A mutant of W. succinogenes (stopI) was constructed that contained a nrfHAIJ gene cluster with the nrfI codons 47 and 48 altered to stop codons. The NrfA protein of this mutant did not catalyse nitrite reduction and lacked the active site haem group, whereas the other four haem groups were present. Mutant (K134H/stopI) which contained the K134H modification in NrfA in addition to the inactivated nrfI gene had essentially the same properties as strain K134H. NrfA from strain K134H/stopI contained five haem groups. It is concluded that NrfI is involved in haem attachment to the CWTCK motif in NrfA but not to any of the CXXCH motifs. The nrfI gene is obviously dispensable for maturation of a modified NrfA protein containing a CWTCH motif instead of CWTCK. Therefore, NrfI might function as a specific haem lyase that recognizes the active site lysine residue of NrfA. A similar role has been proposed for NrfE, F and G of Escherichia coli, although these proteins share no overall sequence similarity to NrfI and belong to system I cytochrome c biogenesis, which differs fundamentally from system II.  相似文献   

7.
Microorganisms employ diverse mechanisms to withstand physiological stress conditions exerted by reactive or toxic oxygen and nitrogen species such as hydrogen peroxide, organic hydroperoxides, superoxide anions, nitrite, hydroxylamine, nitric oxide or NO-generating compounds. This study identified components of the oxidative and nitrosative stress defence network of Wolinella succinogenes, an exceptional Epsilonproteobacterium that lacks both catalase and haemoglobins. Various gene deletion-insertion mutants were constructed, grown by either fumarate respiration or respiratory nitrate ammonification and subjected to disc diffusion, growth and viability assays under stress conditions. It was demonstrated that mainly two periplasmic multihaem c-type cytochromes, namely cytochrome c peroxidase and cytochrome c nitrite reductase (NrfA), mediated resistance to hydrogen peroxide. Two AhpC-type peroxiredoxin isoenzymes were shown to be involved in protection against different organic hydroperoxides. The phenotypes of two superoxide dismutase mutants lacking either SodB or SodB2 implied that both isoenzymes play important roles in oxygen and superoxide stress defence although they are predicted to reside in the cytoplasm and periplasm respectively. NrfA and a cytoplasmic flavodiiron protein (Fdp) were identified as key components of nitric oxide detoxification. In addition, NrfA (but not the hybrid cluster protein Hcp) was found to mediate resistance to hydroxylamine stress. The results indicate the presence of a robust oxidative and nitrosative stress defence network and identify NrfA as a multifunctional cytochrome c involved in both anaerobic respiration and stress protection.  相似文献   

8.
The crystal structure and spectroscopic properties of the periplasmic penta-heme cytochrome c nitrite reductase (NrfA) of Escherichia coli are presented. The structure is the first for a member of the NrfA subgroup that utilize a soluble penta-heme cytochrome, NrfB, as a redox partner. Comparison to the structures of Wolinella succinogenes NrfA and Sulfospirillum deleyianum NrfA, which accept electrons from a membrane-anchored tetra-heme cytochrome (NrfH), reveals notable differences in the protein surface around heme 2, which may be the docking site for the redox partner. The structure shows that four of the NrfA hemes (hemes 2-5) have bis-histidine axial heme-Fe ligation. The catalytic heme-Fe (heme 1) has a lysine distal ligand and an oxygen atom proximal ligand. Analysis of NrfA in solution by magnetic circular dichroism (MCD) suggested that the oxygen ligand arose from water. Electron paramagnetic resonance (EPR) spectra were collected from electrochemically poised NrfA samples. Broad perpendicular mode signals at g similar 10.8 and 3.5, characteristic of weakly spin-coupled S = 5/2, S = 1/2 paramagnets, titrated with E(m) = -107 mV. A possible origin for these are the active site Lys-OH(2) coordinated heme (heme 1) and a nearby bis-His coordinated heme (heme 3). A rhombic heme Fe(III) EPR signal at g(z) = 2.91, g(y) = 2.3, g(x) = 1.5 titrated with E(m) = -37 mV and is likely to arise from bis-His coordinated heme (heme 2) in which the interplanar angle of the imidazole rings is 21.2. The final two bis-His coordinated hemes (hemes 4 and 5) have imidazole interplanar angles of 64.4 and 71.8. Either, or both, of these hemes could give rise to a "Large g max" EPR signal at g(z)() = 3.17 that titrated at potentials between -250 and -400 mV. Previous spectroscopic studies on NrfA from a number of bacterial species are considered in the light of the structure-based spectro-potentiometric analysis presented for the E. coli NrfA.  相似文献   

9.
The electron-transport chain that catalyzes nitrite respiration with formate in Wolinella succinogenes consists of formate dehydrogenase, menaquinone and the nitrite reductase complex. The latter catalyzes nitrite reduction by menaquinol and is made up of NrfA and NrfH, two c-type cytochromes. NrfA is the catalytic subunit; its crystal structure is known. NrfH belongs to the NapC/NirT family of membrane-bound c-type cytochromes and mediates electron transport between menaquinol and NrfA. It is demonstrated here by MALDI MS that four heme groups are attached to NrfH. A Delta nrfH deletion mutant of W. succinogenes was constructed by replacing the nrfH gene with a kanamycin-resistance gene cartridge. This mutant did not form the NrfA protein, probably because of a polar effect of the mutation on nrfA expression. The nrfHAIJ gene cluster was restored by integration of an nrfH-containing plasmid into the genome of the Delta nrfH mutant. The resulting strain had wild-type properties with respect to growth by nitrite respiration and nitrite reductase activity. A mutant (stopH) that contained the nrfHAIJ locus with nrfH modified by two artificial stop codons near its 5' end produced wild-type amounts of NrfA in the absence of the NrfH protein. NrfA was located exclusively in the soluble cell fraction of the stopH mutant, indicating that NrfH acts as the membrane anchor of the NrfHA complex in wild-type bacteria. The stopH mutant did not grow by nitrite respiration and did not catalyze nitrite reduction by formate, indicating that the electron transport is strictly dependent on NrfH. The NrfH protein seems to be an unusual member of the NapC/NirT family as it forms a stable complex with its redox partner protein NrfA.  相似文献   

10.
Wolinella succinogenes can grow by anaerobic respiration with nitrate or nitrite using formate as electron donor. Two forms of nitrite reductase were isolated from the membrane fraction of W. succinogenes. One form consisted of a 58 kDa polypeptide (NrfA) that was identical to the periplasmic nitrite reductase. The other form consisted of NrfA and a 22 kDa polypeptide (NrfH). Both forms catalysed nitrite reduction by reduced benzyl viologen, but only the dimeric form catalysed nitrite reduction by dimethylnaphthoquinol. Liposomes containing heterodimeric nitrite reductase, formate dehydrogenase and menaquinone catalysed the electron transport from formate to nitrite; this was coupled to the generation of an electrochemical proton potential (positive outside) across the liposomal membrane. It is concluded that the electron transfer from menaquinol to the catalytic subunit (NrfA) of W. succinogenes nitrite reductase is mediated by NrfH. The structural genes nrfA and nrfH were identified in an apparent operon (nrfHAIJ) with two additional genes. The gene nrfA encodes the precursor of NrfA carrying an N-terminal signal peptide (22 residues). NrfA (485 residues) is predicted to be a hydrophilic protein that is similar to the NrfA proteins of Sulfurospirillum deleyianum and of Escherichia coli. NrfH (177 residues) is predicted to be a membrane-bound tetrahaem cytochrome c belonging to the NapC/NirT family. The products of nrfI and nrfJ resemble proteins involved in cytochrome c biogenesis. The C-terminal third of NrfI (902 amino acid residues) is similar to CcsA proteins from Gram-positive bacteria, cyanobacteria and chloroplasts. The residual N-terminal part of NrfI resembles Ccs1 proteins. The deduced NrfJ protein resembles the thioredoxin-like proteins (ResA) of Helicobacter pylori and of Bacillus subtilis, but lacks the common motif CxxC of ResA. The properties of three deletion mutants of W. succinogenes (DeltanrfJ, DeltanrfIJ and DeltanrfAIJ) were studied. Mutants DeltanrfAIJ and DeltanrfIJ did not grow with nitrite as terminal electron acceptor or with nitrate in the absence of NH4+ and lacked nitrite reductase activity, whereas mutant DeltanrfJ showed wild-type properties. The NrfA protein formed by mutant DeltanrfIJ seemed to lack part of the haem C, suggesting that NrfI is involved in NrfA maturation.  相似文献   

11.
Members of the multihaem cytochrome c family such as pentahaem cytochrome c nitrite reductase (NrfA) or octahaem hydroxylamine oxidoreductase (Hao) are involved in various microbial respiratory electron transport chains. Some members of the Hao subfamily, here called εHao proteins, have been predicted from the genomes of nitrate/nitrite‐ammonifying bacteria that usually lack NrfA. Here, εHao proteins from the host‐associated Epsilonproteobacteria Campylobacter fetus and Campylobacter curvus and the deep‐sea hydrothermal vent bacteria Caminibacter mediatlanticus and Nautilia profundicola were purified as εHao‐maltose binding protein fusions produced in Wolinella succinogenes. All four proteins were able to catalyze reduction of nitrite (yielding ammonium) and hydroxylamine whereas hydroxylamine oxidation was negligible. The introduction of a tyrosine residue at a position known to cause covalent trimerization of Hao proteins did neither stimulate hydroxylamine oxidation nor generate the Hao‐typical absorbance maximum at 460 nm. In most cases, the εHao‐encoding gene haoA was situated downstream of haoC, which predicts a tetrahaem cytochrome c of the NapC/NrfH family. This suggested the formation of a membrane‐bound HaoCA assembly reminiscent of the menaquinol‐oxidizing NrfHA complex. The results indicate that εHao proteins form a subfamily of ammonifying cytochrome c nitrite reductases that represents a ‘missing link’ in the evolution of NrfA and Hao enzymes.  相似文献   

12.
13.
A synthetic growth medium was purified with the chelator 1,5-diphenylthiocarbazone to study the effects of copper on partial reactions and product formation of nitrite respiration in Pseudomonas perfectomarinus. This organism grew anaerobically in a copper-deficient medium with nitrate or nitrite as the terminal electron acceptor. Copper-deficient cells had high activity for reduction of nitrate, nitrite, and nitric oxide, but little activity for nitrous oxide reduction. High rates of nitrous oxide reduction were observed only in cells grown on a copper-sufficient (1 micro M) medium. Copper-deficient cells converted nitrate or nitrite initially to nitrous oxide instead of dinitrogen, the normal end product of nitrite respiration in this organism. In agreement with this was the finding that anaerobic growth of P. perfectomarinus with nitrous oxide as the terminal electron acceptor required copper. This requirement was not satisfied by substitution of molybdenum, zinc, nickel, cobalt, or manganese for copper. Reconstitution of nitrous oxide reduction in copper-deficient cells was rapid on addition of a small amount of copper, even though protein synthesis was inhibited. The results indicate an involvement of copper protein(s) in the last step of nitrite respiration in P. perfectomarinus. In addition we found that nitric oxide, a presumed intermediate of nitrite respiration, inhibited nitrous oxide reduction.  相似文献   

14.
Dissimilatory nitrate reduction to ammonium (DNRA) and denitrification are contrasting microbial processes in the terrestrial nitrogen (N) cycle, in that the former promotes N retention and the latter leads to N loss (i.e., the formation of gaseous products). The nitrite reductase NrfA catalyzes nitrite reduction to ammonium, the enzyme associated with respiratory nitrite ammonification and the key step in DNRA. Although well studied biochemically, the diversity and phylogeny of this enzyme had not been rigorously analyzed. A phylogenetic analysis of 272 full-length NrfA protein sequences distinguished 18 NrfA clades with robust statistical support (>90% Bayesian posterior probabilities). Three clades possessed a CXXCH motif in the first heme-binding domain, whereas all other clades had a CXXCK motif in this location. The analysis further identified a KXRH or KXQH motif between the third and fourth heme-binding motifs as a conserved and diagnostic feature of all pentaheme NrfA proteins. PCR primers targeting a portion of the heme-binding motifs that flank this diagnostic region yielded the expected 250-bp-long amplicons with template DNA from eight pure cultures and 16 new nrfA-containing isolates. nrfA amplicons obtained with template DNA from two geomorphically distinct agricultural soils could be assigned to one of the 18 NrfA clades, providing support for this expanded classification. The extended NrfA phylogeny revealed novel diagnostic features of DNRA populations and will be useful to assess nitrate/nitrite fate in natural and engineered ecosystems.  相似文献   

15.
Escherichia coli cytochrome c nitrite reductase (NrfA) catalyzes the six-electron reduction of nitrite to perform an important role in the biogeochemical cycling of nitrogen. Here we describe NrfA adsorption on single-crystal Au(111) electrodes as an electrocatalytically active film in which the enzyme undergoes direct electron exchange with the electrode. The adsorbed NrfA has been imaged to molecular resolution by in situ scanning tunneling microscopy (in situ STM) under full electrochemical potential control and under conditions where the enzyme is electrocatalytically active. Details of the density and orientational distribution of NrfA molecules are disclosed. The submonolayer coverage resolved by in situ STM is readily reconciled with the failure to detect nonturnover signals in cyclic voltammetry of the NrfA films. The molecular structures show a range of lateral dimensions. These are suggestive of a distribution of orientations that could account for the otherwise anomalously low turnover number calculated for the total population of adsorbed NrfA molecules when compared with that determined for solutions of NrfA. Thus, comparison of the voltammetric signals and in situ STM images offers a direct approach to correlate electrocatalytic and molecular properties of the protein layer, a long-standing issue in protein film voltammetry.  相似文献   

16.
Pathways of electron transport to periplasmic nitrate (NapA) and nitrite (NrfA) reductases have been investigated in Campylobacter jejuni, a microaerophilic food-borne pathogen. The nap operon is unusual in lacking napC (encoding a tetra-haem c-type cytochrome) and napF, but contains a novel gene of unknown function, napL. The iron-sulphur protein NapG has a major role in electron transfer to the NapAB complex, but we show that slow nitrate-dependent growth of a napG mutant can be sustained by electron transfer from NrfH, the electron donor to the nitrite reductase NrfA. A napL mutant possessed approximately 50% lower NapA activity than the wild type but showed normal growth with nitrate as the electron acceptor. NrfA was constitutive and was shown to play a role in protection against nitrosative stress in addition to the previously identified NO-inducible single domain globin, Cgb. However, nitrite also induced cgb expression in an NssR-dependent manner, suggesting that growth of C. jejuni with nitrite causes nitrosative stress. This was confirmed by lack of growth of cgb and nssR mutants, and slow growth of the nrfA mutant, in media containing nitrite. Thus, NrfA and Cgb together provide C. jejuni with constitutive and inducible components of a robust defence against nitrosative stress.  相似文献   

17.
The ability of enteric bacteria to protect themselves against reactive nitrogen species generated by their own metabolism, or as part of the innate immune response, is critical to their survival. One important defence mechanism is their ability to reduce NO (nitric oxide) to harmless products. The highest rates of NO reduction by Escherichia coli K-12 were detected after anaerobic growth in the presence of nitrate. Four proteins have been implicated as catalysts of NO reduction: the cytoplasmic sirohaem-containing nitrite reductase, NirB; the periplasmic cytochrome c nitrite reductase, NrfA; the flavorubredoxin NorV and its associated oxidoreductase, NorW; and the flavohaemoglobin, Hmp. Single mutants defective in any one of these proteins and even the mutant defective in all four proteins reduced NO at the same rate as the parent. Clearly, therefore, there are mechanisms of NO reduction by enteric bacteria that remain to be characterized. Far from being minor pathways, the currently unknown pathways are adequate to sustain almost optimal rates of NO reduction, and hence potentially provide significant protection against nitrosative stress.  相似文献   

18.
Cytochrome c nitrite reductase is a multicenter enzyme that uses a five-coordinated heme to perform the six-electron reduction of nitrite to ammonium. In the sulfate reducing bacterium Desulfovibrio desulfuricans ATCC 27774, the enzyme is purified as a NrfA2NrfH complex that houses 14 hemes. The number of closely-spaced hemes in this enzyme and the magnetic interactions between them make it very difficult to study the active site by using traditional spectroscopic approaches such as EPR or UV-Vis. Here, we use both catalytic and non-catalytic protein film voltammetry to simply and unambiguously determine the reduction potential of the catalytic heme over a wide range of pH and we demonstrate that proton transfer is coupled to electron transfer at the active site.  相似文献   

19.
Myoglobin is presumably the most studied protein in biology. Its functional properties as a dioxygen storage and facilitator of dioxygen transport are widely acknowledged. Experimental evidence also implicates an essential role for myoglobin in the heart in regulating nitric oxide homeostasis. Under normoxia, oxygenated myoglobin can scavenge excessive nitric oxide, while under hypoxia, deoxygenated myoglobin can reduce nitrite, an oxidative product of nitric oxide, to bioactive nitric oxide. Myoglobin-driven nitrite reduction can protect the heart from ischemia and reperfusion injury. While horse and mouse myoglobin have been previously described to reduce nitrite under these conditions, a comparable activity has not been detected in human myoglobin. We here show that human myoglobin is a fully functional nitrite reductase. To study the role of human myoglobin for nitric oxide homeostasis we used repeated photometric wavelength scans and chemiluminescence based experiments. The results revealed that oxygenated human myoglobin reacts with nitrite-derived nitric oxide to form ferric myoglobin and that deoxygenated human myoglobin acts as a nitrite reductase in vitro and in situ. Rates of both nitric oxide scavenging and nitrite reduction were significantly higher in human compared to horse myoglobin. These data extend the existing knowledge about the functional properties of human myoglobin and are the basis for further translational studies towards the importance of myoglobin for nitric oxide metabolism in humans.  相似文献   

20.
The biogeochemical nitrogen cycle is mediated by many groups of microorganisms that harbour octahaem cytochromes c (OCC). In this study molecular evolutionary analyses and the conservation of predicted functional residues and secondary structure were employed to investigate the descent of OCC proteins related to hydroxylamine oxidoreductase (HAO) and hydrazine oxidoreductase (HZO) from pentahaem cytochrome c nitrite reductase (NrfA). An octahaem cytochrome cnitrite reductase (ONR) was shown to be a possible intermediate in the process. Analysis of genomic neighbourhoods of OCC protein-encoding genes revealed adjacent conserved genes whose products, together with HAO, provide a path of electron transfer to quinone and constitute a functional catabolic module. The latter has evolved more than once under a variety of functional pressures on the catabolic lifestyles of their bacterial hosts. Structurally, the archetypical long helices in the large C-terminal domain of the proteins as well as the distal axial ligands to most haems were highly conserved in NrfA and all descendents. Residues known to be involved in the nitrite reductase activity of NrfA including the 'CxxCK' motif at the catalytic haem, the substrate and Ca binding sites, and the nitrite and ammonium channels were conserved in the eight representatives of ONR. In the latter, a unique cysteine has been inserted above the active site. The 64 other OCC proteins differed from ONR by the absence of the 'CxxCK' motif, the channel residues and most of the Ca-binding residues and the conserved presence of an 'Asp-His' pair inserted above the active site as well as the tyrosine that forms an intersubunit cross-link to the catalytic haem of HAO. Our proposed scenario of evolution of OCC proteins in the HAO family from NrfA is supported by (i) homology based on sequence and structure, (ii) its wide distribution among bacterial taxa, (iii) the dedicated interaction with specific proteins, and it is (iv) congruent with geological history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号