首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The phosphoinositide 3-OH kinase (PI3K)-PKB/Akt signaling pathway has been shown to mediate both Ras- and cytokine-induced protection from apoptosis. In addition, apoptosis induced by the p53 tumor suppressor protein can be inhibited by Ras- and cytokine-mediated signaling pathways. It was therefore of interest to determine if the PI3K-PKB/Akt signaling pathway was capable of conferring protection from apoptosis induced by p53. We demonstrate in this report that constitutively active PI3K and PKB/Akt are capable of significantly delaying the onset of p53-mediated apoptosis. This was manifested as a delay in the kinetics of DNA degradation and cell death as well as a profound attenuation in the accumulation of cells with a sub-G(1) DNA content. Moreover, we found that this effect is mediated in the absence of changes in expression of Bcl-2, Bcl-Xl, and the pro-apoptotic protein Bax. Our results provide the first direct and unambiguous link between p53-mediated apoptosis and the PI3K-PKB/Akt signaling pathway.  相似文献   

3.
Tumor suppressor p53 plays a critical role in cellular responses, such as cell cycle arrest and apoptosis following DNA damage. DNA damage-induced cell death can be mediated by a p53-dependent or p53-independent pathway. Although p53-mediated apoptosis has been well documented, little is known about the signaling components of p53-independent cell death. Here we report that the death domain kinase, RIP (receptor-interacting protein), is important for DNA damage-induced, p53-independent cell death. DNA damage induces cell death in both wild-type and p53-/- mouse embryonic fibroblast cells. We found that RIP-/- mouse embryonic fibroblast cells, which have a mutant form of the p53 protein, are resistant to DNA damage-induced cell death. The reconstitution of RIP protein expression in RIP-/- cells restored the sensitivity of cells to DNA damage-induced cell death. We also found that RIP mediates this process through activating mitogen-activated protein kinase, JNK1. Furthermore, knocking down the expression of RIP blocked DNA damage-induced cell death in the human colon cancer cell line, p53 null HCT 116. Taken together, our study demonstrates that RIP is one of the critical components involved in mediating DNA damage-induced, p53-independent cell death.  相似文献   

4.
Molecular mechanisms of ionizing radiation-induced apoptosis.   总被引:7,自引:0,他引:7  
Ionizing radiation activates not only signalling pathways in the nucleus as a result of DNA damage, but also signalling pathways initiated at the level of the plasma membrane. Proteins involved in DNA damage recognition include poly(ADP ribose) polymerase (PARP), DNA-dependent protein kinase, p53 and ataxia- telangiectasia mutated (ATM). Many of these proteins are inactivated by caspases during the execution phase of apoptosis. Signalling pathways outside the nucleus involve tyrosine kinases such as stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), protein kinase C, ceramide and reactive oxygen species. Recent evidence shows that tumour cells resistant to ionizing radiation-induced apoptosis have defective ceramide signalling. How these signalling pathways converge to activate the caspases is presently unknown, although in some cell types a role for calpain has been suggested.  相似文献   

5.
Both p53 and ATM are checkpoint regulators with roles in genetic stabilization and cancer susceptibility. ATM appears to function in the same DNA damage checkpoint pathway as p53. However, ATM's role in p53-dependent apoptosis and tumor suppression in response to cell cycle dysregulation is unknown. In this study, we tested the role of murine ataxia telangiectasia protein (Atm) in a transgenic mouse brain tumor model in which p53-mediated apoptosis results in tumor suppression. These p53-mediated activities are induced by tissue-specific inactivation of pRb family proteins by a truncated simian virus 40 large T antigen in brain epithelium. We show that p53-dependent apoptosis, transactivation, and tumor suppression are unaffected by Atm deficiency, suggesting that signaling in the DNA damage pathway is distinct from that in the oncogene-induced pathway. In addition, we show that Atm deficiency has no overall effect on tumor growth and progression in this model.  相似文献   

6.
Activation of tumor suppressor p53 in response to genotoxic stress imposes cellular growth arrest or apoptosis. We identified Cdc6, a licensing factor of the prereplication complex, as a novel target of the p53 pathway. We show that activation of p53 by DNA damage results in enhanced Cdc6 destruction by the anaphase-promoting complex. This destruction is triggered by inhibition of CDK2-mediated CDC6 phosphorylation at serine 54. Conversely, suppression of p53 expression results in stabilization of Cdc6. We demonstrate that loss of p53 results in more replicating cells, an effect that can be reversed by reducing Cdc6 protein levels. Collectively, our data suggest that initiation of DNA replication is regulated by p53 through Cdc6 protein stability.  相似文献   

7.
Activation of the p53 protein can lead to apoptosis and cell cycle arrest. In contrast, activation of the signalling pathway controlled by the Kit receptor tyrosine kinase prevents apoptosis and promotes cell division of a number of different cell types in vivo. We have investigated the consequences of activating the Kit signalling pathway by its ligand Steel factor on these opposing functions of the p53 protein in Friend erythroleukemia cells. A temperature-sensitive p53 allele (Val-135) was introduced into the Friend erythroleukemia cell line (DP-16) which lacks endogenous p53 expression. At 38.5 degrees C, the Val-135 protein maintains a mutant conformation and has no effect on cell growth. At 32 degrees C, the mutant protein assumes wild-type properties and induces these cells to arrest in G1, terminally differentiate, and die by apoptosis. We demonstrate that Steel factor inhibits p53-mediated apoptosis and differentiation but has no effect on p53-mediated G1/S cell cycle arrest. These results demonstrate that Steel factor functions as a cell survival factor in part through the suppression of differentiation and apoptosis induced by p53 and suggest that cell cycle arrest and apoptosis may be separable functions of p53.  相似文献   

8.
9.
10.
We have previously shown that lovastatin, an HMG-CoA reductase inhibitor, induces apoptosis in rat brain neuroblasts. c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) are implicated in regulation of neuronal apoptosis. In this work, we investigated the role of JNK and p38 MAPK in neuroblast apoptosis induced by lovastatin. We found that lovastatin induced the activation of JNK, but not p38 MAPK. It also induced c-Jun phosphorylation with a subsequent increase in activator protein-1 (AP-1) binding, AP-1-mediated gene expression and BimEL protein levels. The effects of lovastatin were prevented by mevalonate. Pre-treatment with iJNK-I (a selective JNK inhibitor) prevented the effect of lovastatin on both neuroblast apoptosis and the activation of the JNK cascade. Furthermore, we found that the activation of the JNK signalling pathway triggered by lovastatin is accompanied by caspase-3 activation which is also inhibited by iJNK-I pre-treatment. Finally, a specific inhibitor of p38 MAPK, SB203580, had no effect on lovastatin-induced neuroblast apoptosis. Taken together, our data suggest that the activation of the JNK/c-Jun/BimEL signalling pathway plays a crucial role in lovastatin-induced neuroblast apoptosis. Our findings may also contribute to elucidate the intracellular mechanisms involved in the central nervous system side effects associated with statin therapy.  相似文献   

11.
12.
Li HH  Cai X  Shouse GP  Piluso LG  Liu X 《The EMBO journal》2007,26(2):402-411
Protein phosphatase 2A (PP2A) has been implicated to exert its tumor suppressive function via a small subset of regulatory subunits. In this study, we reported that the specific B regulatory subunits of PP2A B56gamma1 and B56gamma3 mediate dephosphorylation of p53 at Thr55. Ablation of the B56gamma protein by RNAi, which abolishes the Thr55 dephosphorylation in response to DNA damage, reduces p53 stabilization, Bax expression and cell apoptosis. To investigate the molecular mechanisms, we have shown that the endogenous B56gamma protein level and association with p53 increase after DNA damage. Finally, we demonstrate that Thr55 dephosphorylation is required for B56gamma3-mediated inhibition of cell proliferation and cell transformation. These results suggest a molecular mechanism for B56gamma-mediated tumor suppression and provide a potential route for regulation of B56gamma-specific PP2A complex function.  相似文献   

13.
The non-receptor tyrosine kinase c-Abl is activated in response to DNA damage and induces p73-dependent apoptosis. Here, we investigated c-Abl regulation of the homeodomain-interacting protein kinase 2 (HIPK2), an important regulator of p53-dependent apoptosis. c-Abl phosphorylated HIPK2 at several sites, and phosphorylation by c-Abl protected HIPK2 from degradation mediated by the ubiquitin E3 ligase Siah-1. c-Abl and HIPK2 synergized in activating p53 on apoptotic promoters in a reporter assay, and c-Abl was required for endogenous HIPK2 accumulation and phosphorylation of p53 at Ser46 in response to DNA damage by γ- and UV radiation. Accumulation of HIPK2 in nuclear speckles and association with promyelocytic leukemia protein (PML) in response to DNA damage were also dependent on c-Abl activity. At high cell density, the Hippo pathway inhibits DNA damage-induced c-Abl activation. Under this condition, DNA damage-induced HIPK2 accumulation, phosphorylation of p53 at Ser46, and apoptosis were attenuated. These data demonstrate a new mechanism for the induction of DNA damage-induced apoptosis by c-Abl and illustrate network interactions between serine/threonine and tyrosine kinases that dictate cell fate.  相似文献   

14.
Although programed cell death 5 (PDCD5) is an important protein in p53-mediated proapoptotic signaling, very little is known about PDCD5-related cell death. In this study, we report that serine/threonine kinase 31 (STK31) interacts with PDCD5, which maintains the stability of PDCD5. STK31 overexpression significantly activated PDCD5 stabilization and p53-mediated apoptosis in response to etoposide (ET). However, STK31 knockdown did not enhance apoptosis by ET treatment. Moreover, when STK31 was depleted, PDCD5 inhibited the activation of the p53 signaling pathway with ET, indicating that the PDCD5–STK31 network has an essential role in p53 activation. Importantly, STK31 activated the p53 signaling pathway by genotoxic stress through positive regulation of PDCD5-mediated apoptosis. We thus demonstrated that overexpression of STK31 greatly inhibited tumorigenic growth and increased the chemosensitivity of HCT116 human colorectal carcinoma cells. Taken together, these findings demonstrate that the STK31–PDCD5 complex network regulates apoptosis of cancer cells, and STK31 is a positive apoptosis regulator that inhibits tumorigenesis of colon cancer cells by inducing PDCD5-mediated apoptosis in response to genotoxic stress.  相似文献   

15.
16.
17.
The p53 protein is subject to Mdm2-mediated degradation by the ubiquitin-proteasome pathway. This degradation requires interaction between p53 and Mdm2 and the subsequent ubiquitination and nuclear export of p53. Exposure of cells to DNA damage results in the stabilization of the p53 protein in the nucleus. However, the underlying mechanism of this effect is poorly defined. Here we demonstrate a key role for c-Abl in the nuclear accumulation of endogenous p53 in cells exposed to DNA damage. This effect of c-Abl is achieved by preventing the ubiquitination and nuclear export of p53 by Mdm2, or by human papillomavirus E6. c-Abl null cells fail to accumulate p53 efficiently following DNA damage. Reconstitution of these cells with physiological levels of c-Abl is sufficient to promote the normal response of p53 to DNA damage via nuclear retention. Our results help to explain how p53 is accumulated in the nucleus in response to DNA damage.  相似文献   

18.
Neuronal life and death: an essential role for the p53 family   总被引:12,自引:0,他引:12  
Recent evidence indicates that the p53 tumor suppressor protein, and its related family member, p73, play an essential role in regulating neuronal apoptosis in both the developing and injured, mature nervous system. In the developing nervous system, they do so by regulating naturally-occurring cell death in neural progenitor cells and in postmitotic neurons, acting to ensure the apoptosis of cells that either do not appropriately undergo the progenitor to postmitotic neuron transition, or that fail to compete for sufficient quantities of trophic support. Somewhat surprisingly, in developing postmitotic neurons, p53 plays a proapoptotic role, while a naturally-occurring, truncated form of p73, DeltaNp73, antagonizes p53 and plays an anti-apoptotic role. In the mature nervous system, numerous studies indicate that p53 is essential for the neuronal death in response to a variety of insults, including DNA damage, ischemia and excitotoxicity. It is likely that all of these insults culminate in DNA damage, which may well be a common trigger for neuronal apoptosis. In this regard, the signaling pathways that are responsible for triggering p53-dependent neuronal apoptosis are starting to be elucidated, and involve cell cycle deregulation and activation of the JNK pathway. Finally, accumulating evidence indicates that p53 is perturbed in the CNS in a number of neurodegenerative disorders, leading to the hypothesis that longterm oxidative damage and/or excitotoxicity ultimately trigger p53-dependent apoptosis in the chronically degenerating nervous system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号